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Diversity of post-translational
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by single cell and single organelle mass
spectrometry
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The rapid evolution ofmass spectrometry-based single-cell proteomics nowenables the cataloging of
several thousand proteins from single cells. We investigated whether we could discover cellular
heterogeneity beyond proteome, encompassing post-translational modifications (PTM), protein-
protein interaction, and variants. By optimizing the mass spectrometry data interpretation strategy to
enable the detection of PTMs and variants, we have generated a high-definition dataset of single-cell
and nuclear proteomic-states. The data demonstrate the heterogeneity of cell-states and signaling
dependencies at the single-cell level and reveal epigenetic drug-induced changes in single nuclei. This
approach enables the exploration of previously uncharted single-cell and organellar proteomes
revealing molecular characteristics that are inaccessible through RNA profiling.

Unbiased measurement of the proteome from single cells has been facili-
tated by recent advancements in sophisticated sample preparation strategies
using miniaturized and microfluidic devices1–3. As examples, nanoPOTS
(Nanodroplet Processing in One pot for Trace Samples), cellenONE, and
integrative proteomics chip have now enabled single cell isolation, lysis and
digestion in nanoliter volumes of liquids, which minimize sample losses
during the processes4–6. Simultaneously, there have been improvements in
the performance of mass spectrometers7 along with the development of
novel methodologies to analyze single cells with enhanced sensitivity,
throughput, and robustness8–13. In light of these developments, mass
spectrometry-based single-cell proteomics now provides valuable insights
into cellular heterogeneity bymeasuringproteomeof individual cells9,14,15. In
addition, the improveddepth of proteome coverage allows the identification
of post-translationally modified peptides from abundant proteins in single
cells both in label-free and tandem mass tag (TMT)-based labeling strate-
gies. For example, Orsburn and colleagues recently reported a TMT 9-plex
labeling approach by spiking 50 ng of carrier protein to detect multiple
PTMs in single cells10. Our own group also demonstrated the feasibility of

detectingphosphorylation andacetylation at a single-cell resolution in label-
free mode by optimizing settings for trapped ion mobility spectrometry
(TIMS)16. The benefits of a data-independent acquisition (DIA) approach
for the detection of phosphorylation, acetylation, and ubiquitylation sites
from low input samples have also been described although the samples were
not strictly single cells but protein amounts diluted to near single-cell
equivalents17.

Single-nucleus RNA sequencing has now become an alternative and
complementary approach to single-cell RNA sequencing, showing advan-
tages for transcriptomic profiling of samples that are difficult to generate
high-quality single cell suspension18,19. However, the development of cor-
responding technologies for unbiased proteome profiling of single nuclei
has been limited. Single nuclei yield a smaller amount of protein than single
cells, which creates challenges for processing and analysis using mass
spectrometry, where amplification is not feasible. Remarkably, before the
recent introduction of highly sensitive mass spectrometers optimized for
low-input samples, the feasibility of measuringmetabolites from single cells
and single organelles had been established using MALDI or capillary
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electrophoresis coupled with ESI20–22. Most recently, a combination of deep
ultraviolet laser ablation with nanodroplet sample handling showed the
feasibility of proteome profiling from subcellular regions23.

As the performance of single-cell proteomics continues to
evolve, we explored the possibility of detecting additional types of
PTMs. To this end, we performed single-cell proteome and PTM
profiling using human normal cholangiocyte cell line and cho-
langiocarcinoma cell lines. As it was known that somatic mutations
such as KRAS G12D and TP53 R175H are frequent in these cancer
cell lines, we further tested the possibility of detecting variant pep-
tides at single cell resolution. To this end, we established a strategy
considering PTMs and variant peptides during interpretation of mass
spectrometry data of single cells. This approach resulted in the
identification of modified peptides including phosphorylation,
methylation, and acetylation. Importantly, we identified peptides
with variants from single cells. Further, we expanded our scope to
include proteome and PTM profiling of single nuclei through which
we measured expected drug-induced epigenetic changes. Overall, we
demonstrated the significant role of single-cell and single-nuclei
proteomics to understand cellular heterogeneity including PTMs and
variants which cannot be achieved through single-cell genomics.

Results
Single-cell proteomics of cholangiocarcinoma cell lines
Based on a recent study demonstrating data independent acquisition (DIA)
parallel accumulation-serial fragmentation (diaPASEF)mode tobe superior
for obtaining increased depth of proteome coverage at the single cell level7,
we adopted diaPASEF approach for single-cell proteomics of this study.
Although multiple studies have highlighted the impact of spectral library
composition on the overall performance of identification, especially when
analyzing DIA data of low-input or single-cell samples using orbitrap mass
spectrometry17,24, there is no systematic study investigating the influence of
spectral libraries on identification using timsTOFmass spectrometer. Thus,
we first performed experiments using diluted peptides to determine the
optimal strategy for analyzing diaPASEF data. Several spectral libraries
varying in size were generated from DDA-PASEF data acquired from dif-
ferent amounts of HeLa protein digests and diaPASEF data of single-cell
equivalent peptides were analyzed against these spectral libraries
(Fig. 1a, S1a). In agreement with earlier studies17,24, we observed that the
large size of spectral library generated from >10 ng of peptides does not
correspond to greater protein identification for low input samples (Fig. 1b).
Interestingly, using spectral libraries generated from a lower amount of
peptides (2–5 ng) resulted in achieving themaximumproteome coverage in

Fig. 1 | Single cell proteomics of normal cholangiocytes and cholangiocarcinoma
cells. a Overall workflow for generating spectral libraries of different sizes through
injection of different amounts of HeLa peptides as indicated and diaPASEF data
from single cell-equivalent peptides. b Number of proteins identified from diaPA-
SEF data of 156 pg peptides using DIA-NN. c Overall workflow for mass
spectrometry-based proteome profiling of single cells. Cells were sorted using cel-
lenONE platform and subsequent analyses were performed employing timsTOF
SCP mass spectrometer. d Summary of the number of identified proteins, phos-
phorylated, protein N-terminal acetylated, lysine mono-, di-, trimethylated, acety-
lated, and formylated peptides from single cells. e Subcellular localization of
identified proteins from single cells. fMolecular function of identified proteins.

Proteins categorized as other molecular types (1442 proteins) were excluded from
the plot of molecular function. Ingenuity pathway analysis (QIAGEN Inc., https://
digitalinsights.qiagen.com/IPA) was used for categorizing subcellular localization
and function of proteins. g Principal component analysis of 4197 proteins. Each
circle represents data from an individual cell. h Volcano plot showing fold-changes
of 3,385 proteins quantified from ≥25% samples. Differentially expressed proteins
are depicted in red. i Box plots of relative abundance of representative up-regulated
proteins in cancer cells (n = 150) compared to normal cells (n = 50). The line inside
the box represents the median, the lower and upper edges represent the first and
third quartiles and the whiskers represent 1.5 times the interquartile range. ***
Adjusted p-value ≤ 0.001.
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both DIA-NN and Spectronaut (Figure. S1b). In addition, spectral library-
based approach identified a significantly higher number of proteins com-
pared to the spectral library-free approach. Thus, we decided to use peptides
from ~20-50 cells or equivalent (2–5 ng peptides) for the generation of a
spectral library, which was subsequently used to analyze the single-cell DIA
mass spectrometry data.

To test if our improvedmass spectrometry data analysis strategies could
provide comprehensive insights on protein identifications and PTMs at the
single cell level, we performed proteome profiling of single cells of normal
human cholangiocytes cell line (NHC) and three cholangiocarcinoma cell
lines (HuCCT-1, RBE and EGI-1) (Fig. 1c). Sorted single cells were analyzed
using diaPASEF mode. Twenty cells were collected and triplicates of DDA-
PASEF data were acquired to generate a spectral library. We considered
protein N-terminal acetylation, phosphorylation on serine, threonine, and
tyrosine, lysine methylation, dimethylation, trimethylation, acetylation, and
formylation as variable modifications in addition to methionine oxidation,
which were observed as major PTMs in open search strategy of FragPipe25.
Additionally, we also tested the feasibility of detecting peptides with single
amino acid polymorphisms (SAP) at the single cell level by incorporating the
publicly available somatic single nucleotide variant (SNP) database (dep-
map.org) of these three cancer cell lines. This resulted in the identification of
50,121 peptides (4584 proteins) including 1012 modified peptides and 7
peptides with SAP, which were used for the generation of the spectral library
through EasyPQP pipeline26 (Fig. S2). Peptides with SAP detected from
DDA-PASEF runs were confirmed by MS/MS spectra of synthetic peptides
(Fig. S3). Next, we analyzed diaPASEF data of single cells using the generated
spectral library (Fig. 1c). A total of 4197 proteins (41,560 peptides) were
identified from 200 single cells with an average of 2548 proteins per single
cell (Fig. 1d, Fig. S4a and Supplementary Data 1). The robustness of iden-
tification was assessed by checking the reproducibility of elution time and
ion mobility of identified peptides, which resulted in a median coefficient of
variation of 3.4% for elution time and 1.7% for ion mobility across 200
single-cell samples (Fig. S4b). Subcellular localization of proteins revealed
that the majority of the identified proteins (56%) belong to cytoplasm fol-
lowed by the nucleus (27%) and plasma membrane (8%) (Fig. 1e). In
agreement with our previous observations16, our current workflow for single
cells is not optimized for detecting plasma membrane proteins, which
requires further investigation. Of the proteins identified from single cells,
enzymes constituted the majority (961 proteins), accompanied by 262
transporters, 227 transcriptional regulators, 145 kinases and 64 phosphatases
(Fig. 1f). Principal component analysis revealed separation of normal cho-
langiocytes from cancer cells clusters of each cell line (Fig. 1g). Differential
expression analysis showed that 84 proteins were upregulated, and 131
proteins were downregulated (|fold-change|>2 and adjusted p-value < 0.01)
in the cancer cells as compared to the normal cells (Fig. 1h). Importantly, in
this dataset, we identified molecules which are reported as potential markers
for diagnosis hepato-pancreato-biliary cancer such as annexin A327 along
withmolecular progression aggressive clinical course includingmyoferlin28,29.
Proteins related to prognosis and overall survival such as C-X-C motif
chemokine ligand 530 and thyroid hormone receptor interactor 1231 were
shown to be upregulated in cancer cells. Interestingly, we observed upre-
gulation of protein S100-P, which is a known diagnostic marker of
cholangiocarcinoma32 (Fig. 1i). In addition, the recent single-cell tran-
scriptomic analysis of cholangiocarcinoma revealed that S100-P is a dis-
criminatory biomarker for two subtypes of intrahepatic cholangiocarcinoma,
perihilar large duct type, and perihilar small duct type33. Taken together, the
successful detection of these previous reported biomarkers in single-cell
proteomics indicates the feasibility of applying single-cell proteomics as a
platform for potential cancer diagnostics and elucidation of cellular het-
erogeneity in which single-cell RNA sequencing is currently actively used to
understand inherent cellular heterogeneity of cholangiocarcinoma33–35.

Protein-protein interaction networks at single-cell resolution
Given that a large number of proteins were identified in individual cells, we
performed network analysis to identify potential heterogeneity in signaling

at single-cell level. To this end, we constructed a protein-protein interaction
network involving kinases using the human protein interactome data from
BioGRID database36. We assembled a protein kinase network using all
proteins detected from each cell line, resulting in a network with the largest
connected component of ~1250 nodes and ~2600 edges (Fig. 2a, S5). We
then overlaid the number of cells in which a proteinwas detected and found
that there was a large variation in the expression of kinases. In addition,
when clustering analysis on each network was performed to find densely
connected regions, we identified a subnetwork that included several hub
proteins such as epidermal growth factor receptor (EGFR), casein kinase 2
alpha 1 (CSNK2A1) and SRSF protein kinase 1 and 2 (SPRK1/2), which
were present in all four cell lines but with varied expression at a single cell
level.When focusing on the core subnetwork, we observed key kinases with
varying levels of expression in individual cells (Fig. 2b). For instance, as
expected, the expression of tumor suppressor protein, TP53 was lower in
three cancer cell lines compared to normal cholangiocyte cells. Similarly,
RAF proto-oncogene serine/threonine-protein kinase (RAF1) is sig-
nificantly active in a majority of the HuCCT-1 cells but not in EGI-1, and
cyclin-dependent kinase 6 (CDK6)was detected in only a fraction of cells in
all four cell types. These data demonstrate that single-cell proteomics allows
us to capture the heterogeneity of kinase abundance in single cells.

Portion of housekeeping and non-housekeeping proteins
detected in single cells
Next, we investigated if the protein expression signals measured at the
single-cell level were sufficient to capture the overall cellular state including
the basic cellular functions.Given that ournetwork analysis revealed cellular
heterogeneity at the level of signaling molecules, we checked the portion of
housekeeping proteins detected per single cell and their corresponding
relative abundance to verify that our analytical approach was able to over-
come the challenge of the dynamic range of proteome and could detect
proteins beyond the house-keeping functions that could truly indicate the
cellulate state. We expected that a large majority of proteins detected in
single cells were abundant housekeeping proteins. However, when com-
pared to a publicly available database of housekeeping genes, HRT Atlas37,
only 13% of identified proteins were categorized as housekeeping proteins
andwere detected reproducibly across the 200 cells (Fig. S6a) while the large
majority were not housekeeping proteins highlighting the utility of single-
cell proteomics approach (Fig. S6b, c).

Identification of SAPs at single cell resolution
Direct detection of mutant proteins resulting from somatic mutations
provides compelling evidenceof tumor andaffords valuable insights into the
mechanisms underlying tumorigenesis. Despite advancements in scRNA
sequencing, the detection of somatic mutations at the single cell level
remains as a major challenge38,39. Thus far, there is no report describing
detection of proteins carrying variant sequences arising from mutations
from single-cell proteomics. We hypothesized that improved proteome
coverage of single cells could increase the likelihood of detecting mutations
at the single cell level. To this end, we applied an approach that considered
peptideswith SAPs during the analysis of diaPASEFdata (Fig. 1c).With this
approach, we successfully identified peptides containing KRAS variants
corresponding toG12Dalong with three other variants - IQGAP1G1047R,
CCT8 A488T, and GMPS R435T - at the single cell level (Fig. 3a and
Supplementary Data 2). We confirmed the identification of these peptides
by analyzing a mixture of synthetic peptides and assessing the similarity of
elution time and fragmentation patterns (Figs. 3b, c). Importantly, peptide
LVVVGADGVGKwithKRASG12Dvariantwas only detected inHuCCT-
1 and EGI-1 cells, not in RBE cells, which aligns with the genomic
sequencing results annotated in DepMap. Similarly, peptide
NVGLDIEAEVPTVK derived from CCT8 A4888T variant was only
detected in RBE cells, which again agreedwith data in DepMap. Finally, the
simultaneous detection of peptides corresponding to non-mutated
sequences indicates the feasibility of measuring relative levels of abnormal
and normal proteins in each individual single cell. We anticipate that
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peptides arising fromother types of variants such as indels and fusion genes
could potentially be detected as the depth of proteome coverage of single
cells continues to evolve.

Identification of PTMs at single cell resolution
Our approach, which includes PTMs in the spectral library, enabled the
identification of a total of 192 phosphorylated peptides (182 sites of 116
proteins), 24 lysine methylated peptides (24 sites of 19 proteins), 20 lysine
dimethylated peptides (17 sites of 13 proteins), 14 lysine trimethylated
peptides (11 sites of 10 proteins), 17 lysine acetylated peptides (14 sites of 13
proteins) and 16 lysine formylated peptides (16 sites of 12 proteins) (Fig. 1c
and Supplementary Data 3). As expected, many of these PTMs were
detected on abundant proteins based on the distribution of intensity-based
absolute quantification (iBAQ) value of proteins with PTMs (Fig. S4c).
Notably, we were able to detect multiple phosphorylation sites of proteins
such as prelamin-A/C and nucleolin. For example, four phosphorylation
sites (Ser 67, Thr 76, Thr 121, and Ser 563) were identified for nucleolin and
these identifications were confirmed by elution time and fragment ions of
synthetic peptides (Fig. 4a). Multiple types of PTMs from proteins such as
histones and elongation factor 1-alpha 1 were also detected. For instance,
five types of PTMs including methylation, dimethylation, trimethylation,
acetylation, formylation on lysines (K14, K23, K27 and K79) of histone 3.1
were detected (Fig. 4b). Histone H3modifications are known to affect gene
expression – for instance,H3K14 acetylation is associated with activation of
gene expression40 which is known to coexist and coupled with H3K23
acetylation41; H3K79 methylation is associated with transcribed regions of
active genes42,43; whereas H3K27 methylation is associated silencing gene
expression via proximity or looping44 and H3K79 formylation has been
proposed to potentially silence gene expression since it interferes with
H3K79methylation45. Given that we have histone H3modifications data at
a single cell level, which could potentially indicate the overall transcriptional
activity, we computed the ratio of PTMs activating gene expression versus
repressing gene expression (Fig. 4c). We observed a higher ratio potentially
indicating a higher transcriptional activity inmost cells, which corroborates
with the fact that the cells under study are proliferating tumor cell lines46,47.

This analysis shows the potential to uncover individual cell states driven by
gene regulation and transcriptional activity at single-cell resolution using
histone modifications as a proxy.

Weobserved altered phosphorylation of several proteins in cancer cells
(Fig. 4d). Although a direct link to cancerwas not described for all identified
sites, site-specific regulation in specific contexts had been reported for some
of the identified sites. For example, phosphorylation of triosephosphate
isomerase (TPI1) on Ser 21was observed to be increased inHUCCT-1 cells.
The activity of TPI1 is regulated via phosphorylation at Ser21 by the salt
inducible kinases (SIK) in an LKB1-dependentmanner, which is believed to
influence tumorigenesis48. Alpha-enolase is known as a multifunctional
oncoprotein49,50 and phosphorylation on Ser115 is related to the activity of
serine/threonine-protein kinaseULK1/251. Calnexin phosphorylation at Ser
583 was increased, which is related to the recruitment of calnexin to ER-
membrane-bound ribosomes for quality control52. This again indicates the
potential of our approach to measure phosphorylation states at individual
sites on proteins that correlate with their function at single-cell resolution.

Because a number of signaling studies have been done in immune cells,
we treated JurkatT cellswith a phosphatase inhibitor calyculinA (for 15 and
30minutes) followed by single-cell proteomics to directly measure altera-
tions in response to perturbations (Fig. S7). This resulted in the identifica-
tion of a total of 9236 peptides (1580 proteins) including 39 phosphorylated
peptides (Fig. 4e). As expected, upregulation of phosphorylation was
observed under calyculin A treatment demonstrating the feasibility of this
approach (Fig. 4f). This included phosphorylation of nucleolin, actin and
histone proteins, which are phosphorylated by different kinases such as
casein kinases and cyclin-dependent kinases.

Profiling of the whole proteome and PTMs at single nuclei
We also tested the feasibility of performing single-organelle proteomics to
capture subcellular proteome dynamics. Since we were able to quantify
important regulatory nuclear proteins such as histones and their PTMs in
single cells, we ventured to perform proteome profiling in single nuclei as
this could potentially provide a snapshot of the transcriptional state of cells.
To this end, nuclei were isolated following an optimized protocol for single

Fig. 2 | Protein interaction networks at single-cell resolution. a Protein-protein interaction map of proteins identified at single cells of HuCCT-1 cell line. b Core
subnetwork showing key kinases with varying levels of expression in individual cells.
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nuclei RNA sequencing53 and sorted from a serous ovarian cancer cell line
PEO1 treatedwith tazemetostat, a clinically approved epigenetic inhibitor of
the histone methyltransferase EZH2 that methylates lysine 27 of histone
3.154 (Fig. 5a).We acquired diaPASEF data of single nuclei samples for both
untreated and treated cells, which were interpreted using a spectral library
generated from DDA-PASEF data of multiple nuclei. The same PTMs
considered during experiments of single cells were included when gen-
erating the spectral library of nuclei. The spectral library generated from
nuclei was composed of 14,238 peptides corresponding to 2094 proteins.
When compared to the 4584 proteins in the spectral library of cells, 132
proteins were exclusively identified from the nuclei. As expected, proteins
identified from nuclei were enriched for nuclear proteins, while proteins
identified exclusively from cells were enriched in cytosol (Fig. 5b). Thirty
single nuclei samples were analyzed including 15 from untreated and 15
from tazemetostat-treated cells, which resulted in a total of 6221 peptides
corresponding to 1008 proteins with an average of 627 proteins per sample
(Fig. 5c, S7c and Supplementary Data 4). Importantly, we were able to
identify six different PTMs of histoneH3.1 at K14, K23, K27 andK79,most
of which were consistently detected in every single nuclei sample (Fig. 5d).
The levels of trimethylation of H3K27 were reduced upon tazemetostat
treatment, while there were no significant changes in the total protein
abundance of histone H3.1 (Fig. 5e). Our study demonstrates the potential
of single nuclear proteomics to study themolecular effects of drugs that can
impact gene expression by measuring histone modifications.

Discussion
In this study, we leveraged the advancements in single-cell proteomics to
enable unbiased measurements of proteome and PTMs at the single-cell
level. This revealed diversity in kinase expression within single cells offering
insights into signaling heterogeneity. Further, our strategy allowed the
detection of mutant proteins at the single-cell level, which we expect to be
expanded for understanding tumor heterogeneity and evolution. Cho-
langiocarcinoma is an aggressive malignancy that has been studied at the
single-cell level using a transcriptomic approach34. We believe that single-
cell proteomics could also be used similarly to investigate the heterogeneity
of cholangiocarcinoma to discover insights complementary to scRNA
sequencing data. As techniques for single-cell proteomics continue to
evolve, we believe that considering other PTMs and variants should be
applied routinely to elucidate the cellular heterogeneity information, which
is not obtainable through single-cell genomics. Further, it is imperative to
continue improving detection sensitivity, particularly focusing on the
consistent quantitation of PTMs across multiple single cells. As expected,
the current detection of PTMs is biased towards abundant proteins. Addi-
tionally, the frequency of detection in 200 single-cell samples is also rela-
tively low as compared to unmodified peptides. We anticipate that targeted
approaches focused on specific PTMs should enhance reproducible mea-
surements across single cells. The development of enrichment methods
need to be investigated for PTMs such as phosphorylation by deploying
microfluidic-based techniques.

Fig. 3 | Identification of SAPs at single cell resolution. a Heatmap showing
identification of peptides with SAPs and corresponding peptides with reference
sequence across 200 single cell samples. b Extracted ion chromatograms of three

fragment ions of KRAS wild type (WT) and G12D variant peptide. c Extracted ion
chromatograms of three fragment ions of CCT8 WT and A488T variant peptide.
Data of single cells and synthetic peptides are shown.
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Fig. 4 | Identification of PTMs in single cells. a Identified phosphorylated sites of
nucleolin (S67, T76, T121, and S563) from single cells. The number represents the
count of detected samples out of 200 samples. Representative extracted ion chro-
matograms are shown both from single cells and synthetic peptides. bHistone H3.1
identified with PTMs of methylation, dimethylation, trimethylation, acetylation,
and formylation on four lysines (K14, K23, K27, and K79). Representative extracted
ion chromatograms are shown both from single cells and synthetic peptides.
c Heatmap showing a subset of cells with levels of histone H3 PTMs that are

activating (K79me/me2, K14ac and K23ac) gene expression or repressing (K27me/
me2/me3 and K79fo) and a bubble plot depicting the ratio on a log2 scale as indi-
cated. A higher ratio indicates an overall increase in the level of transcriptional
activity. d Heatmap showing phosphorylation sites that are upregulated (TPI S21,
ENO1 S115, and CANX S583) in HuCCT-1 cells. e The number of identified pro-
teins and phosphorylated peptides in Jurkat T cells of untreated and calyculin A
treated conditions. f Heatmap showing the relative abundance of phosphorylation
sites detected in untreated and calyculin A treated Jurkat cells.
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In addition, by extending the scope to single nuclei, we demonstrated
the power of technologies that canmeasure single organelle proteomes and
offer critical insights into gene regulation such as drug-induced epigenetic
changes. We isolated nuclei from cells using a widely adopted method for
scRNA seq followed by single nuclei sorting on the CellenONE platform.
We expect that alternative approaches using laser capture microdissection
or ablation at a spatial resolution of <10 μm can also be deployed to isolate
subcellular compartments23,55. Further, the emergence of innovative analy-
tical methods other than mass spectrometry including electrode chemical
analysis, super-resolution microscopy, and microfluidics has allowed qua-
litative and quantitative analysis to be carried out at single-cell and sub-
cellular levels56. The integrative application of these technologies is expected
to further expand our understanding of subcellular scale, even applicable to
tissue samples55,57.

Methods
Cell culture of normal cholangiocytes and cholangiocarcinoma
cell lines
Normal human cholangiocytes (NHC) cell line and three cholangio-
carcinoma cell lines (HuCCT-1, RBE and EGI-1) were kind gifts of Dr.
Gregory Gores. The cell lines were cultured in the 10 cm dishes in
RPMI-1640 medium (Gibco, 11875-093) containing 10% fetal bovine
serum (FBS) (Gibco, 10437-028) with penicillin/streptomycin (Gibco,
15240-062). All cultures were maintained in a 5% CO2 air-humidified
atmosphere at 37 °C. For single-cell sorting, the media was removed, and
the cells were gently washed with 10 ml 1xPBS (Corning, 21-040-CV)

twice. After wash, 0.05% trypsin-EDTA (Gibco, 25300-054) was added
to the dishes and incubated for 5 minutes at 37°C. Trypsin digestion was
stopped after adding 5ml RPMI-1640 medium containing 10%
FBS. The cells were spined down and washed with cold PBS twice.
The cell density was counted by Invitrogen Countess II and adjusted to
2–5 × 105 cells/ml.

Cell culture of Jurkat cell line and calyculin A treatment
Jurkat cell line was maintained in RPMI-1640 medium (Gibco,
11875-093) containing 10% FBS (Gibco, 10437-028) with penicillin/
streptomycin (Gibco, 15240-062). About 1 × 107 Jurkat cells were
untreated or treated with 0.1 µM calyculin A (Cell Signaling Tech-
nology, 9902) for 15 minutes and 30 minutes. Cells were harvested
and washed with cold PBS twice for single-cell sorting. For the
western blot, cells were lysed in modified RIPA buffer (50 mM Tris-
HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Nonidet P-40, 0.25%
sodium deoxycholate) followed by three cycles of sonication soni-
cated using a tip sonicator (Branson, SFX 550). Cell lysates were
centrifuged at 12,000 g for 10 min at 4 °C and supernatants were
transferred to a new tube. Protein estimation was performed using
bicinchoninic acid protein assays (Thermo, 23225). Around 20 μg of
proteins were resolved on SDS-PAGE gel, transferred to nitrocellu-
lose membrane, and probed using a phospho-Ser/Thr antibody (Cell
Signaling Technology, 9631) followed by reprobing with antibody
against the corresponding protein. HSP90 antibody (Santa Cruz, sc-
69703) was used as the loading control.

Fig. 5 | Profiling of proteome and PTM of single nuclei. a Schematic workflow for
single nuclei proteome profiling from PEO1 cells. b Comparison of proteins from
single cells and single nuclei. Cellular components for proteins exclusively identified
in nuclei samples (132 proteins, blue circle) and proteins exclusively identified in
cells (2622 proteins, orange circle) are shown. Gene ontology enrichment analysis
was performed using DAVID. c The number of identified peptides and proteins
across single nuclei samples from PEO1 cells in control and tazemetostat-treated

conditions. d Histone H3.1 identified with PTMs of methylation, dimethylation,
trimethylation, and acetylation on four lysines (K14, K23, K27 and K79). The
number represents the count of detected samples out of 30 samples. e Relative
abundance of histone 3.1 and trimethylation of K27 in control (n = 15) and
tazemetostat-treated conditions (n = 15) shown as a boxplot with median, the lower
and upper edges representing the first and third quartiles and the lower and upper
whiskers represent the interquartile range× 1.5. ns: not significant; *p < 0.05.
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Sample preparation of single cells
Single-cell sorting and reactions were performed using the cellenONE
system (Cellenion, France)6. First, 1000 drops (~330 nl) of lysis buffer
composed of 0.2% DDM (Millipore, 324355-1GM) and 100mM TEAB
(Sigma-Aldrich, T7408-500ML)were dispensed into eachwell of a 384-well
plate. Cell suspension was loaded on the cellenONE system and cell
dimensions including diameter and elongation factor were determined for
single-cell sorting. The diameter for isolation was set as 25–30 µm and the
maximum elongation factor was set as 1.97. Single cells were then isolated
and deposited into the wells containing lysis buffer. Next, 1000 drops of
buffer containing enzymes with the concentration of 2 ng/µl trypsin pro-
tease (Thermo Scientific, 90057) in 100mMTEABwas dispensed into each
well. The 384-well plate was incubated on the heating deck inside the cel-
lenONE at 37 °C for 1 hour. The enzymaticreaction was quenched by
adding 300 drops (~100 nl) of 5% formic acid. Centrifugation of the plate
was done at 500 xg for 1minute after each step of liquid dispensing toensure
liquid settles in the bottom of the wells. Digested samples from each well
were reconstituted in 4 µl of 0.1% formic acid containing 0.05x iRT peptides
(Biognosys, Ki-3002-1) and transferred to sample vials for mass spectro-
metry analysis. A lyophilized HeLa protein digest standard (Thermo Sci-
entific, 88328) was used to prepare serially diluted peptides ranging from
50 ng to 156 pg.

Sample preparation of single nuclei
PEO1 cell line was cultured in RPMI-1640 medium (Gibco, 11875-093)
containing 10% FBS (Gibco, 10437-028) with penicillin/streptomycin
(Gibco, 15240-062), 10 μg/ml insulin (Thermo, 12585014) and a 1:250
diluted nonessential amino acids (Gibco, 11130051) at 37 °C and 5% CO2.
PEO1 cells were treated with tazemetostat at a concentration of 30 µMwith
DMSOas vehicle or control for 72 hours. For nuclei isolation, 0.25% trypsin
(Gibco, 25200072) was added and incubated at 37 °C and neutralized with
media. The nuclei isolation was performed following the previously pub-
lished protocol adapted from peripheral blood mononuclear cells (PBMC)
nuclei isolation from themanufacture 10x genomics53. Briefly, about 1 × 106

cells were pelleted in a 2mlmicrocentrifuge tube at 300 x g for 5min at 4 °C
and resuspended in 100 μl chilled lysis buffer by pipetting 10 times. The cells
were then incubated on ice for 3min and, after the addition of 1mL of wash
buffer, they were centrifuged at 500 xg for 5min at 4 °C. The wash step was
repeatedonemore time for a total of 2washes.Thepelletwas resuspended in
a chilled dilutedNuclei Buffer, and the nuclei concentrationwas assessed by
propidium iodide (PI) staining (VitaStain) using a Cellometer K2 cell
counter. Nuclei samples were loaded on cellenONE system to isolate into
single nuclei under the diameter setting of 4.5–9 µm and the maximum
elongation factor of 2.5. Lysis and tryptic digestion were performed fol-
lowing the same procedures of single cells as described in the previous
section.

Mass spectrometry data acquisition
Peptide samples of single cells were directly injected and separated on an
analytical column (15 cm × 75 µm, C18 1.7 µm, IonOpticks, AUR3-
15075C18-CSI) using nanoElute liquid chromatography system (Bruker
Daltonics, Bremen, Germany). Solvent A (0.1% formic acid in water) and
solvent B (0.1% formic acid in acetonitrile) were used to generate a linear
gradient over 38min; 5–30% solvent B in 20min, 30–60% solvent B in
5min, 60-80% solvent B in 3min, maintaining at 80% solvent B for 5min,
and 5% solvent B for 5min. The flow rate was set as 250 nl/min. Separated
peptides were ionized using Captive spray source with a spray voltage of
1300 V and introduced into timsTOF SCP mass spectrometer (Bruker
Daltonics, Bremen, Germany). For DDA-PASEF experiment, 10 PASEF
scans were acquired with mass range of 100–1,700m/z and ion mobility
range of 0.7–1.3 Vscm−2. Ion accumulation and ramp time were set as
180ms, whichwas determined as an ideal setting for analyzing single cells16.
The collision energy was linearly increased from 20 eV (0.6 Vscm−2) to
59 eV (1.6 Vscm−2). For diaPASEF experiment, ions were monitored in the
range of 400–1000m/z with an isolation window of 25m/z and 8 PASEF

scansper cycle alongwith3 stepsperPASEF scan. Ionmobility rangewas set
at 0.64–1.37 Vscm−2. To determine the optimal approach for analyzing
diaPASEF mass spectrometry data, diluted peptide samples were prepared
usingHeLaproteindigest standard (ThermoScientific, 88328) andanalyzed
on an analytical column (8 cm×50 µm,C18 1.5 µm,BrukerDaltonics) using
the following gradients: 2–35% sol B in 20min, 35–80% sol B in 3min,
maintaining at 80% sol B for 5min and 2% sol B for 2min.

Data analysis
The raw mass spectrometry data were searched against UniProt human
protein database (20,430 entries) using MSFragger (version 3.4) embedded
in Fragpipe suite (version 17.0). When analyzing samples of diluted HeLa
peptides, carbamidomethylation of cysteine was considered as a fixed
modification, and oxidation of methionine and acetylation of protein
N-terminal were set as variable modifications. For analyzing data of single
cells, oxidation of methionine, acetylation of protein N-terminal/lysine,
phosphorylation of serine/threonine/tyrosine, and methylation, dimethy-
lation, trimethylation, formylation on lysine were considered as variable
modifications. Somatic SNP database of HuCCT-1, RBE, and EGI-1 cell
lines was downloaded from DepMap (https://depmap.org/portal/
download/all/) and appended to the UniProt protein database consider-
ing two missed cleavage in both directions from the changed amino acid.
DIAmass spectrometry data were analyzed in DIA-NN (version 1.8) using
the following settings: network classifier = single-pass mode, protein
inference = genes, quantification strategy = Robust LC (high accuracy),
cross-run normalization = global and speed and RAM usage = optimal
results. Spectronaut (version 16, Biognosys) was used to analyze diluted
HeLa protein digests to determine the optimal spectral library for analyzing
single-cell samples. For library free analysis, UniProt protein database was
used for both of DIA-NN and Spectronaut. Some of the data analysis was
performed in R (version 4.3.1) and plotting was done using the ggplot2
package. Network analysis and visualization of the protein-protein inter-
actionswere performedusingCytoscape (3.9.1). Protein-protein interaction
data was downloaded from BioGRID database (release 4.4.222). Heatmaps
were generated using Morpheus (https://software.broadinstitute.org/
morpheus).

Statistics and reproducibility
No data exclusion was performed in the data analysis. Non-supervised
principal component analysis was performed to generate PCA plot. Stu-
dent’s t-test was used to calculate p-values, and the Benjamini-Hochberg
correction was applied to calculate adjusted p-values.

Peptide synthesis
The peptides were synthesized using standard FMOC chemistry on a
MultiPep RSi (CEM Corp. Matthews) multiple peptide synthesizer at the
0.025mmol scale. The starting resin for the light peptides was FMOC-
Arg(pbf)-Wang resin or FMOC-Lys(Boc)-Wang resin (Novabiochem).
For peptides with PTMs, the following derivatives were used:
Fmoc-Ser(PO(OBzl)OH)-OH, Fmoc-Tyr(PO(OBzl)OH)-OH, and Fmoc-
Thr(PO(OBzl)OH)-OH (Sigma-Aldrich) for phosphorylation, Fmoc-
Lys(Ac)-OH (CreoSalus) for lysine acetylation, Fmoc-Lys(Me, Boc)-OH,
Fmoc-Lys(Me)2-OH, and Fmoc-Lys(Me3Cl)-OH (Sigma-Aldrich) for
lysine methylation, dimethylation, and trimethylation. The peptides were
cleaved using the Razor cleaving apparatus (CEM Corp). Cleavage cocktail
was trifluoroacetic acid, water, triisopropylsilane and 3,6-dioxa-1,8-octa-
nedithiol (92.5/2.5/2.5/2.5 v/v/v/v). Peptides were precipitated and washed
in cold methyl tert-butyl ether. Each peptide was HPLC purified and its
molecularweightwas verifiedwithmass spectrometry. Synthetic peptides (1
fmol) were spiked into 1 ng peptides of bovine serum albumin and analyzed
in DDA-PASEF and diaPASEF modes.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Data availability
All mass spectrometry data have been deposited to the ProteomeXchange
Consortium via the PRIDE partner repository 58 with the data set identifier
PXD044986. The source data for figures in the paper can be found in
Supplementary Data 5 and 6.
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