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Target-aware drug discovery has greatly accelerated the drug discovery process to design small-
molecule ligandswith high binding affinity to disease-related protein targets. Conditioned on targeted
proteins, previous works utilize various kinds of deep generative models and have shown great
potential in generating molecules with strong protein-ligand binding interactions. However, beyond
binding affinity, effective drug molecules must manifest other essential properties such as high drug-
likeness,which are not explicitly addressedby current target-awaregenerativemethods. In this article,
aiming to bridge the gap of multi-objective target-aware molecule generation in the field of deep
learning-based drug discovery, we propose ParetoDrug, a Pareto Monte Carlo Tree Search (MCTS)
generation algorithm. ParetoDrug searches molecules on the Pareto Front in chemical space using
MCTS to enable synchronous optimization of multiple properties. Specifically, ParetoDrug utilizes
pretrained atom-by-atom autoregressive generative models for the exploration guidance to desired
molecules during MCTS searching. Besides, when selecting the next atom symbol, a scheme named
ParetoPUCT is proposed to balance exploration and exploitation. Benchmark experiments and case
studies demonstrate that ParetoDrug is highly effective in traversing the large and complex chemical
space to discover novel compounds with satisfactory binding affinities and drug-like properties for
various multi-objective target-aware drug discovery tasks.

The rational design ofmolecules to act as clinical drugs remains a significant
challenge in biopharmaceutical research, especially concerning the attain-
ment of favorable physiochemical and pharmacological properties. In
support of such endeavors, target-based drug discovery aims to identify
small-molecule ligands that exhibit high affinity and specificity for a par-
ticular protein pocket structure1. Traditionally, target-based drug discovery
has been approached through either high-throughput experimental meth-
ods or virtual screening of extensive chemical databases2,3 targeted at specific
biomolecular targets4,5. Subsequently, the screening of bioanalytical indi-
cators through elaborate clinical experiments is conducted to evaluate drug-
like properties. This pursuit contributes to the conventional 10-year drug
development cycle and staggering research and development costs of
approximately 2.8 billion USD, coupled with a remarkably high failure rate.
The predetermined selection of compounds for screening further constrains
the exploration of chemical space, tethering it to historical knowledge
derived from previously investigated molecules. This ultimately leads to a
fervent industry focusonpopulardrug targets, resulting in the challenge that

the molecules selected through screening are unable to avoid patent
restrictions. In contrast, recent advancements in target-aware molecule
generation, particularly the development of generative models trained on
extensive datasets, present a promising paradigm shift. These models,
rooted in deep learning, offer an innovative approach to expedite ligand
discovery and optimization. They achieve this by generating entirely novel
and diverse molecules capable of binding to a specified protein target,
starting fromscratch6. This transformative approachholds great potential to
overcome the limitations associated with traditional methods, offering a
more efficient and expansive exploration of the entire chemical space.

Since the first inception of an autoencoder model conditioned on
targeted proteins in 20187, there has been rapid progress in deep learning-
based target-aware molecule generation methods. Various works take
advantage of conditional generative models, such as the autoencoder7–9,
generative adversarial network10, and diffusion model11,12, to infer entire
molecules through a one-time feedforward process, incorporating binding
site information as input. Moreover, to enhance structural representation,
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convolutional neural networks7 and graph convolutional networks8 are
employed. In the meantime, some approaches utilize voxelized
representations10 or atomic density grids13 to characterize compound-
receptor complexes.Another pivotal category of deep learning-based target-
aware drug discovery involves autoregressive generative models, which
predict the next atom (and its position) sequentially conditioned on the
molecular fragment and binding site information. To model the condi-
tioned intermediate context, diverse network architectures like
transformers14,15, recurrent neural networks16,17, and flow models18 are
introduced as the context encoder. Additionally, graph neural networks18–20

are widely utilized to extract chemical and geometrical features of ligands
and protein pockets. However, these efforts are not yet integrated into
mainstream drug discovery practices, and a significant obstacle lies in the
inherent multi-objective optimization nature of drug discovery 21. Beyond
strong binding affinity to the targeted protein, drug molecules must exhibit
other desirable properties, such as high drug-likeness and low toxicity.
Presently, existing deep learning-based target-aware generative methods
predominantly focus on the single objective of optimizing binding affinity.
The multi-objective nature of drug molecules, with sometimes conflicting
demands, necessitatesongoingdevelopment of novelmulti-objective target-
aware drug discovery techniques to enhance the overall success rates of drug
discovery.

Conversely, numerous studies have explored the domain of general
multi-objective drug discovery. Certain approaches, such as MolGPT22,
fall within the ligand-based methodology, aspiring to generate novel
compounds with favorable physicochemical properties. However, these
methods fall short in incorporating protein information, thus lacking
assurance that the generated molecules can effectively bind to specified
protein targets. Concurrently, other methodologies like MCMG21,
RationaleRL23, MolSearch24, and GENERA25 aim to optimize not only
the binding affinity objective but also other property objectives. Speci-
fically, these methodologies leverage optimization techniques such as
reinforcement learning26 and genetic algorithms27 to enhance the
binding affinity objective predicted by machine learning-based or
simulation-based docking score functions.However, a notable drawback
is their failure to explicitly incorporate target protein information when
constructing generative models. The absence of protein information
renders the optimization of the binding affinity objective inefficient, and
the resulting generative models from these target-scoring-based meth-
ods cannot be readily generalized to other protein targets. In contrast to
ligand-based and target-scoring-based approaches, a recent develop-
ment is CProMG28, designed to generate molecules that meet multiple
property constraints with an enhanced representation of protein
structure information. CProMG treats this task as a multi-constraint
molecule generation problem, with each property constraint set to
exceed a predefined threshold. However, CProMG does not attempt to
maximize molecule properties through optimization techniques for a
comprehensive exploration of the chemical space. A more in-depth
discussion is provided in the Discussion section.

Similar challenges also exist in natural language generation tasks,
wheremodels predicting thenext tokenoften express unintendedbehaviors,
such asmakingup facts, generatingbiasedor toxic text, or not followinguser
instructions. To address this issue, OpenAI focuses on fine-tuning
approaches to align language models. Specifically, they employ reinforce-
ment learning fromhuman feedback (RLHF) tofine-tuneGPT-329 to follow
a broad class of written instructions30. In contrast to the fuzzy, hard-to-
quantify human values in natural language tasks, we can explicitly calculate
multiple molecular metrics in the context of drug development.

In this study, we explore the use of an autoregressive Pareto Monte
Carlo Tree Search (MCTS) generation algorithmnamedParetoDrug for the
design of drug molecules to address the existing gap in multi-objective
target-aware drug discovery within the domain of deep learning-based drug
discovery. This algorithm effectively facilitates the simultaneous optimiza-
tion of multiple molecule properties. In its operation, ParetoDrug first
explores molecules on the Pareto Front within the chemical space. It

achieves this by maintaining a global pool comprising Pareto optimal
molecules, each of which is not surpassed by another molecule in the same
pool across every property objective. During the exploration process, Par-
etoDrug leverages existing pretrained autoregressive target-aware molecule
generationmodels to guide the search for the next atom symbol, facilitating
the identification of molecules with high binding affinity to protein targets.
Additionally, in the selection of the next atom symbol, ParetoDrug intro-
duces a schemenamedParetoPUCT.This scheme is designed to balance the
exploration of chemical space and the exploitation of the pretrained auto-
regressive generativemodel. Through these strategies, ParetoDrug owns the
ability to generate molecules with multiple desirable properties, including
binding affinity. Computational evaluations on the benchmark dataset and
case studies, includingmulti-objective target-aware drug discovery tasks for
known drugs (e.g., Tropifexor and Copanlisib), a multi-target drug dis-
covery task for HIV-related disease targets, and a multi-target multi-
objective drugdiscovery task for adual-inhibitor Lapatinib, demonstrate the
high effectiveness of ParetoDrug. The algorithm exhibits proficiency in
discovering small-molecule drug candidates possessing multiple required
properties, particularly including binding affinities to specified protein
targets.

Results
In this section, we first conduct the experiments on a benchmark to
demonstrate ParetoDrug’s remarkable ability to generatemolecules with
multiple desired properties including the binding affinity and drug-like
properties when compared with various baselines. Meanwhile, we also
give the statistical analysis of the generated molecules of ParetoDrug.
Then we use ParetoDrug to perform the case studies for the multi-
objective target-aware drug discovery task, multi-target drug discovery
task, and multi-target multi-objective drug discovery task respectively.
In these case studies, ParetoDrug is able to generate the ParetoDominate
molecules over the known drug ligands in terms of the specified mole-
cule property objectives, which exhibits the promising molecule dis-
covery potential of ParetoDrug.

Benchmark experiments
In the benchmark experiments, we follow the settings as Qian et al.15 where
there are 100 protein targets sampled from the public database of protein-
ligand pairs BindingDB31 as the test set. For each test protein target, we
generate 10 candidate molecules for evaluation. All 1000 candidate mole-
cules are evaluated by a set of molecule property metrics, and the scores are
averaged for an overall comparison. Please refer to Supplementary Infor-
mation A and B for a detailed experimental and hyperparameter setup. We
use several importantmetrics to evaluate the generatedmolecules, including
docking score, uniqueness, LogP,QED, SA score, andNP-likeness described
as follows.
• Docking score. Binding energy is regarded as a general indicator to

describe the binding affinity between molecule ligands and target
proteins. Specifically, we utilize a free and widely used tool called
smina32 to compute the binding affinity. We use the negative value of
the output by smina as the docking score. The higher the docking score
is, the better the molecule is docked into the target protein.

• Uniqueness. Drug design models should be able to generate different
molecules conditioning on different target proteins. The higher the
uniqueness value is, the more sensitive the model is to the specified
target protein. This metric is computed as follows:

Uniquenessð%Þ ¼
#ðSetð∪ Sp2Sp

SetðMsp
ÞÞÞ

#ð∪ Sp2Sp
SetðMSp

ÞÞ × 100%; ð1Þ

whereSp indicates the set of test proteins,MSp
denotes the collection

of generated molecules for the target protein Sp 2 Sp, # counts the
number of molecules, and Set is an operator to remove the repeated
molecules in the given set.
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• LogP. A large LogP value indicates the substance is lipophilic, while a
small LogP value means it is easy to dissolve in water. According to
Ghose filter33, the LogP value of a druggable molecule should range
from −0.4 to +5.6.

• QED. This score measures the drug-likeness and ranges from 0 to 1. A
higher QED score indicates that a molecule is more likely to be a
potential drug-like compound, with the desired molecular properties
such as hydrogen bond acceptor, hydrogen bond donor, and polar
molecular surface area34.

• SA score. The synthetic accessibility (SA) score indicates how difficult
one molecule is to synthesize, which is calculated based on a combi-
nationof fragment contributions anda complexitypenalty35. The range
of the estimated SAmetric is from 1 (easy tomake) to 10 (very difficult
to make).

• NP-likeness. Natural products play an important role in the history of
drug discovery.Many drugs are natural products and their derivatives.
The higher the score is, the more likely the molecule is to be a natural
product. The calculated NP-likeness is typically in the range from -5
to 536.

The reported results of “Known ligands”, SBMolGen, LiGANN,
SBDD-3D, and BeamLmser are from AlphaDrug15. The “Known ligands”
indicates the original molecules binding to protein targets in the database.
The results of LiGANN10 were collected on the web-based application
provided in theoriginal paper. SBMolGen37 is developed fromChemTS38 for
target-specific molecular generation. The results of SBDD-3D18 were based
on the released codes and trained model published by the authors.
BeamLmser applies the beam search on the pretrained Lmser
Transformer15. The beam size of BeamLmser is set at 10 to collect 10
molecules for each test protein target. Besides the above representative
baselines, we also test three recent advanced methods. The first is
Pocket2Mol20, which uses the equivariant generative network and auto-
regressive sampling scheme to generate three-dimensional molecules. For
Pocket2Mol, we utilize the official codes and trained model for sampling
molecules. The second is TargetDiff 12, which develops a three-dimensional
equivariantdiffusionmodel to samplemolecules. ForTargetDiff,we alsouse
the officially released trained model and codes for sampling. We keep the
sample numbers of Pocket2Mol and TargetDiff at 100 for each test protein,
which is the default configuration to ensure the quality of generated
molecules. To make a fair comparison with other methods, for each test
protein target, we randomly select 10 molecules from the generated 100
molecules of Pocket2Mol and TargetDiff for the evaluation. The third is
CProMG28, which proposes a multi-constraint autoregressive model to

generate small molecules with controllable properties. We use the official
codes and default configurations of CProMG to generate 10 molecules for
each test protein with the pretrained CProMG-VQSLT model, which is
trained to control multiple property metrics including the docking score,
LogP, QED, and SA score that are evaluated here.

Besides the above basic generative models, there also emerges another
kind of fundamental approach that integrates the powerful MCTS-based
searching technique to better control the molecule generation procedure of
the pretrained autoregressive generative models with the simulation feed-
back, and AlphaDrug and the proposed ParetoDrug fall into this kind. For
AlphaDrug15 which utilizes MCTS with the pretrained Lmser Transformer
model to generate molecules based on given protein targets, we run the
official codes and set iteration times (IT) at 150whenselecting the next atom
symbol in MCTS. For ParetoDrug which conducts Pareto MCTS with the
same pretrained Lmser Transformer model, we also set IT at 150 and let it
optimize all objectives (docking score, LogP, QED, SA score, and NP-like-
ness) synchronously except the unoptimizable Uniqueness, which is a sta-
tistic metric for all generatedmolecules. In addition, we set themetric value
of LogP as 1 if themolecule’s LogP value is in the range of [− 0.4, 5.6], and 0
otherwise. After each Pareto MCTS, ParetoDrug obtains a global pool of
Pareto optimal molecules. We choose the molecule with the largest reward
vector summation value from the pool, which means this molecule has top
rankings in each property metric. When testing, we collect 10 generated
molecules for each test protein target from AlphaDrug and ParetoDrug.

Additionally, we compare a multi-objective drug discovery algorithm
REINVENT439while its generationmodel is not conditionedon the protein
information. It uses a reinforcement learning algorithm to generate opti-
mizedmolecules compliantwith a user-definedproperty profile defined as a
multi-component score. We let REINVENT 4 optimize the docking score,
LogP,QED, SA, andNPwhile setting theirweights in the property profile all
at 0.2. For each test protein target,we collected 10moleculeswith the highest
multi-component scores during the training process of REINVENT 4.

The results are shown in Table 1 and the direction of the arrow in the
table means a better property score. The 95% confidence intervals for
property scoresofRL/MCTSare included.Aswe see, in termsof thedocking
score, ParetoDrug demonstrates superiority over all baselines except
AlphaDrug. However, AlphaDrug is a single-objective target-aware drug
discovery method that only optimizes the binding affinity. As AlphaDrug
and ParetoDrug have the same iteration budgets (IT=150) for each atom
symbol in sequence but ParetoDrug needs to optimize multiple objectives
including the binding affinity, it is expected that ParetoDrug has a lower
docking score than AlphaDrug. Meanwhile, although the docking score of
ParetoDrug decreases slightly, other metrics including QED, SA score, and
NP-likeness are improved significantly compared with AlphaDrug.

Table 1 | Averagemetric scores of generatedmolecules of eachmethod (n = 1000molecules) on the sampled 100 test proteins

Type Methods Docking score (↑) Uniqueness (↑) LogP QED (↑) SA (↓) NP (↑)
Reference Known ligands 9.8 – 2.2 0.5 3.3 –1.0

Generative model LiGANN10 6.7 94.7% 2.9 0.6 3.0 –1.1

SBMolGen37 7.7 100% 2.6 0.7 2.8 –1.2

SBDD-3D18 7.7 99.3% 1.5 0.6 4.0 0.3

Pocket2Mol20 8.1 99.8% 2.0 0.7 3.0 –0.2

CProMG28 8.2 26.9% 1.9 0.8 2.9 –0.9

BeamLmser15 8.5 98.1% 4.0 0.5 2.7 –1.0

TargetDiff12 8.6 100% 2.9 0.5 5.2 0.6

RL/MCTS REINVENT 439 9.3 ± 0.1 98.7% 3.3 ± 0.0 0.8 ± 0.0 2.7 ± 0.0 0.7 ± 0.0

AlphaDrug15 12.0 ± 0.1 99.9% 5.4 ± 0.1 0.4 ± 0.0 2.7 ± 0.0 -0.9 ± 0.0

ParetoDrug 10.9 ± 0.1 99.9% 4.3 ± 0.1 0.6 ± 0.0 2.4 ± 0.0 -0.4 ± 0.0

The unit of docking score is kcal ⋅ mol−1.
The 95%confidence intervals for the propertymean values of RL/MCTSmethods are given.We conducted the two-sided T test to compare ParetoDrug andAlphaDrug, and thep values for Docking score,
LogP, QED, SA, and NP are 3.4e–52, 1.1e–58, 8.0e–128, 3.6e–20, and 2.0e–62, respectively. We conducted the two-sided T test to compare ParetoDrug and REINVENT 4, and the p values for Docking
score, LogP, QED, SA, and NP are 1.3e–110, 1.4e–104, 9.3e–265, 2.2e–21, and 8.5e–217, respectively.
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Notably, QED changes from 0.4 to 0.6 (50% improvement) while NP-
likeness changes from -0.9 to -0.4 (55.6% improvement). For the special
LogP metric, although the average LogP value of AlphaDrug falls into the
druggable molecule range, only 52.7% generated molecules of AlphaDrug
satisfy the LogP range constraint if tested individually. On the contrary,
96.5% (83.1% improvement over AlphaDrug) generated molecules of
ParetoDrug satisfy the LogP range constraint. These impressive results
demonstrate that ParetoDrug is able to address the multi-objective target-
aware drug discovery task by discovering novel compounds that possess
multiple satisfactory properties including the binding affinity. On the other
hand, we observe that the pretrained autoregressive Lmser Transformer
with beam search (BeamLmser) cannot generate molecules with higher
docking scores than the most recent TargetDiff. But with MCTS replacing
beam search, AlphaDrug greatly boosts Lmser Transformer’s performance
to findmolecules with stronger binding affinity than BeamLmser evenwith
the same docking time budgets15. Furthermore, ParetoDrug proposes the
multi-objective Pareto MCTS to replace the MCTS used in AlphaDrug.
With the same iteration times, ParetoDrug significantly improves multiple
molecule properties compared with AlphaDrug while maintaining the
docking score at the same level. Additionally, when compared with the
multi-constraint conditional generationmethod CProMG, ParetoDrug has
advantages in docking score, Uniqueness, SA score, and NP-likeness. In
addition, the Uniqueness of CProMG is only 26.9% as it generates the same
molecules for different protein targets, which is undesirable in de novo
target-aware drug discovery tasks. Lastly, for REINVENT 4 which does not
belong to the kind of target-aware drug discovery methods, we could see
although it achieves superiorperformance in somemetrics such asQEDand
NP, its docking score is much lower than ParetoDrug as it does not encode
the protein-ligand prior to its generation model. This also indicates the
importance of incorporating the protein target information into the mole-
cule generation process as in the generative target-aware drug discovery
methods.

Next, we conduct the statistical analysis with kernel density estimate40,
which is analogous to a histogram but endowed with benefits such as
smoothness and continuity. The property distributions of molecules

generated by TargetDiff, AlphaDrug, and ParetoDrug are shown in Fig. 1.
For TargetDiff, here we use 10 molecules with the highest docking scores
among the generated 100molecules for each test protein tomake an aligned
comparison.We can see that although the docking score distributions of the
threemethods are similar while AlphaDrug is slightly better, other property
distributions present differently. For LogP, ParetoDrug satisfies the range
constraint of [− 0.4, 5.6]while TargetDiff tends to generatemoremolecules
with LogP values below the lower bound and AlphaDrug tends to generate
more molecules with LogP values above the upper bound. Besides, Par-
etoDrug is able to generate more molecules with high QED values than the
other twomethods especiallywhenQEDis larger than0.8 thatmolecules are
very likely to be potential initiators of a drug candidate. Meanwhile, Tar-
getDiff’smolecules are with significantly higher SA values than ParetoDrug,
which means that TargetDiff’s molecules are much harder to synthesize.
These statistical findings demonstrate that ParetoDrug has better molecule
distributions than AlphaDrug and TargetDiff when taking multiple prop-
erties into account. More comparisons of computational efficacy, score
distributions of a specific target, and the diversity of generated molecules
betweenParetoDrug andothermethods could be referred to Supplementary
InformationC (and SupplementaryTable 1), D (and Supplementary Fig. 1),
and E (and Supplementary Table 2).

Case studies for multi-objective target-aware drug discovery
Here we use two case studies of disease protein targets to show themolecule
discovery ability of ParetoDrug for the multi-objective target-aware drug
discovery tasks. The molecule objectives optimized by ParetoDrug are the
docking score, LogP, QED, SA score, and NP-likeness. Additionally, the
binding affinity is further validated by MM-GBSA41,42, which is a more
accuratemetric than docking scores but computationally expensive. For the
analysis of the protein-ligand interactions,we use PLIP43 anddetailed can be
referred to Supplementary Information F.

Case 1: targeting FXR. Non-alcoholic fatty liver disease (NAFLD) is
defined as the excessive and abnormal intracellular accumulation of
lipids in the liver, primarily in the form of triglycerides44,45. Currently,

Fig. 1 | The molecular property distributions of generated molecules (n = 1000
molecules) by ParetoDrug, AlphaDrug, and TargetDiff respectively. A The
docking score (kcal ⋅ mol−1) distributions of each method. B The LogP value

distributions of eachmethod.CTheQED value distributions of eachmethod.DThe
SA score distributions of each method. E The NP-likeness distributions of each
method.
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NAFLD has been the most common cause of chronic liver disease,
especially inWestern countries, and the estimated prevalence of NAFLD
is approximately 30% in the general population46,47. One of the best-
known drugs for NAFLD is Tropifexor, which acts as an agonist of the
farnesoid X receptor (FXR). The structural basis of Tropifexor as a potent
and selective agonist of FXR is shown in Fig. 2A (PDB ID: 7D42)48. In this

case study, we use ParetoDrug to discover potential drug molecules with
desired computational properties for FXR. Using ParetoDrug, we collect
10 molecules and find four Pareto Dominate molecules compared with
Tropifexor. The chemical structures of Tropifexor and the discovered
ligands by ParetoDrug for FXR are shown in Fig. 2B. Table 2 shows the
property metrics of different ligands. Our ParetoDrug model discovers

Fig. 2 | Static structural analysis of ligands binding to FXR (PDB ID: 7D42).
Tropifexor is an agonist of FXR and Compounds 1–4 are found by ParetoDrug.
Hydrogen bonds are displayed in yellow dashed lines andπ-π interactions are in red.

A Solvent-accessible surfaces of the binding pocket of FXR for Tropifexor and
Compounds 1 to 4. B Chemical structures of Tropifexor and Compounds 1–4.
C The binding poses of Tropifexor and Compounds 1–4.
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multiple ligands that outperform Tropifexor on all the optimized prop-
erties. Especially, the SA scores of the new ligands are much lower than
Tropifexor, which means that they are easier to synthesize. We also run
AlphaDrug and TargetDiff to collect molecules for FXR, however, no
ParetoDominatemolecule over Tropifexor is found for the twomethods.
For example, the best molecule from AlphaDrug (with the most number
of better properties than Tropifexor) has the Docking score at 12.9, LogP
at 4.1, QED at 0.3, SA at 2.6, and NP at -1.59. Compared with it, Com-
pound 4 generated by ParetoDrug has 3 better properties (Docking score,
QED, and NP) and 1 worse property (SA). Meanwhile, the best molecule
from TargetDiff (with the most number of better properties than Tro-
pifexor) has theDocking score at 12.8, LogP at 4.9, QED at 0.48, SA at 7.7,
andNPat 1.01. Comparedwith it, Compound 4 generated by ParetoDrug
has 3 better properties (Docking score, QED, and SA) and 1 worse
property (NP). As shown in Fig. 2C, the docked poses and interactions of
these four discovered compounds are quite different compared with
Tropifexor. More specifically, one hydrogen bond forms between Tro-
pifexor and the amino-acid residue MET265. At the same time, Com-
pounds 1, 3, and 4 with new scaffolds form new hydrogen bonds with
other residues (Compound 1 with THR288 and TYR369, Compound 3
with HIS294, and Compound 4 with THR288) while no hydrogen bond
forms between Compound 2 and FXR.

Besides the docking score, MM-GBSA rescoring based on molecular
dynamics simulations is used to further computationally validate the dis-
covered compounds41. MM-GBSA uses molecular mechanics with gen-
eralized Born surface area to determine highly potential inhibitors for
targets. The detailed settings of MM-GBSA are provided in Supplementary
Information G. In this case, we use MM-GBSA to further validate the
generated Pareto optimal molecules with promising docking scores. As
shown in Table 2, the MM-GBSA scores indicate that the generated
molecules have the same level of binding free energies as the known drug
Tropifexor. Surprisingly, although two hydrogen bonds formed between
Compound 1 and FXR, the MM-GBSA scores show no significant differ-
ence. Possibly because hydrogen bonding interaction is ignored in theMM-
GBSA calculation.

Case 2: targeting PI3K-γ. Follicular lymphoma (FL) is a systemic
neoplasm of the lymphoid tissue displaying germinal center B-cell dif-
ferentiation, which belongs to a cancer that involves certain types of white
blood cells known as lymphocytes. FL represents 5% of all hematological
neoplasms and about 20-25% of all new non-Hodgkin lymphoma diag-
noses in Western countries49. One of the best-known drugs for FL is
Copanlisib, which has been shown to affect the survival and spread of
cancerous B-cells. The structural basis of the PI3K-γ related to FL in
complex with Copanlisib is shown in Fig. 3A (PDB ID: 5G2N)50. Here we
use ParetoDrug to discover potential drug molecules with desired com-
putational properties for PI3K-γ. We collect 10 molecules and find one
Pareto Dominate molecule (Compound 5) compared with Copanlisib
(Fig. 3B). As shown in Fig. 3C, Compound 5 found by ParetoDrug has

three hydrogen bonds with surrounding residues (VAL882, ASP836, and
LYS833) and two π-π stackings with surrounding residues (TRP812 and
TYR867). Notably, the hydrogen bonds toVAL882 and LYS833 as well as
π-π stacking to TYR867 also appear in Copanlisib’s docking interactions.
Meanwhile, Table 3 shows the computational metric values of Copanlisib
and Compound 5. Compound 5 is better than Copanlisib in terms of the
optimized molecule metric objectives. However, the MM-GBSA scores
indicate that the binding strength of Compound 5 decreases compared
with Copanlisib (-46.48 kcal ⋅mol−1 vs. -55.51 kcal ⋅mol−1). The possible
reason is that hydrogen bonding and π-π interactions are not considered
in the energy terms of MM-GBSA. We also run AlphaDrug and Tar-
getDiff to collectmolecules for PI3K-γ and no ParetoDominatemolecule
over Copanlisib is found by the two methods. For example, the best
molecule from AlphaDrug (with the most number of better properties
thanCopanlisib) has theDocking score at 12.4, LogP at 4.35, QEDat 0.41,
SA at 5.0, and NP at 1.29. Meanwhile, the best molecule from TargetDiff
(with the most number of better properties than Copanlisib) has the
Docking score at 11.6, LogP at 3.2, QED at 0.56, SA at 3.9, andNP at 0.18.
Although with some good properties, the two top molecules from
AlphaDrug and TargetDiff cannot dominate the drug Copanlisib with
worse SA.

While the in silico computational metrics of molecules discovered by
ParetoDrug show promise in comparison to existing drugs, it is crucial to
acknowledge that these molecules are still far from being drugs. Drug dis-
covery is an extremely complicated process, and the current metrics for
molecules cannot perfectly reflect the physicochemical properties required
for a compound to be a drug. Nevertheless, we clearly see ParetoDrug’s
promising potential in addressing multi-objective target-aware drug dis-
covery tasks.

Case study for multi-target drug discovery
Multi-target drug discovery can be considered a special case of multi-
objective drug discoverywhere each protein target is going to be regarded as
an objective to optimize. Until now, the study of multi-target target-aware
drug discovery remains underexplored as it is challenging to consider the
information ofmultiple protein targets at the same time to derive one ligand
that could bind to all these given targets. Meanwhile, previous generative
target-aware drug discovery works mainly focus on the single-target situa-
tion as there lack data sets to train the multi-target conditioned generative
models. In this case study, we use ParetoDrug to perform a multi-target
target-aware drug discovery task to design dual-functional inhibitors for
both the HIV protease (HIV-PR) andHIV reverse transcriptase (HIV-RT).
ParetoDrug is slightly modified to be compatible with this kind of task, and
details are given in the Method section.

The crystal structures ofHIV-PRandHIV-RTusedhere are 3A2Oand
4G1Q51. Both structures are complexes with potent inhibitors solved at high
resolution.We compare with LigBuilder V351, the first de novomulti-target
drug design program, and the variants of Pocket2Mol and TargetDiff
extended by combining with screening. There are three different strategies
in LigBuilder V3, including multi-target de novo design, multi-target
growing, andmulti-target linking. The bestmolecules for each strategy from
the original paper are reported here. For the variants of Pocket2Mol and
TargetDiff, we use each method to generate 100 molecules for each target.
Thenwe use smina to screen the generated 200molecules of eachmethod to
find the best molecule that has the best docking scores for both targets. We
call the variants as Pocket2Mol-screen and TargetDiff-screen, and report
the best molecules of each variant.

Results of both the docking scores and MM-GBSA scores for each
method’s best molecule are shown in Table 4. For ParetoDrug, we addi-
tionally report another two topmolecules (Compound 7 andCompound 8)
which are almost the same good as Compound 6 in terms of the docking
scores. As shown in Table 4, the promising docking scores andMM-GBSA
scores of Compounds 6–8 demonstrate that they are potential strong dual
inhibitors to the given two protein targets in this task. Additionally, Fig. 4
showsCompounds 6–8 and their docking poses and interactionswithHIV-

Table2 |Metricsofgeneratedmolecules forprotein targetFXR

Ligands Docking
score (↑)

LogP QED
(↑)

SA
(↓)

NP (↑) MM-GBSA
score (↓)

Tropifexor 12.3 7.3 0.21 4.6 –0.91 –57.80 ± 6.69

Compound1 12.5 4.0 0.60 2.9 –0.37 –55.11 ± 5.61

Compound2 12.3 5.4 0.51 2.8 –0.75 –60.30 ± 4.27

Compound3 12.5 6.6 0.32 2.8 –0.04 –62.09 ± 4.72

Compound4 13.0 4.7 0.55 3.1 –0.02 –64.82 ± 4.64

The unit of docking score and MM-GBSA score (n = 3 simulations for MM-GBSA) is kcal ⋅ mol−1.
The 95% confidence intervals of MM-GBSA scores are included. We conducted the two-sided T
test to compare theMM-GBSA scores of each compoundwith Tropifexor. The p value is 0.5784 for
Compound1, 0.5713 for Compound2, 0.3622 for Compound3, and0.1662 for Compound4. These
p values ( >0.05) indicate Compound 1–4 have the same level of binding free energies as the known
drug Tropifexor.
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PR (PDB ID: 3A2O) and HIV-RT (PDB ID: 4G1Q). Interestingly, the
similar structures of Compounds 6 to 8 in Fig. 4B indicate that ParetoDrug
found a chemical subspace of strong inhibitors for both the HIV-PR and
HIV-RT targets.

Case study for multi-target multi-objective drug discovery
Wehave shownParetoDrug’s promising ability for both themulti-objective
target-aware drug discovery and multi-target drug discovery tasks sepa-
rately. Naturally, a more attractive and challenging task is the multi-target
multi-objective drug discovery task where the generated molecules need to
bind to a given set of protein targets while manifesting other desired com-
putational molecule properties. To the best of our knowledge, there are no
published works yet to specifically address this kind of task. Here we use
Lapatinib as a case study to evaluate ParetoDrug’s ability for themulti-target
multi-objective drug discovery task. Lapatinib is a dual tyrosine kinase

inhibitor that interrupts the EGFR pathway and inhibits HER4/ErbB4
Kinase for the treatment of breast cancer52,53. 1XKK and 3BBT are respec-
tively the PDB IDs of crystal structures for Lapatinib binding to EGFR54 and
the HER4/ErbB4 kinase55. In this task, we configure ParetoDrug to bind to
both protein targets while optimizing LogP, QED, SA, and NP metrics
synchronously with IT at 150. We compare the generated molecules in the
global Pareto pool with the known dual-inhibitor drug Lapatinib.
Impressively, plenty of Pareto Dominate molecules over Lapatinib are
discovered by ParetoDrug, as shown in Fig. 5. Furthermore, theQEDvalues
of Compound 12 and Compound 14 are greater than 0.8, which indicates
the two molecules are potential initiators for a drug.

Discussion
In this work, we divide multi-objective drug discovery methods into three
kinds based on whether they use the target protein information. The

Fig. 3 | Static structural analysis of ligands binding to PI3K-γ (PDB ID: 5G2N).
Copanlisib is a drug binding to PI3K-γ and Compound 5 is found by ParetoDrug.
Hydrogen bonds are displayed in yellow dashed lines andπ-π interactions are in red.

A Solvent-accessible surfaces of the binding pocket of PI3K-γ for Copanlisib and
Compound 5.BChemical structures ofCopanlisib andCompound 5.CThe binding
poses of Copanlisib and Compound 5.
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representative works of each kind of method and their comparisons are
provided in Table 5. The first kind is the ligand-based method such as
MolGPT22, which utilizes the conditional transformer to generate molecules
that satisfymultiple inputtingproperty constraints.However, the ligand-based
method does not consider protein information and thus cannot guarantee to
generate molecules with high binding affinity to a given protein target.

The second kind is the target-scoring-based method that employs a
docking scoring function to predict the binding affinity of the generated
molecules to the given protein target. In this way, although the target-
scoring-basedmethod also does not explicitly consider the target protein
information, the binding affinity scores could be optimized by optimi-
zation techniques such as reinforcement learning and genetic algorithm.
For example, Wang et al., propose MCMG21 to combine conditional
transformer, knowledge distillation, and reinforcement learning to
generatemolecules that satisfy multiple constraints including binding to
targets such as GSK3β and JNK3. However, MCMG does not incorpo-
rate the target protein information into the generation process of its
model and needs to design a reward that is a linear combination of each
metric. Recently, MolSearch24 is proposed to use multi-objective MCTS
to generate molecules based on molecule fragments. However, Mol-
Search is a pure search-based method with predefined massive rules to
modify molecules and also does not consider the target protein infor-
mation. Furthermore, REINVENT 439 uses a reinforcement learning
algorithm to generate optimized molecules compliant with a user-
defined property profile defined as a multi-component score. However,
it is not a generative target-awaremethod although it optimizesmultiple
objectives while treating the binding affinity as a standard optimizing
objective. The lack of specific protein information in these target-

scoring-based methods makes the optimization of binding affinity
objective inefficient and the trained models cannot be generalized to
other target proteins. Therefore, this kind ofmethod is different from the
mainstream target-awaremolecule generation in that the protein-ligand
interactions are modeled in the molecule generation process. Mean-
while, most of them are only evaluated on several case studies which
limits the assessment of their generality on various target proteins. For
example, RationaleRL23, MCMG21, and MolSearch24 optimize the
molecule’s binding affinity to GSK3β and JNK3, which is predicted by
random forest models pretrained on the data sets56 that contain samples
of positive and negative compounds to the GSK3β and JNK3 targets, and
are not available for most protein targets.

The third kind of method is the multi-objective target-aware
molecule generation, which models the protein-ligand interactions to
generate the molecules with high binding affinity to the inputting pro-
tein target. Recently, CProMG28 is proposed to use the conditionalmulti-
constraint autoregressive framework to generate molecules owning
desired property constraints in a controllable manner. However, the
ability of CProMG largely depends on the quality of data used to train the
model and it does not involve an optimization process for a compre-
hensive searching in the chemical space. Compared with CProMG,
ParetoDrug does not use a multi-constraint generative model. Instead,
ParetoDrug employs the Pareto MCTS to optimize multiple objectives
synchronously by searching desired molecules with the guidance of the
pretrained autoregressive molecule generative model. Also as shown in
the benchmark experiment, ParetoDrug achieves better multi-objective
metrics of the generatedmolecules when compared with CProMG on all
the property objectives except QED.

In conclusion, in this work, we propose ParetoDrug to fulfill the gap
of multi-objective target-aware drug discovery in the field of deep
learning-based drug discovery. ParetoDrug is an autoregressive Pareto
MCTS algorithm that integrates the pretrained autoregressive gen-
erative model to search desired multi-objective molecules in an atom-
by-atom way with the help of Pareto MCTS. We perform the evaluation
of ParetoDrug on a standard benchmark setting with various baselines.
The benchmark results show that ParetoDrug achieves multiple satis-
factory molecule properties including binding affinity while previous
single-objective methods cannot. We further conduct the case studies of
the multi-objective target-aware drug discovery tasks for two known
drugs, the multi-target drug discovery task for HIV-related disease
targets, and the multi-target multi-objective drug discovery task for a
dual inhibitor. In these case studies, new molecules discovered by Par-
etoDrug exhibit high potentials that Pareto Dominate the known drugs
of the disease targets on all required property objectives. In conclusion,
ParetoDrug demonstrates its ability to handle the challenging multi-
objective target-aware drug discovery tasks and its superiority in
searching in the large and complex chemical space for novel compounds
that possess multiple promising properties including binding affinity.

For futurework, on the onehand,makingParetoDrug compatiblewith
more recent advanced autoregressive molecule generative models such as
the Diffusion model is highly promising. On the other hand, extending
ParetoDrug into the multi-objective design of protein, polypeptide, and
nucleic acid drugs also holds significant potential.

Methods
In this section, we first formulate the target-aware drug discovery task as a
Markov decision process. Then we introduce the concepts of Pareto
Dominate and Pareto Front in the multi-objective optimization domain.
Finally, we propose the framework of ParetoDrug designed for the multi-
objective target-aware drug discovery task and themulti-target target-aware
drug discovery task.

Problem definition
Target-aware molecule generation can be formulated as a Markov decision
process (MDP)57 given that the next atom to be chosen only depends on the

Table 4 | Docking and MM-GBSA scores of the generated
molecules by baselines and ParetoDrug for protein targets
HIV-PR and HIV-RT

Methods Docking
score (↑)

MM-GBSA score (↓)

HIV-
PR

HIV-
RT

HIV-PR HIV-RT

LigBuilder V3 de novo 12.0 8.4 –30.38 ± 5.49 –47.82 ± 2.88

growing 10.6 8.1 –25.18 ± 6.09 –38.95 ± 10.07

linking 13.2 10.8 –38.04 ± 2.40 –59.36 ± 0.96

Pocket2Mol-screen 16.4 12.4 –35.03 ± 17.89 –60.87 ± 1.31

TargetDiff-screen 19.0 11.7 –44.59 ± 16.37 –66.36 ± 5.90

Compound 6
(ParetoDrug)

20.7 12.9 –67.78 ± 7.29 –78.51 ± 4.09

Compound 7
(ParetoDrug)

20.5 13.0 –61.37 ± 9.99 –86.30 ± 17.10

Compound 8
(ParetoDrug)

20.4 13.1 –53.64 ± 6.51 –77.23 ± 3.70

The unit of docking score and MM-GBSA score (n = 3 simulations for MM-GBSA) is kcal ⋅ mol−1.
The 95% confidence intervals of MM-GBSA scores are included. We conducted the T test with the
alternative hypothesis that the MM-GBSA score on HIV-PR of Compound 6 is less than molecules
from other baselines. All p values are less than 0.05. It is the same for HIV-RT.

Table 3 | Metrics of the generated molecule for protein target
PI3K-γ

Ligands Docking
score (↑)

LogP QED
(↑)

SA
(↓)

NP (↑) MM-GBSA
score (↑)

Copanlisib 9.6 0.7 0.55 3.1 –1.06 –55.51 ± 1.75

Compound 5 10.3 4.0 0.55 2.2 –0.74 –46.48 ± 5.41

The unit of docking score and MM-GBSA score (n = 3 simulations for MM-GBSA) is kcal ⋅ mol−1.
The 95% confidence intervals of MM-GBSA scores are included. We conducted the two-sided T
test to compare the MM-GBSA scores of Compound 5 with Copanlisib, and the p value is 0.0358.
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generated molecule fragment and the protein target. The MDP can be
defined asM = (S,A, P, R) where S denotes the set of states that describe the
currentmolecule fragment and the protein,A denotes the set of actions that
indicate the chosen atom symbol to be added to the current molecule
fragment, and P: S × A → S is the state transition function where the
molecule fragment incorporates the chosen atom symbol to grow up to a
new molecule fragment. R : S! Rd is the reward function based on the
current state. In target-aware molecule generation, the reward to evaluate
the generated molecule is usually available at the terminal state, which is a
typical sparse-reward setting. If d > 1, multiple reward objectives are con-
sidered such as strong binding affinity, high drug-likeness, and low toxicity

in drug discovery. The goal is to take the action thatmaximizes the expected
episodic reward Rðs; aÞ, which can be approximated under repeated
rollouts58 as

Rðs; aÞ ¼ 1
Nðs; aÞ

XNðsÞ
j¼1

Ijðs; aÞrjðsÞ; ð2Þ

where N(s) denotes the rollout times starting from state s and N(s, a) is the
times that action a has been taken from state s. Ijðs; aÞ is an indicator
function with value 1 if action a is selected from state s at the jth rollout

Fig. 4 | Static structural analysis of ligands binding to both theHIV-PR (PDB ID:
3A2O) and HIV-RT (PDB ID: 4G1Q). Compounds 6–8 are found by ParetoDrug.
Hydrogen bonds are displayed in yellow dashed lines.A Solvent-accessible surfaces

of the binding pockets of HIV-PR (left) and HIV-RT (right) for Compounds 6–8.
BChemical structures of Compounds 6–8.CThe binding poses of Compounds 6 to
8 with HIV-PR. D The binding poses of Compounds 6–8 with HIV-RT.
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round, 0 otherwise. r j(s) is the final reward to evaluate the final generated
molecule at the terminal state for the jth rollout roundstarting fromstate s.A
larger Rðs; aÞ value indicates a higher expected reward by taking action a
from state s.

Multi-objective optimization
Multi-objective optimization (also known as Pareto optimization) is con-
cerned with optimization problems involving more than one objective
function to be optimized simultaneously59, which has been applied inmany
fields. In multi-objective optimization, there does not typically exist a fea-
sible solution that maximizes all objective functions at the same time.
Therefore, attention is paid to Pareto optimal solutions60, which cannot be
improved in any of the objectives without degrading at least one of the other
objectives. Inmathematical terms, a feasible vectorX 2 Rd is said toPareto
Dominate another vector X0 2 Rd is defined as below61.

Definition 1. Pareto Dominate. Given two vectors X = (x1, …, xd) and
X0 ¼ ðx01; . . . ; x0dÞ, X is said to dominate X0, i.e., XkX0 if and only if
xi ≥ x

0
i; 8i ¼ 1; . . . ; d. X is said to strictly dominate X0, i.e., X � X0 if and

only if XkX0 and ∃ i such that xi>x
0
i.

A vector X� 2 Rd is called Pareto optimal if there does not exist
another vector that Pareto Dominates it. The set of Pareto optimal vectors
X�, called Pareto Front, is defined as below.

Definition 2. Pareto Front. Given a set of vectors X � Rd , the non-
dominant setX� 2 X is defined asX� ¼ fX 2 X : )X0 2 X s:t:X0 � Xg.

In drug molecule design, the optimization or constraint of multiple
properties is a pervasive requirement. For instance, for a new drug to be
successful, it must simultaneously be potent, bioavailable, safe, and syn-
thesizable, with these properties being often competing62. As Pareto

Table 5 | Comparison of different multi-objective drug discovery methods

Method Target-based type Multi-objective type Objectives

MolGPT22 Ligand-based constraint QED, SA, LogP, TPSA72

MolSearch24 Target-scoring-based optimization QED, SA, dockinga (GSK3β, JNK3)

MCMG21 Target-scoring-based constraint & optimization QED, SA, dockingb (GSK3β, JNK3, DRD2)

RationaleRL23 Target-scoring-based constraint & optimization QED, SA, dockingc (GSK3β, JNK3)

GENERA25 Target-scoring-based optimization dockingd (ACE2)

REINVENT 439 Target-scoring-based optimization User-defined objectives including dockinge

CProMG28 Target-aware constraint QED, SA, LogP, TPSA, dockingf

ParetoDrug Target-aware optimization QED, SA, LogP, NP-likeness, dockingg

aDocking scores of GSK3β and JNK3 are predicted by pretrained random forest models23.
bDocking scores of GSK3β and JNK3 are predicted by pretrained random forest models23. The docking score of DRD2 is predicted by a support vector machine classifier with a Gaussian kernel73.
cDocking scores of GSK3β and JNK3 are predicted by pretrained random forest models23.
dDocking scores of ACE2 are predicted by PLANTS74 and Glide75.
eIn this study, we configure the optimization objectives of REINVENT 4 as QED, SA, LogP, NP-likeness, and Docking score. The docking score of a given protein target (not limited to specific targets) is
predicted by smina32.
fDocking score of a given protein target (not limited to specific targets) is predicted by Autodock Vina76.
gDocking score of a given protein target (not limited to specific targets) is predicted by smina32.

Fig. 5 | Property metric values of Lapatinib and its Pareto Dominate molecules (Compounds 9 to 15) found by ParetoDrug. EGFRmeans the ligand’s docking score to
EGFR (PDB ID: 1XKK) while HER4/ErbB4means the ligand’s docking score to HER4/ErbB4 kinase (PDB ID: 3BBT), and the unit for the two docking scores is kcal ⋅mol−1.
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optimization is capable of discovering a set of solutions that reveal trade-offs
among objectives and relies on no prior measure of the importance of
competing objectives, it is believed as the most robust approach to multi-
objective drug discovery62. Next, we introduce how to utilize the concepts of
Pareto Dominate and Pareto Front to construct the ParetoDrug framework
for multi-objective target-aware drug discovery with the help of MCTS and
the pretrained autoregressive generative model.

ParetoDrug
To solve the challenging multi-objective target-aware drug discovery
task, which requires generating molecules with multiple desired prop-
erties including the strong binding affinity to specified protein targets,
we propose an autoregressive Pareto MCTS generation algorithm called
ParetoDrug. First, ParetoDrug employs existing pretrained auto-
regressive generative models to provide exploration guidance toward
desired molecules during searching. Based on both the protein context
and intermediate molecule fragment, the pretrained autoregressive
model predicts the probability of the next atom symbol to be added to the
current molecule fragment. Second, with exploration guidance from the
pretrained autoregressive model, ParetoDrug performs Pareto MCTS to
progressively find Pareto optimal molecules with multiple desired
properties. Third, to achieve the exploration-exploitation balance dur-
ing searching, we propose the ParetoPUCT selection criterion to
determine the next atom symbol in the Selection step of Pareto MCTS.
Through these three key components, ParetoDrug is able to generate
high-quality molecules for multi-objective target-aware drug discovery
tasks. The overall framework of ParetoDrug is shown in Fig. 6. Next, we
explain the details including Pareto MCTS, ParetoPUCT, and how to
extend ParetoDrug into the case of multi-target target-aware molecule
generation.

Pareto MCTS
In MCTS, pretrained neural networks based on the expert data could be
used for the guidance of action selection63 and this idea has been extended
into single-objective target-aware drug discovery15. Similarly, to enable the
exploration guidance to desired molecules with strong binding affinity to
specified protein targets, ParetoDrug employs an existing pretrained auto-
regressive generative model15 to predict the next atom symbol given the
protein target and current molecule fragment. The protein target is repre-
sented by the amino acid sequence. The molecule fragment is based on
SMILES64, which describes molecules with short ASCII strings. The auto-
regressive generative model includes a protein encoder based on the pro-
tein’s amino acid sequence and a ligandmolecule decoder. At each step, the
protein encoder receives the target protein sequence andoutputs the protein
embedding into the ligand decoder. Next, the ligand decoder predicts the
probability of the next atom symbol based on both the protein embedding
and intermediate molecule fragment from the last step. This autoregressive
generative model is pretrained on the protein-ligand data set and used
in MCTS.

When generating molecules with the pretrained autoregressive gen-
erative model, although we could obtain the ligand molecule in a greedy
manner by taking the next atom symbolwith themaximumprobability, it is
prone to be stuck in a local optimumdue to the unpredictable complexity of
the chemical space.At the same time, thepredicted atomwith themaximum
probability does not mean that it must be in the optimal molecule that
satisfies multiple required properties as the pretrained model is not opti-
mized for these properties. To address the above difficulties for the multi-
objective target-aware drug discovery, we propose ParetoDrug, which
employs theParetoMCTS to enable a synchronous optimizationofmultiple
properties together with the help of a pretrained autoregressive model for
selection guidance. Next, we introduce Pareto MCTS.

MAFMKKYL…NMDRFINK

…
…

= ( 1,… , )

CN(C)CCCO…(C)c3n2)cc1

Fig. 6 | The framework of ParetoDrug. The pretrained autoregressive generative
model gives the probability distribution of the next atom symbol. The ParetoPUCT
balances the exploration and exploitation when searching for the next atom symbol

in the Selection step. ParetoDrug maintains a global pool of Pareto optimal mole-
cules, which are updated during Pareto MCTS.
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Pareto MCTS65 extends basic MCTS66 to optimize multiple objectives,
which adopts a tree structure to perform simulation iterations and estimates
action values to guide searching. The Pareto MCTS procedure consists of
four steps per iteration:
• Selection. Each iteration starts from the current root node aτ and the

best child is recursively selected until a leaf node aτ+l after l selections,
i.e., a node that has not been expanded or terminated, is reached. For
each selection t ∈ [1, l], we need a selection criterion to determine
which child node is the best to be chosen. This criterion balances
between exploitation and exploration to avoid being trapped in local
optimums and is given in Eq. (6).

• Expansion.Givena selected leaf nodeaτ+l, the probabilityP(a∣Cτ+l) for
each expandable atom symbol a ∈ A is computed by the pretrained
autoregressive generative model. Cτ+l = {Sp, mτ+l} is the state context
with the target protein sequence Sp and the current simulated inter-
mediate molecule fragmentmτ+l = a1 ⋯ aτaτ+1 ⋯ aτ+l. Here A is the
legal action space, i.e. the SMILES vocabulary of molecules, under the
given state context. The expanded child nodes of aτ+l are added to the
tree and initialized immediately.

• Rollout. The value of the reached leaf node aτ+l is evaluated by a fast
rollout. From the leaf node, MCTS recursively generates the next state
until termination and receives the reward of the final molecule at the
termination state. During the rollout, each atom symbol is selected in a
greedy manner according to the predicted probability given by the
pretrained autoregressive network until a terminal symbol aτ+L is
generated or the tree reaches a maximum depth. The path from the
initial atom symbol to the terminal atom symbol forms a complete
moleculem=a1⋯aτaτ+1⋯aτ+L. The reward rof thefinalmoleculem
is then evaluated based on the molecule property metrics. Specifically,
the binding affinity is computed by the docking function f(Sp,m) such
as smina32. The reward r is calculated as defined in Eq. (3) by nor-
malizing the property metric in each dimension.

• Backup. The reward is backpropagated along the visited nodes to
update their statisticsuntil the rootnode.Thedetailedupdatingprocess
for tree nodes is elaborated in Eq. (4) with the defined reward vector r
for nodes.

When performing Pareto MCTS, we maintain a global pool of all the
Pareto optimal molecules found so far to represent the molecule Pareto
Front as defined by Definition 2. We update the global pool of Pareto
optimalmolecules by addingnewly generatedParetooptimalmolecules and
removing invalid ones if they are ParetoDominatedby the global pool’s new
comingmolecules.Themolecule comparison is basedon the rewardvector r
defined as follows. For each generated molecule in the rollout with the
property metric vector h ¼ ðh1; . . . ; hdÞ 2 Rd , the reward vector r ¼
ðr1; . . . ; rdÞ 2 Rd of this molecule is defined as

ri ¼
1
NP

XNP

k¼1
I½hi ≥ hki �; 8i ¼ 1; . . . ; d; ð3Þ

whereNP is the number of Pareto optimalmolecules in the global pool, hki is
the ith property metric of the kth Pareto optimal molecule, and hi is the ith
property metric of the current generated molecule to be compared. I is the
indicator function with value 1 if the condition hi>h

k
i is satisfied, 0 other-

wise. The calculation of reward r treats each dimension separately,
regardless of their scale difference, which gains an advantage over methods
that aggregate all dimensions into one score using predefined weights24.
With the reward vector, the Backup step is performed as

Na Na þ 1;Wa  Wa þ r; a parent of a; ð4Þ

where Na is the total times that node a has been selected and Wa is the
cumulative reward vector of nodea. For each selection t∈ [1, l], the statistics

of node aτ+t are updated by adding the reward vector of the node aτ+l’s
rollout result toWa and increasing the visiting times Na by 1.

ParetoPUCT
The most important step of MCTS is the Selection step where a criterion is
needed to select the next child node by comparing all child nodes. Themost
commonly used criterion is the upper confidence bound67 in which a child
node is selected to maximize

U ¼Wa

Na
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2 lnN
Na

s
; ð5Þ

where N is the total times of iterations and Na is the times of node a being
selected.U is a scalar used to select the best child nodewith the largest value.
However, in the multi-objective target-aware drug discovery, the reward
becomes a vector and U is not applicable for the comparison of vectors. At
the same time, we also want to utilize the pretrained autoregressive
generative model to provide the exploration guidance in the chemical
space15,68 when selecting the next child node in the Selection step.

Therefore, here we propose ParetoPUCT that extends the scalar
predictor upper confidence bound applied to trees (PUCT) selection
criterion69 with the concepts of Pareto Dominate and Pareto Front into a
vectorial selection criterion for the multi-objective MCTS65. At each
selection t, we first compute a selection score vector for each candidate child
node as

UpðCτþt�1; aÞ ¼
Wa

Na
þ cPðajCτþt�1Þ

ffiffiffiffi
N
p

1þ Na
; ð6Þ

where c is a constant that controls the degree of exploration. HereWa is the
cumulative reward vector for node a. The

ffiffiffi
N
p
1þNa

part guidesMCTS to initially
prefer to visit the nodes with a low number of visits. At the same time, the
P(a∣Cτ+t−1) part tends to visit the atomnodes that are probably to produce a
molecule with strong binding affinity to the protein target indicated by the
pretrained autoregressive generative model. Furthermore, the Wa

Na
makes

ParetoDrug exploit the nodes with multiple high property metrics while c
balances the exploitation and exploration. As the Up score is in the vector
from for each child node a, to determine which child node to be selected,
ParetoPUCT constructs a Pareto Front for those child nodes that are not
ParetoDominatedbyother childnodesbycomparing theirUp score vectors.
Each child node in the resulting Pareto Front cannot be replaced by a better
child node and thus becomes the candidate node for the selection. Finally,
ParetoPUCT selects a node from the Pareto Front of the candidate child
nodes uniformly at random.

Modifications of ParetoDrug for multi-target target-aware
molecule generation
As the multi-target target-aware molecule generation involves multiple
protein targets, we modify the ParetoPUCT node selection criterion to
handle multiple predictions from the pretrained autoregressive generative
model for different protein targets. Therefore, we propose theMulti-Target
ParetoPUCT (M-ParetoPUCT) defined as

Ump ¼
Wa

Na
þ cf ðP1ðajC1;τþt�1Þ; . . . ; PmðajCm;τþt�1ÞÞ

ffiffiffiffi
N
p

1þ Na
; ð7Þ

where there are m predictions for the next node a and c is a constant to
control the exploration degree. For the prediction fusing function
f(P1(a∣C1,τ+t−1), …, Pm(a∣Cm,τ+t−1)), each prediction is a distribution of
the next atom symbol with the inputting of the molecule’s SMILES string
representation64 and specified target protein’s amino acid sequence. Here
Pi(a∣Ci,τ+t−1) is the neural network prediction for the ith target pre-
trained on the protein-ligand data set. As the distributions are on the
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same action set, we use the mean-pooling operation for f as

f ðP1ðajC1;τþt�1Þ; . . . ; PmðajCm;τþt�1ÞÞ ¼
Pm

i¼1 PiðajCi;τþt�1Þ
m

; 8a 2 A:

ð8Þ

This mean-pooling operation keeps the probabilities of the possible
next atom symbols for each protein target. Meanwhile, it enhances the
probabilities of the next atom symbol if it is predicted to be preferred by all
the given protein targets.

After a leaf node aτ+l is selected, we need to expand it. The probability
for each expandable atom symbol is computed the same as Eq. (8) from
multiple predictions of the pretrained autoregressive model on multiple
protein targets. Each child node a of aτ+l is initialized

to fNa ¼ 0;Wa ¼ 0;
Pm

i¼1 PiðajCi;τþt�1Þ
m g.

Statistics and reproducibility
Data manipulation and processing analyses were conducted using the
packages Python (version 3.7), Biopython (version 1.79), Pandas (version
1.3.4), MMseqs2 (version 13.45111), RDKit (version 2020.09.5), PyTorch
(version 1.13.1), and Openbabel (version 3.1.1). We used PyMOL (version
2.6.0a0) to analyze the protein structures. We used AMBER22 package to
calculate the MM-GBSA scores (Supplementary Information G). We used
PLIP 2021 to analyze protein-ligand Interactions Supplementary Infor-
mation F.We use smina (version 2020.12.10) to calculate the docking score.
Themolecule property distributions are drawnbyMatplotlib (version 3.4.3)
and Seaborn (version 0.12.2), where the function “kdeplot” is called for
kernel density estimate. The T test and p value calculation in this article are
conducted with SciPy (version 1.9.1).

Data availability
The training and testing data of the autoregressive generativemodel used in
ParetoDrug is processed fromBindingDB and PDBbind, and is the same as
in AlphaDrug and could be obtained from https://github.com/
CMACH508/AlphaDrug. For the multi-objective target-aware drug dis-
covery andmulti-target drugdiscovery case studies, the PDBand ligandfiles
of 7D42, 5G2N, 3A2O, 4G1Q, 1XKK, and 3BBT are downloaded from
RCSB Protein Data Bank.

Code availability
The source code of this study is publicly available from the GitHub repo-
sitory: https://github.com/CNDOTA/ParetoDrug. We also provide the
Google Colab version of ParetoDrug, which could be directly run online.
The numerical source data for graphs and charts in this article is provided in
Figshare with DOI70. We also deposit the data and codes of ParetoDrug in
Figshare with DOI71.
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