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TransBind allows precise detection of
DNA-binding proteins and residues using
language models and deep learning

Check for updates

Md Toki Tahmid, A.K.M. Mehedi Hasan & Md Shamsuzzoha Bayzid

Identifying DNA-binding proteins and their binding residues is critical for understanding diverse
biological processes, but conventional experimental approaches are slow and costly. Existing
machine learningmethods, while faster, often lack accuracy and struggle with data imbalance, relying
heavily on evolutionary profiles like PSSMs and HMMs derived from multiple sequence alignments
(MSAs). These dependencies make them unsuitable for orphan proteins or those that evolve rapidly.
To address these challenges, we introduce TransBind, an alignment-free deep learning framework
that predicts DNA-binding proteins and residues directly from a single primary sequence, eliminating
the need for MSAs. By leveraging features from pre-trained protein language models, TransBind
effectively handles the issue of data imbalance and achieves superior performance. Extensive
evaluations using diverse experimental datasets and case studies demonstrate that TransBind
significantly outperforms state-of-the-art methods in terms of both accuracy and computational
efficiency. TransBind is available as a web server at https://trans-bind-web-server-frontend.vercel.
app/.

DNA-protein interactions play a pivotal role in gene regulation and major
cell cycle events, including DNA replication, transcription, and
translation1–4. Certain amino acid residues inside a DNA-binding protein
tend to bind withDNA, which are called DNA-protein binding residues (or
sites). Micro-array-based experimental approaches, such as protein
microarray assays5, protein binding microarray6, and ChIP-seq7 are widely
used for theprecise identificationofDNAbinding residues.Althoughhighly
precise, these experimental approaches are costly and time- and labor-
intensive. Therefore, considerable effort is being put into developing com-
putational methods for predicting DNA-binding proteins and DNA-
binding protein residues.

Given the growing availability of protein databases and rapid advances
in machine learning (ML) methods (especially, deep learning techniques),
the application of ML techniques to leverage the available data in the
accurate prediction of DNA-binding proteins and sites has gained sig-
nificant attention1,8–14. DNA-protein interaction prediction generally deals
with two types of tasks. One is predicting whether a protein sequence is
DNA-binding, which means that it will interact with a DNA8–11, and the
second task deals with identifying specific amino acids within a protein
sequence that will bind to aDNA1,12. Although the input for both these tasks
is the same– a protein sequence, from a prediction model’s perspective, the
first is a binary classification task for the input protein sequence and the

latter is a binary classification on each of the residues of the protein
sequence. Most of the existing approaches address either of these two
problems, except for some which deal with both of these tasks13,14. Trans-
Bind is designed to address both these problems with high precision and
sensitivity.

Most of the existing DNA-binding prediction methods primarily use
evolutionary features, such as position specific scoring matrix (PSSM), and
hidden Markov models (HMM) profile derived fromMSAs and structural
information (e.g., secondary structures, torsion angles, etc.). Similar tomany
other problems in computational proteomics, PSSMs and HMMs are
among the most widely used features in DNA-binding protein
prediction15–19.

However, MSA-based evolutionary feature extraction is a time-
consuming task, making it a major bottleneck for using evolutionary
features. Moreover, MSAs of homologous proteins are not always
available, such as with orphan proteins (proteins with few or no
homologs20,21 as they do not belong to any functionally characterized
protein family) and antibodies that tend to have noisy MSAs due to fast
evolution. As a result, identifying the feature sets, which are less com-
putationally demanding and alignment-free, yet effective for highly
accurate prediction of DNA-binding proteins and DNA-binding resi-
dues is of great interest.
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Particularly, with the advancement of Natural Language Processing
(NLP), pretrained languagemodels have become popular to extract features
that can be used for building predictive models. In 2021, ProtTrans22 was
published, a transformer-like protein languagemodel trained on 393 billion
amino acids from 2.1 billion protein sequences, which can generate feature
sets from amino acids capable of performing very well while taking sig-
nificantly less time to generate compared to PSSM. TransBind presents a
successful utilization of pretrained proteinmodels in DNA-binding protein
and residue prediction. Recently, some methods have attempted to use
language model-based features for predicting DNA-binding proteins and
their respective binding sites23–25. For instance,Wei et al.26 utilized the ESM-
1b27 pre-trained language model to identify DNA-binding proteins. How-
ever, their approach lacks the capability to detect specificDNA-binding sites
within proteins, meaning it cannot identify DNA-binding protein residues.
In another study, Littmann et al.28 employed a generalized framework based
on language models to predict binding residues for various ligand classes,
including metal ions, nucleic acids, or small molecules. However, the
accuracy of predicting DNA/RNA binding sites using this generalized fra-
mework was notably low. Furthermore, a number of methods have been
proposed to identifyDNAbinding protein residueswhich require structural
information in addition to languagemodel-based features and evolutionary
features23,24,29–36. While leveraging 3D structure can enhance performance,
experimentally determined structures are often unavailable for newly dis-
covered sequences.

In this paper, we propose TransBind (Transfer Learning-based Bind-
ing Prediction), a sequence-only approach for precisely identifying DNA-
binding proteins and residues without relying on MSA-based evolutionary
features or structural information. TransBind circumvents some of the
important challenges in the field. It uses the “global” features generated by
the pretrained proteinmodel ProtTrans22, to generate a residue level feature
embedding for each amino acid residue by incorporating the global context
of the protein sequence with a self-attention mechanism. To effectively
capture the local features within each amino acid residue, we employ a
convolution network based approach—namely, the inception V237 archi-
tecture. Thus, the features generated by ProtTrans are subsequently pro-
cessed by a stacked layer of inception-based “local” feature extractor to
leverage the inter-relationship among the features generated by protTrans.

TransBind effectively tackles the class-imbalance problem where the
positive sample is the minority class (i.e., the number of binding sites is
significantly smaller than the non-binding sites) by leveraging a class-
weighted training scheme.We report, on an extensive evaluation study, the
performance of TransBind for both the DNA-binding protein prediction
and the DNA-protein binding residue prediction tasks. In addition to
greatly increasing computational efficiency, the inception network-based
feature extraction from ProtTrans features coupled with deep learning
allows TransBind to achieve remarkable improvements over the state-of-
the-art methods on a wide range of benchmark datasets and for a diverse
array of evaluation metrics. We present additional results to enhance our
understanding of the comparative performances of different methods.
Specifically, we analyze the performance of various methods in 20 amino
acid classes individually, allowing for a more detailed assessment. We also
assessed the performance of TransBind on different model conditions with
varying levels of homologous data, showcasing its applicability on orphan
proteins or those with a limited number of homologs. Furthermore, we
include case studies that involve visual inspection of predicted DNA-
binding residues. Importantly, TransBind is a sequence-onlymethodwhich
does not rely on MSA-based evolutionary features and structural infor-
mation, making it suitable for orphan proteins that do not belong to any
functionally characterized protein family and rapidly evolving proteins.

Results
We first briefly present our proposed method TransBind. Next, we report,
on an extensive evaluation study, the performance of TransBind compared
to the state-of-the-art DNA protein binding prediction methods on a col-
lection of widely used benchmark datasets, spanning a wide range of

prediction difficulty levels. We primarily assess the performance of Trans-
Bind in predicting DNA-protein binding residues. Furthermore, we
demonstrate that the TransBind architecture performs well in predicting
DNA binding proteins as well.

The TransBind framework
TransBind takes a sequence of amino acid X = {x1, x2, . . . , xn} as an input
where xi represents the ith residue. For each residue xi, TransBind deter-
mineswhether this residue corresponds to aDNAbinding residue or not. In
contrast to deriving MSA-based features (e.g., PSSM and HMM) for
embedding the protein8,9,38, we used the ProtTrans22 language model.

The ProtT5-XL-UniRef50 model uses the BERT39 architecture and is
pretrained to produce an embedding of length 1024 for each amino acid
residue within a protein. Thus, ProtT5-XL-UniRef50 generates a sequence
of embedding vectors q = {q1, q2, q3,…, qn}, qi 2 Rd ðd ¼ 1024Þ, where qi
denotes the features generated for each amino acid within the protein
sequence. Therefore, for each protein of length n, input to the TransBind
model is a sequence of amino acid residues of length n, each of which is
encoded into a 1024-dimensional feature vector using ProtT5-XL-
UniRef50. This IRN×1024 feature set is passed through our proposed pipe-
line within the TransBind architecture, which produces an output of
dimension IRN×1—indicating whether a residue is DNA-binding or not.

The overall architecture of TransBind is shown in Fig. 1. Instead of
passing the whole encoded sequence through the classifier, TransBind
ensures the global feature representation with self-attention, and then
processes each nucleotide individually with the local feature extractor net-
work. This residue-level granularity allows us to design a weighted class
training to effectively handle data imbalance. We describe different com-
ponents of TransBind in the “Methods” section.

DNA-protein binding residue prediction results
The validation accuracies (using 10-fold cross-validation) of TransBind and
other competing methods on the PDNA-224 dataset are shown in Table 1.
TransBind remarkably outperformed other competing methods across all
evaluation metrics.

For example, TransBind achieved an impressive MCC score of 0.82,
significantly outperforming the previous best reported MCC score of 0.48,
indicating a notable improvement of 70.8%. Furthermore, TransBind
exhibited substantial improvements in other performance metrics such as
accuracy, sensitivity, and specificity. These improvements signify Trans-
Bind’s ability to make more accurate predictions, identify a higher pro-
portion of true binding residues, and achieve better discrimination between
binding and non-binding residues. Moreover, TransBind demonstrates
remarkably high AUC and AUPR values (Tables 1 and 2), highlighting its
consistent and balanced performance despite the presence of substantial
amounts of imbalance in the benchmark datasets.

Similar trends were observed in the PDNA-316 dataset (Table 3).
TransBind outperformed other competing methods in all evaluation
metrics, except for specificity where Saber et al.14 is slightly (less than 1%)
better than TransBind, and this small improvement is not statistically sig-
nificant (pvalue > 0.05).Moreover, Saber et al.14 is considerably less sensitive
than TransBind as the sensitivity of Saber et al.14 and TransBind are 66.91
and 85.00, respectively. Notably, the improvements of TransBind in accu-
racy, sensitivity and MCC score over other competing methods are
remarkable. Moreover, TransBind achieved remarkably high AUC and
AUPR scores of 0.965 and 0.951, respectively.

The results on PDNA-543 dataset are shown in Table 4. Saber et al.14

and TransBind showed comparable performance, and both of them are
substantially better than the other alternative methods.

Overall, TransBind achieved dramatic improvements in the validation
accuracy over other methods on these three benchmark datasets. While
other methods tend to achieve high specificity at the cost of sensitivity
(meaning that they tend to produce a substantial amount of false negative
DNA-binding residue predictions), TransBind achieves higher and more
balanced sensitivity and specificity scores, resulting in notably higher MCC
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Fig. 1 | Schematic diagram of the workflow of TransBind. a For an input protein
sequence, its amino acid sequence is used as the input to themasked language model
(Prot-T5 in TransBind). The language model provides positional encoding for each
of the amino acid tokens. bUnderstanding global features with self attention: within
the self-attention block of the transformer, each amino acid attends to all other
amino acids in the protein sequence.Hence, it provides a global understanding of the
sequence to all the amino acids. c Separation of amino acids: instead of processing
amino acids in parallel, each one is isolated and passed through the local feature
extraction network individually. This approach enhances the ability to understand
the feature space of individual amino acids more effectively compared to processing
the entire sequence at once. d Local feature extraction using stacked inception v2

modules: the local feature extraction component works on each amino acid sepa-
rately. Here, stacked layers of inception V2 module is used as the local feature
extractor. Each block consists of six convolutional layers and two pooling layers. d0

Training with weighted loss distribution for tackling class imbalance: during the
training of the local feature extractor, we implement a weighted class loss which
provides greater loss value to the incorrectly predicted amino acids of the minority
class, which allows to tackle the class imbalance issue. eThe prediction head provides
binary classification over all the amino acids associated with the given protein in two
classes: (i) amino acids that bind to nucleic acid and (ii) those that do not bind to
nucleic acid.
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scores. Moreover, TransBind achieved impressive AUC and AUPR values
across all the datasets.

Finally, we assessed the performance of TransBind and other com-
petingmethods in predictingDNA-binding protein residues on the PDNA-
41 independent test set. Note that, unlike othermethods, we have evaluated
and reported the performance of TransBind on the 37 non-redundant
sequences, after removing the four sequences with ≥30% sequence simi-
larity, as discussed in section “Test datasets”. Remarkably, the overall per-
formance of TransBind is significantly better than other methods (Table 5).
Specifically, TransBind achieved a substantially higher MCC score than all
other methods and was 38.7% better than the previous best method,
iProDNA. Although ProteDNA had better specificity and accuracy than
TransBind, its sensitivity is miserably low (only 4.77%), meaning that
ProteDNA tends to classify most residues as non-binding, resulting in a
large number of false negative predictions. ProteDNA fails to detect a
substantial number of binding sites and incorrectly labels the residues that
are actually binding sites as non-binding. However, since non-binding
residues are the majority class (i.e., the number of non-binding sites is
substantially higher than that of binding sites), it has obtained high accuracy
and specificity. But these metrics alone do not suffice to evaluate its overall
effectiveness as a predictive model. The low sensitivity score (4.77) under-
scores ProteDNA’s limitation in capturing true binding sites, which is a
critical aspect of binding site prediction. Our method, on the other hand,
produces comparable accuracy and specificity, but achieves a substantially
higher sensitivity score—making it the best method in terms of the
MCC score.

Similarly, other methods (e.g., DNABind, TargetDNA, EC-RUS) that
achieved higher sensitivity than TransBind had lower accuracy and specifi-
city, making them worse than TransBind in terms of the MCC score. Note
that, in the presence of data imbalance, theMCC score is a more appropriate
evaluation metric than accuracy, sensitivity, and specificity. Our results
demonstrate that the overall performance of TransBind is notably improved
and balanced compared to other methods, which showcases the efficacy of
TransBind in detecting the binding residues and achieving better dis-
crimination between binding and non-binding residues. Moreover, Trans-
Bind achieved an AUC score of 0.851 and an AUPR of 0.844, highlighting its
accurate and balanced predictive performance.

Performance analysis on recent nucleic acid binding datasets
In recent years, a diverse array of methods have emerged that combine
structural information with sequence- andMSA-based features to enhance
the prediction of protein attributes, especially in the context of protein-
nucleic acid interactions.

Additionally, newer datasets such as DNA-129 and RNA-117 have
been introduced and are now widely utilized for benchmarking protein-
nucleic acid binding prediction models23.

Methods such as GraphBind23, CLAPE-DB25, NucBind29, DNAPred30,
targetDNA40, NABind31, and DNABind41 have been benchmarked on these
datasets. Some of these methods use structural information along with the
MSA- and sequence-based features. For example, NucBind, DNAPred,
NABind, DNABind, and GraphBind leverage three-dimensional protein
structural embeddings in conjunction with primary sequence data to predict
nucleic acid-protein interactions. The availability of structural information
serves as a valuable indicator for identifying interacting residues. Several
studies, such as42,43, have demonstrated that insights into the surface topology
of a protein provide significant information about its binding residues. This
is primarily because binding pockets are predominantly located on the
protein’s surface42. Consequently, structural data helps address the issue of
data imbalance by naturally deprioritizing residues buried within the protein
folds when identifying nucleic acid-binding residues.

However, These approaches rely on the availability of the 3D structural
information, which is often lacking for newly discovered proteins. As a
result, methods like GraphSite24, and GLMSite36 depend on inferring 3D
structures using predictive tools such as AlphaFold44 or ESM-fold27, a pro-
cess that is both time-consuming and resource-intensive.

In contrast, TransBind operates independently of MSA and structural
domain information. Yet, we compared its performance to themethods that
use these information for amore comprehensive assessment of ourmethod.
Notably, as shown in Table 6, TransBind outperforms TargetDNA,
DNAPred, SVMNuc, COACH-D, NucBind, and DNABind across all
metrics. NABind31 achieves the highest scores across all metrics, with the
exception of precision on the RNA 117 dataset, where TransBind delivers
the best performance. TransBind outperforms GraphBind in terms of
precision on both DNA-129 and RNA-117 datasets, while GraphBind is
slightly better than TransBind in othermetrics. Overall, TransBind remains
highly competitive with both NABind and GraphBind, with only marginal

Table 2 | AUPR scores of TransBind on different datasets

Dataset PDNA-224 PDNA-316 PDNA-543 PDNA-41

TransBind 0.873 0.951 0.906 0.844

We note that other studies did not report the AUPR values.

Table 1 | Validation performance of TransBind andother state-
of-the-art methods on the PDNA-224 dataset

Methods Accuracy Sensitivity Specificity MCC
score

AUC
score

Zhang
et al.17

83.50 76.8 84.5 0.48 –

PreDNA55 81.80 76.1 82.2 0.35 –

PDRLGB12 80.0 83.3 79.7 0.38 –

El_PSSM-
RT64

80.39 68.11 81.32 0.31 0.84

TransBind 97.68 86.1 98.75 0.82 0.90

The best and second-best results for each metric are shown in bold and italic, respectively.
The reported results for the existing methods were obtained from their respective publications
unless otherwise specified. Values which were not reported by the corresponding source are
indicated by “–”.

Table 3 | Validation performance of TransBind and other state-of-the-art methods on the PDNA-316 dataset

Methods Accuracy Sensitivity Specificity MCC score AUC score

DTLM-DBP13 93.38 55.35 97.69 0.60 –

MLAB3 90.23 35.62 94.80 0.317 –

Zhang et al.17 91.04 82.74 91.04 0.67 –

Saber et al.14 94.28 66.91 99.71 0.74 –

TransBind 98.17 87.43 97.75 0.827 0.970

The best and second-best results for each metric are shown in bold and italic, respectively.
The reported results for the existingmethodswere obtained from their respective publications unless otherwise specified. Valueswhichwere not reported by the corresponding source are indicated by “–”.
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differences in performance. It is important to highlight that NABind
leverages a combination of language-based features, MSA-derived evolu-
tionary features (e.g., PSSMs, HMM), and structural information.
Remarkably, among the sequence only models (indicated by ‘*’ in Table 6),

TransBind achieved the best performance, significantly outperforming
other methods in this category.

Structure-based methods require known PDB structure data, and
analyzing 3D structural data is computationally more expensive than
sequence-based analysis. For instance, GraphBind employs a multi-stage
graph neural network to aggregate structural features into its prediction
head, necessitating both structural information and substantial computa-
tional resources. These results indicate that TransBind provides fast and
reliable nucleic-acid binding predictions without relying on MSA and
structural data, offering apractical solution for computational proteomics. It
operates efficiently even with limited resources, meeting the growing
demand to assess protein functionality as new sequences are regularly
discovered.

Performanceanalysis basedonhomologoussequence similarity
The quality of evolutionary features such asHMMor PSSMprofiles heavily
depends on the quality of multiple sequence alignments (MSAs). Orphan
proteins, which do not have homologous sequences, or those with a limited
number of homologs, fail to produce meaningful MSA features. Conse-
quently, methods reliant on evolutionary featuresmaywork very well when
proteins under consideration have a large amount of homologous infor-
mation in the public sequence databases, but their efficacy diminishes for

Table 6 | Comparison of TransBind with recent methods on the DNA-129 and RNA-117 datasets

Model Pre F1 MCC AUC

DNA 129 RNA 117 DNA 129 RNA 117 DNA 129 RNA 117 DNA 129 RNA 117

TargetDNA* 0.280 – 0.335 – 0.291 – 0.825 –

DNAPred* 0.353 – 0.373 – 0.332 – 0.845 –

COACH-D 0.360 0.252 0.341 0.235 0.302 0.195 0.761 0.663

NucBind 0.373 0.235 0.346 0.233 0.309 0.189 0.797 0.715

DNABind 0.346 – 0.440 – 0.411 – 0.858 –

GraphBind 0.425 0.294 0.522 0.358 0.499 0.322 0.927 0.854

CLAPE-DB* 0.396 – 0.427 – 0.389 – 0.881 –

NABind 0.504 0.306 0.541 0.377 0.535 0.368 0.946 0.882

TransBind* 0.470 0.320 0.510 0.350 0.484 0.320 0.913 0.840

The best and second-best results for each metric are shown in bold and italic, respectively.
The reported results for the existingmethodswere obtained from refs. 23,25. Valueswhichwere not reportedby the correspondingsource are indicatedby “–”.Methods that donot use structural information
are indicated by “*”.

Table 5 | Performance of TransBind and other state-of-the-art methods on the independent test dataset PDNA-41

Methods Accuracy Sensitivity Specificity MCC AUC score

BindN65* 79.15 45.64 80.9 0.14 –

MetaDBSite56* 90.41 34.2 93.35 0.22 –

DP-Bind66* 81.4 61.72 82.43 0.24 –

DNABind (structure-based)41* 79.78 70.16 80.28 0.26 –

TargetDNA (Sen ≈ Spec)40* 84.52 60.22 85.79 0.26 –

TargetDNA (FPR ≈ 5%)40* 90.89 45.5 93.27 0.30 –

EC-RUS (WSRC) (Sen ≈ Spec)3 76.44 61.04 77.25 0.19 –

EC-RUS (WSRC) (FPR ≈ 5%)3 94.58 27.25 97.31 0.31 –

iProDNA (FPR ≈ 5%)1 92.38 42.17 94.93 0.315 –

ProteDNA67* 95.11 4.77 99.84 0.16 –

TransBind (41 sequences) 94.93 41.39 97.97 0.44 0.858

TransBind (37 sequences) 95.01 42.11 96.77 0.427 0.848

The best and second-best results for each metric are shown in bold and italic, respectively.
The reported results for prior studies arebasedon theentire testsetwith41 sequences,whereasweevaluatedTransBindon the entire set aswell ason the37non-redundant sequences. Valuesnot reported
by the corresponding source are indicated by “–”.
*Results obtained from ref. 14.

Table 4 | Validation performance of TransBind andother state-
of-the-art methods on the PDNA-543 dataset

Methods Accuracy Sensitivity Specificity MCC
score

AUC
score

DTLM-
DBP13

93.05 48.11 97.57 0.53 –

MLAB3 91.80 47.62 94.92 0.392 –

iproDNA1 83.66 64.21 85.00 0.313 –

Saber
et al.14

94.12 56.67 99.50 0.68 –

EC-RUS3 91.80 47.60 94.92 0.392 0.855

TransBind 94.42 67.26 95.44 0.643 0.917

The best and second-best results for each metric are shown in bold and italic, respectively.
The reported results for the existing methods were obtained from their respective publications
unless otherwise specified. Values which were not reported by the corresponding source are
indicated by “–”.
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proteins lacking sufficient homologous data. In contrast, TransBind utilizes
language model-generated features that do not rely on homology searches,
providing the flexibility to generate meaningful predictions even for pro-
teins with low sequence similarity.

In this experiment, we have assessed the impact of available homo-
logous information on the performance of TransBind and those that use
evolutionary features. To quantitatively identify orphan proteins or those
with low homology, we used the NEFF score (Number of Effective
Sequences in theMSA). The NEFF score, ranging from 1 to 20, serves as an
indicator of homology—proteins with low NEFF values are considered to
have limited sequence similarity and potential uniqueness within the
dataset45.Weperformed a homology search usingHHblits, using the official
package from HHsuite (https://github.com/soedinglab/hh-suite), on the
PDNA-41 dataset. For this search, we used the latest protein database
(https://wwwuser.gwdguser.de/compbiol/uniclust/2023_02) available in
HHsuite.

We calculated the NEFF values for each of the 41 proteins in the
PDNA-41 dataset and sorted them in ascending order. These NEFF scores,
ranging between 3 to 12, were then grouped into nine bins (b1, b2,…, b9),
with b1 containing proteins with the lowest NEFF scores and b9 containing
those with the highest. Figure 2a illustrates the distribution of proteins in
these nine bins, and Fig. 2b displays the average MCC scores of TransBind
and iProDNA (anMSA-based method accessible via a web server) for each
bin. The results clearly show that the improvement of TransBind over
iProDNA increases significantly with decreasing levels of NEFF values.
There is no significant difference between them on b9 (the bin corre-
sponding to the highest level of NEFF score, i.e., the highest level of
homologous information), but as we decrease the level of NEFF scores,

TransBind becomes significantly more accurate than iProDNA and attains
thehighest level of improvementonb1 (the binwith the lowest levelofNEFF
score). This clearly indicates the efficacy and superiority of TransBind for
proteinswith lowhomology information compared to themethods that rely
on evolutionary features.

Ablation study
We conducted three types of ablation studies to assess the contributions
of different components in TransBind. First, we assessed the perfor-
mance of a simple Multilayer Perceptron (MLP) using only global fea-
tures from ProtTrans, without incorporating any inception blocks. As
shown in Table 7, relying solely on the language model-based global
features with a basic neural network (without the inception blocks of the
local extractor) did not yield satisfactory performance. This highlights the
necessity and effectiveness of using both local and global feature
extractors in TransBind. Next, we experimented with different numbers
of inception blocks in the local feature extraction module. As shown in
Table 7, increasing the number of inception blocks from two to three
yielded the best performance. However, adding more blocks did not
enhance performance and instead increased network complexity, likely
due to over-fitting in the local feature extractor. Consequently, we opted
to use three inception blocks. Finally, we examined the effect of including
a weighted loss function. We observed a significant decline in the MCC
score when the weighted loss function was omitted. This underscores the
importance of our implemented loss function based on class weights to
effectively address the data imbalance problem, ensuring a highly accu-
rate and balanced performance.

Impact of different protein language models. We assessed the impact
of different languagemodels (ProtTrans andESM) on the performance of
TransBind using two recent benchmark datasets: DNA-129 and RNA-
117. Our analysis, presented in Table 8, shows that ProtTrans-based
embeddings outperform ESM-based embeddings. This finding is con-
sistent with recent comparative analysis studies46, which demonstrate
that ProtT5-XL-UniRef50 performs better in four of five downstream
protein tasks compared to ESM-based models of similar size.

Fig. 2 | Performance comparison of TransBind and iProDNA under various
levels of homology information (i.e., NEFF scores). Proteins in the PDNA-41
dataset were grouped into nine disjoint bins (based on the NEFF values). aNumber

of proteins and their average NEFF score in each bin. b Average MCC scores of
TransBind and iProDNA as a function of varying levels of NEFF scores on these
nine bins.

Table 7 | Ablation studies on global and local feature extractors and the weighted loss function

Ablation of the local feature extractor Ablation of the weighted loss function

Simple MLP (no inception block) 2 inception block 3 inception block 4 inception block With weighted loss Without weighted loss

PDNA 224 0.781 0.792 0.824 0.811 0.824 0.740

PDNA 316 0.736 0.761 0.827 0.814 0.827 0.710

PDNA 543 0.591 0.602 0.643 0.641 0.643 0.521

We report the MCC scores for different model conditions across three different datasets.

Table 8 |MCCscores of TransBind usingESM- andProtTrans-
based features on DNA-129 and RNA-117 datasets

Feature DNA129 RNA129

ESM feature 0.48 0.318

Prottrans feature 0.492 0.320
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Although ESM models offer larger language models, such as the 15B
model of esm2_t48_15B_UR50D or ESM3with 98B parameters47, these are
not feasible for inference or prediction tasks on local machines or typical
standalone web servers. Given the competitive or superior performance of
ProtTrans, we chose to use ProtT5-XL-UniRef50. It provides better per-
formance than ESM-based embeddings within a similar model size and
structure.

Performance on different amino acids
To further elucidate the predictive capabilities of our model on DNA-
binding residues and enhance the interpretability of the results, we
conducted an analysis of TransBind’s performance across 20 different
amino acids using the PDNA-224 and PDNA-316 datasets. The DNA-
binding amino acid composition (i.e., the percentage of 20 different
amino acids) within a protein sequence is highly skewed, with certain
DNA-binding amino acids being significantly less prevalent (under-
represented) than others (see Fig. 3a). For instance, Cysteine (C), Iso-
leucine (I), Leucine (L), andMethionine (M) are underrepresented in the
datasets we examined. This distribution introduces an additional layer of
class imbalance across 20 types/classes of amino acids in residue-level
prediction methods, beyond the existing imbalance between interacting
and non interacting residues. Our findings, presented in Fig. 3b, c, reflect
this challenge, highlighting the complexities faced when predicting

residue interactions across diverse amino acid classes. We compared
TransBind’s results with those from iProDNA. Recognizing the chal-
lenges posed by imbalanced datasets, we focused on sensitivity as a key
metric, given its importance in minimizing false negatives. Our analysis
highlights a significant variance in prediction difficulty across different
amino acids. Figure 3b, c shows the average sensitivity scores achieved by
TransBind and iProDNA across 20 different amino acid types on two
benchmark datasets. iProDNA achieves a perfect sensitivity score for
certain residues but fails to identify the DNA-binding residues that are
under-represented such as Cysteine (C), Isoleucine (I), Leucine (L), and
Methionine (M), resulting in a sensitivity score of zero. It shows that
existing methods are not suitable to handle the imbalance in the amino
acid compositions. In contrast, TransBind consistently delivers valid
and reasonably high sensitivity scores across all amino acid types,
demonstrating robustness even for the underrepresented amino acids
where iProDNA struggles. Remarkably, while sensitivity scores of
iProDNA on Cysteine (C) and is Leucine (L) are zero on PDNA 224
dataset, TransBind achieves the perfect sensitivity score (100%). We
believe that the way we separate amino acids in the global and local
extractors within TransBind, combined with the class-weighted training
scheme, contributes to the improved capacity of TransBind to identify
interacting residues among the underrepresented amino acids. These
findings underscore the importance of analyzing model performance at

Fig. 3 | Performance on different amino acids. a DNA binding residues compo-
sition across different amino acids in the PDNA-224 dataset. b Sensitivity score of
TransBind and iProDNAon different amino acid residues in the PDNA-224 dataset.

c Sensitivity score of TransBind and iProDNA on different amino acid residues in
the PDNA-316 dataset.
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the amino acid level and demonstrate the capability of TransBind to
provide reliable predictions across diverse residue types.

DNA-binding protein prediction results
For identifying DNA-binding proteins, we used an appropriately modified
version of TransBind for protein-level predictions (see “Classification
module” section). PDB-1075 dataset was used for training and validation,
and TransBind was assessed for its performance on a widely used inde-
pendent test set PDB-186.

Table 9 presents the validation performance of variousmethods on the
training and validation dataset PDB-1075. While TransBind did not out-
perform other competing methods on the validation dataset, a notable
advantage of TransBind becomes apparent when evaluated on the inde-
pendent test set, PDB-186 (see Table 10). Specifically, TransBind achieved
the highestMCCscore of 0.82 and thehighest accuracy of 90.86%on the test
set, surpassing the performance of DTLM-DBP13, which obtained the
highest MCC score of 0.64 and an accuracy of 81.18% on the validation
dataset. Furthermore, TransBind demonstrated a significantly higher spe-
cificity of 98.92%, outperforming all competing methods in this regard.

Although TransBind achieved a sensitivity of 82.79%, which is lower
than thebest sensitivity of 94.6%achievedby ref. 10,TransBind substantially
outperformed it across the other three metrics. The substantial improve-
ment of TransBind over the state-of-the-art methods on the independent
test set compared to the validation set indicates its robustness to unseen data
and its ability to mitigate overfitting issues more effectively than other
existing methods.

Case studies
TransBind has achieved remarkably better and more balanced (in terms of
sensitivity and specificity) performance than thebest alternativemethods. In

Fig. 4 |Native and predictedDNA-protein binding residues in two representative
proteins: human PAX3 homeodomain (PDB_ID: 3CMY) and phage 434 OR2/
R1-69 complex (PDB_ID: 1RPE). Binding residues are shown in red. a Native

binding residues in 3CMY, b binding residues predicted by TransBind for 3CMY,
c binding residues predicted by iProDNA for 3CMY, d–f native, TransBind-pre-
dicted, and iProDNA-predicted binding residues for 1RPE, respectively.

Table 9 | Validation performance of TransBind andother state-
of-the-art methods on the PDB-1075 dataset

Methods Accuracy Sensitivity Specificity MCC
score

Rahman et al.8 93.21 87.81 98.36 0.87

DTLM-DBP13 96.34 94.83 97.94 0.93

Qian et al.9 84.19 85.91 82.55 0.68

Zou et al.10 83.35 81.33 85.27 0.91

TransBind 82.71 83.12 83.27 0.65

The best and second-best results for each metric are shown in bold and italic, respectively.

Table 10 | Performance of TransBind and other state-of-the-
art methods on the PDB-186 dataset

Methods Accuracy Sensitivity Specificity MCC
score

Rahman et al.8 77.42 83.87 70.97 0.553

DTLM-DBP13 81.18 91.43 75.00 0.64

Qian et al.9 83.7 93.6 74.2 0.691

Zou et al.10 86.6 94.6 78.5 0.741

Zhang and Liu
et al.11

84.41 83.87 84.95 0.6882

TransBind 90.86 82.79 98.92 0.82

The best and second-best results for each metric are shown in bold and italic, respectively.
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order to visually demonstrate the efficacy of TransBind in predicting the
DNA-binding residues, we show in Fig. 4 the true and predicted (by
TransBind and iProDNA)binding sites on two representative proteins from
thePDNA-316dataset, namelyPhage434OR2/R1-69 complex andHuman
PAX3 Homeodomain. It is clear from the figures that iProDNA produces
substantially more false positive predictions than TransBind. Moreover,
TransBind is not only highly specific (with less numbers of FPs), it is con-
siderably sensitive as all the true binding residues are correctly recognizedby
TransBind. The specificity of TransBind on these two proteins are 94.11%
and 92.15%, respectively which are substantially higher than iProDNA
which obtained 66.67% and 56.86% specificity, respectively.

Running time
TransBind significantly reduces the running time for DNA-binding protein
and residue prediction by leveraging transfer learning.We assessed the time
required to generate features for TransBind and compared it to methods
relying on evolutionary features like PSSM, as detailed in Table 11 for
various datasets analyzed in this study.We also report the inference time for
TransBind. All analyses were conducted on the samemachine with an 13th
Generation IntelⓇ Core i7-13700HX Processor, 64GB RAM, and an
NVIDIA GeForce RTX 4070 (Laptop GPU) (8GB memory). These results
indicate that generatingProtTrans-based features is considerably faster than
producing evolutionary features. For instance, generating ProtTrans-based
features for the PDNA-224 datasets took less than 5min, with TransBind
requiring an additional 30 s for inference. In contrast, generating PSSM
features took approximately 37 h. Consequently, methods relying onMSA-
based PSSM features, such as iProDNA1, Zhang et al.17, PDRLGB12,
NABind31, and GraphBind23 are significantly slower than TransBind.

Discussion
We presented TransBind, a highly accurate and fast method to accurately
identify both DNA-binding proteins and DNA-protein binding residues
from primary sequences alone. Our study leverages a transformer-based
protein languagemodel pretrainedonunaligned sequences topredictDNA-
binding residues andproteins fromprotein sequences alone,without relying
onMSA-basedevolutionary featuresor structural information.Theprimary
novelty of this study lies in the integration of global and local feature
extractors, specifically the separationof aminoacids in the local extractor—a
concept not previously introduced in thefield.Moreover,wehave addressed
the critical challenge of class imbalance by implementing a carefully
designedweighted loss function. TransBind remarkably surpassed the state-
of-the-art across a wide variety of data sets and evaluation metrics. Our
systematic analyses of the performance of different methods under various
model conditions with varying levels of complexities indicate the predictive
power and effectiveness of TransBind in detecting binding sites and pro-
teins. This study demonstrates practical strengths of protein language
models relative toMSAs inDNA-binding protein prediction. Therefore, we
believe that TransBind advances the state-of-the-art in this domain andwill
be considered a useful tool for predicting DNA-binding proteins and
residues.

This study can be extended in several directions. We utilized the
protein language model ProtTrans22 for feature generation. A more

recent and larger language model (ESM-2)48 for proteins. Aminobert20,
another transformer-like method, uses an end-to-end large-language
model to predict secondary and 3D structures from protein sequences.
As an immediate extension of this study, we will explore the perfor-
mance of these newly released language models in predicting DNA-
binding residues and proteins. In addition toDNA-binding proteins, the
proteins that bind RNA also play a vital role in various biological pro-
cesses, including pre-mRNA processing, post-transcriptional gene reg-
ulation, and RNA degradation34. There is a promising opportunity to
explore the applicability of TransBind in predicting RNA-binding
proteins. The existing benchmark datasets in this domain do not contain
orphan and rapidly evolving proteins for which generating MSA-based
features is not feasible. In such cases, TransBind, being an alignment-free
and sequence-alone method, holds promise for being more suitable
compared to MSA-based methods. We systematically demonstrated the
superiority of TransBind overmethods that rely on evolutionary features
for proteins with low homology information. However, due to the
unavailability of suitable datasets, we were unable to comprehensively
evaluate the performance of various methods under this specific model
condition. Therefore, compiling a benchmark dataset that specifically
accounts for orphan and fast-evolving proteins and conducting a
comparative study on this specific condition remains an important
research direction for future investigations.

The timing of this languagemodel-basedmethod seems appropriate as
languagemodels are receiving significant attention from the computational
proteomics community, which leads many to speculate on its potential as a
practicalway of generating useful features from the primary sequence alone.
We believe TransBind will continue to evolve with the availability of new
protein databases and language models, and in response to new scientific
findings—laying a firm foundation for alignment-free and sequence-only
prediction of DNA-binding proteins and residues.

Methods
The TransBind architecture
Thedifferent components of TransBind (as shown inFig. 1) are discussed in
subsequent sections.

Understanding global features with self attention
This component consists of generating global features for eachaminoacid in
a protein using the protein language model (ProtT5-XL-UniRef50). Here,
each amino acid in the protein sequence generates an attention score cor-
responding to the significance of relation to each other amino acid. As each
amino acid gathers information from all other residues with the help of
attention mechanism, we call this module as global feature extractor.

In the ProtT5-XL-UniRef50 architecture, the input protein sequences
are first passed through the large languagemodel (LLM) as shown in Fig. 1a,
which generates an embedding for each of the residues in the protein. For an
input protein sequenceX ¼ fx1; x2; . . . ; xNx

gwithNx amino acid residues,
the LLM generates a vector of dimension RNx ×Dx , where Dx = 1024. The
embedding is then manipulated by the self-attention layer to retrieve the
global features for each amino acid residue in a protein sequence, as shown
in Fig. 1b.

Table 11 | Running time comparison

Protein TransBind running time (s) PSSM feature generation time (s) Ratio (percentage)

Feature generation Inference Total time

PDNA 224 274 30 304 134,400 0.0013%

PDNA 316 374 58 428 189,600 0.0007%

PDNA 543 752 78 772 325,800 0.0005%

PDNA 41 78 20 98 24,600 0.0097%

Wepresent the running time of TransBind, includingboth the feature generation and inferencephases. Additionally, we provide the time required for PSSM feature generation and the ratio between the total
time taken by TransBind and the time needed for PSSM feature generation.
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To incorporate contextual information, the attention score αij between
amino acids pi and pj and the context vector ci for each amino acid pi are
computed as follows:

αij ¼
expðe>i WQW

>
K ejÞ

PNx
k¼1 expðe>i WQW

>
K ekÞ

The context vector for each amino acid pi is then given by:

ci ¼
XNx

j¼1

αijWVej

Here, WQ 2 RDx ×Dk , WK 2 RDx ×Dk , and WV 2 RDx ×Dv are the
query, key, and value weight matrices, respectively. The vectors ei and ej are
the embeddings of the amino acids pi and pj, respectively, each of dimension
Dx. The resulting attention score αij determines the influence of amino acid
pj on amino acid pi, enabling the construction of a context vector ci that
captures relevant information from the sequence.

Separation of amino acids instead of parallel processing
In this step, we separate the amino acids to process them individually by the
local feature extractor as shown in Fig. 1c. LetCbe thematrix containing the
context vectors of all amino acids in a protein sequence of length n:

C ¼

c1
c2

..

.

cn

0

BBBB@

1

CCCCA

whereC 2 Rn× d and ci 2 Rd for i=1, 2,…, n. Processing thematrixC as a
whole through the local feature extractor could have beenanoption, as done
in most token-level prediction studies49. However, since our approach
already captures the global context of each amino acid relative to other
residues through attention mechanisms, we can leverage this by processing
each aminoacid separately. This ensures that the local feature extractionand
prediction network attends to each amino acid individually, thus enhancing
the robustness of the learning process. This approach provides a more
detailed and focused analysis, ultimately improving the accuracy and
reliability of our predictions.

Local feature extraction using stacked inception V2 modules
Utilizing a local feature extractor to gather information from a close
neighborhood is a widely adopted approach in protein-related interaction
prediction tasks. Different methods employ various types of local feature
extractors. For instance, Visual19 uses a sliding window of length seven-
capturing features from three residues on either side of the central residue.
However, a distinctive aspect of TransBind is that it considers each indivi-
dual residue as an input to the local feature extractor. For each residue
C 2 Rd , the d-dimensional language model feature is used as the local
feature. Such approach allows us to implement an efficient weighted loss
training to handle the data imbalance issue of protein-nucleic acid inter-
action prediction.

We used an assembly of inception V2 modules in three stacked
layers to build the local feature extractor (Fig. 1d). The number of in-
ception modules was chosen with an ablation study, which is discussed
in the “Ablation study” section. For each amino acid pi in the
protein sequence, we apply a stacked inception v2 module to its context
vector ci. The inception V2 module operates on the embedding
dimension, extracting local features through multiple convolutional
operations.

The inception V2 module takes a context vector ci as input and pro-
duces local features F inceptionðciÞ as follows:

F inceptionðciÞ ¼

C1× 11 ðciÞ
C1× 12 ðciÞ

C3× 32 ðC1× 12 ðciÞÞ
C1× 13 ðciÞ

C5× 53 ðC1× 13 ðciÞÞ
P3× 3ðciÞ

C1× 14 ðP3× 3ðciÞÞ

2

666666666664

3

777777777775

Here, C1× 12 and C1× 13 are intermediate 1 × 1 convolutions used before
the 3 × 3 and 5 × 5 convolutions, respectively, to reduce the dimensionality.
Themax pooling operationP3× 3 is followed by a 1 × 1 convolution C1× 14 to
maintain the same dimensionality across all branches before concatenation.

Training with weighted loss distribution for tackling class
imbalance
In computational proteomics, datasets often exhibit a significant class
imbalance, where the number of positive samples are substantially lower
than the number of negative samples. This class-imbalance causes
machine learning models to underestimate the significance of the
minority class. As a result, ML models can often predict the negative
samples quite well due to the large amount of negative training samples,
but it fails to recognize positive samples, resulting in a relatively low
sensitivity score50. As shown in Table 12, theminority tomajority ratio is
around 15%. While there are many sampling techniques and methods
involving artificial data generation to address class imbalance, we did not
adopt those approaches due to potential drawbacks such as overfitting
and the introduction of synthetic artifacts that may not accurately
represent real data51,52. To address this issue, we use a weighted loss
function during training, which provides more penalty for incorrectly
classified instances of the minority class, compared to incorrect pre-
dictions of the majority class, as detailed in Algorithm 1. The weighted
class training scheme is shown in Fig. 1d′.

Given the training dataset D ¼ fðf i; yiÞgNi¼1, where f i 2 Rd is the
feature vector for the ith amino acid and yi∈ {0, 1} is its corresponding
classification label (assuming binary classification), we first compute the
frequency of each class as follows:

ck ¼
XN

i¼1

Iðyi ¼ kÞ for k 2 f0; 1g

Table 12 | Summary of datasets used for DNA and RNA binding residue predictions

Dataset PDNA 224 PDNA 316 PDNA 543 PDNA 41 DNA 573 DNA 129 RNA 495 RNA 117

Total number of residues 57,348 72,718 144,544 14,755 159,883 37,515 136,899 37,345

Positive (binding) residues 3778 5609 9549 734 14,479 2240 14,609 2031

Negative (non-binding) residues 134,995 53,570 67,109 14,021 145,404 35,275 122,290 35,314

Ratio (negative/positive) 14.2 12.0 14.2 19.1 10.0 15.6 8.40 17.24
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where ck denotes the count of class k, and Ið�Þ is the indicator function. We
then calculate the weight for each class as the inverse of their frequencies:

wk ¼
1
ck

for k 2 f0; 1g

We normalize the weights as follows:

~wk ¼
wkP1
j¼0wj

for k 2 f0; 1g

Finally, employing a weighted cross-entropy loss function to handle
the class imbalance,we implementweighted cross-entropy lossL as follows:

Lðy; ŷÞ ¼ �
X1

k¼0

~wkIðy ¼ kÞ logðŷkÞ

where ŷk is the predicted probability for class k.

Algorithm 1. Training with Weighted Loss Function
1: Input: Training dataset D, model M, learning rate η, number of

epochs E
2: Compute class counts ck ¼

P
ðx;yÞ2DIðy ¼ kÞ for k ∈ {0, 1}

3: Compute class weights wk ¼ 1
ck
for k ∈ {0, 1}

4: Normalize class weights ~wk ¼ wkP1

j¼0
wj

for k ∈ {0, 1}

5: Define weighted cross-entropy loss
6: functionWEIGHTED_CROSS_ENTROPY_LOSSy, y_pred
7: return�P1

k¼0 ~wkIðy ¼ kÞ logðy pred½k�Þ
8: end function
9: for epoch in 1 to E do
10: for (x, y) in D do
11: Forward pass: y_pred =M(x)
12: Compute loss: loss = weighted_cross_entropy_loss(y, y_

pred)
13: Backward pass and optimization:
14: loss.backward()
15: optimizer.step()
16: optimizer.zero_grad()
17: end for
18: end for

Classification module
After the local feature extraction, we pass the features for each amino acid
generated by the stacked inception module to a classification layer. This
layer consists of two dense neuron layers with 128 and 32 neurons. We use
the Rectified Linear Unit (ReLU) activation function53 for the classification
part followed by a dropout layer with a dropout value of 0.2.

From residue level prediction to protein level prediction. In protein-
level prediction tasks, such as prediction of the entire sequence
interaction14, subcellular location54, we need to aggregate the residue-level
predictions to make a classification at the sequence level. This process
involves combining the predictions for all residues in a given protein and
using this combined information for the final protein classification.

Let y = {y1, y2,…, yn} be the set of residue-level predictions for a protein
with n residues, where yi denotes the prediction for the ith residue. To
aggregate these predictions into a single protein-level prediction, we employ
a weighted pooling strategy. In this approach, each residue-level prediction
yi is assigned a weight wi that reflects relative importance. The aggregated
protein-level prediction ŷprotein is then computed as a weighted sumof these

predictions:

ŷprotein ¼
Xn

i¼1

wiyi where
Xn

i¼1

wi ¼ 1

Once the aggregated protein-level prediction ŷprotein is obtained, it can
be used for the final classification of the protein. Let C denote the classifi-
cation function. The final protein classification ĉprotein is given by:

ĉprotein ¼ CðŷproteinÞ

This approach allows us to leverage detailed residue-level information
to make accurate predictions at the protein level, enhancing the overall
performance of protein-level tasks.

Dataset
We used widely used benchmark datasets to evaluate the performance of
TransBind and other competing methods. Table 12 presents a summary of
these datasets.

Training and validation datasets
We used widely used benchmark datasets, PDNA-22455, PDNA-31656,
PDNA-54340, DNA-57323, and RNA-49523 to train and validate TransBind
for predicting DNA-protein binding residues.

These datasets were deposited in PDB before 2016. For a more recent
dataset on nucleic acid binding protein site prediction, we used the DNA-
573 and RNA-495 datasets. For DNA-binding protein prediction (i.e.,
protein-level prediction), we used the PDB-1075 dataset57 for training and
validation.

PDNA-224. The PDNA-224 dataset was assembled by ref. 55 which
consists of 224 protein sequences comprising 3778 DNA-binding resi-
dues and 53,570 non-DNA-binding residues.

PDNA-316. The PDNA-316 dataset was originally constructed by ref. 56,
which contains 316 protein sequences collected from PDB. There are
72,718 amino acid residues, of which 5609 residues areDNA-binding and
67,109 residues are non-DNA-binding.

PDNA-543. PDNA-543 was assembled by ref. 40 comprising 7186 pro-
tein sequences, collected from PDB before October 10, 2014. 543 non-
redundant protein sequences were identified using CD-HIT58, where no
two sequences had more than 30% sequence similarity. This dataset
contains 144,544 amino acid residues, 9549 of which are DNA-binding
and 134,995 of which are non DNA-binding.

DNA-573. This DNA-binding protein dataset, compiled and analyzed by
ref. 23, contains 573 non-redundant sequences and was collected from
BioLiP59 and augmented by transferring binding annotations from
similar proteins. Redundancy was minimized using CD-HIT to ensure
less than 30% sequence identity23.

RNA-495. This RNA-binding protein dataset, compiled and analyzed by
ref. 23, was collected from BioLiP and enhanced by transferring binding
annotations from similar proteins. A total of 495 non-redundant
sequences were identified using CD-HIT with a 30% sequence identity
threshold.

PDB-1075. For the DNA-binding protein prediction task, we use the
widely used PDB-1075 dataset which was constructed by ref. 57. This
dataset contains 525 DNA-binding protein and 550 non-DNA-binding
protein sequences.
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Test datasets
We assessed the performance of TransBind and other competing methods
onwidely used test sets for independent testing onunseen data.Weused the
PDNA-41 dataset forDNAbinding residue classifications and the PDB-186
dataset for DNA binding protein classifications.

PDNA-41. This is the test dataset corresponding to the training sets
PDNA-316, PDNA-543, and PDNA-224. This dataset was compiled by
ref. 40 that contains 41 independent amino acid sequences used as test
data for DNA binding residue classification task. This dataset contains
14,755 amino acid residues, of which 734 are DNA-binding and 14,021
are non DNA-binding residues. We note that no information regarding
the sequence similarity between the training datasets (e.g., PDNA-316,
PDNA-543, and PDNA-224) and PDNA-41 was reported in ref. 40.
Therefore, we performed a CD-HIT analysis on the PDNA-41 dataset
and the corresponding training datasets: PDNA-224, PDNA-316, and
PDNA-543. We identified 4 sequences (out of the 41 sequences) with
more than 30% sequence similarity with the training sets. Consequently,
we evaluated TransBind on the entire PDNA-41 dataset (to ensure a fair
comparison with prior studies that reported their results on the entire set
of 41 sequences) as well as on the 37 non-redundant sequences after
removing these four sequences.

DNA-129. This is the independent test dataset, containing 129 non-
redundant sequences, corresponding to the DNA-573 dataset. This
dataset was compiled and previously analyzed by ref. 23. Redundancy
between training and test dataset was removed using 30% sequence
similarity threshold.

RNA-117. This is the independent test set corresponding to the training
dataset RNA-495, containing 117 non-redundant sequences23. It has
≤30% sequence similarity with the training set.

PDB-186. This is the corresponding test dataset for training set PDB-
1075. This is a protein (sequence) level prediction dataset. This dataset60

contains 93 DNA-binding sequences and 93 non-DNA binding protein
sequences, and is widely used for the DNA-binding protein predic-
tion task.

Performance evaluation
We compared our proposed method with existing competing methods.
We used six evaluation metrics, that are frequently used to assess the
performance of various methods, namely accuracy, sensitivity, specifi-
city, AUC (Area Under the Curve), AUPR (Area Under Precision-
Recall), and MCC (Matthews Correlation Coefficient) score. The
reported results on different performance metrics for the existing
methods were obtained from their respective publications, unless
otherwise specified:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

Sensitivity ¼ TP
TP þ FN

Specificity ¼ TN
TN þ FP

MCC score ¼ TP ×TN � FP × FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p

Note that accuracy is not a meaningful evaluation metric for an
unbalanced data set. MCC is a more appropriate performance metric, as

predicting DNA binding residues/proteins is an unbalanced learning
problem61,62.

Statistics and reproducibility
To ensure the reliability and robustness of the results, we conducted thor-
ough statistical analyses. Specifically, all training and testing datasets were
processed to eliminate potential overlaps. Using CD-HIT with a 30%
sequence similarity threshold, we verified that no sequences in the training
and testing datasets shared similarity beyond this threshold. Number of
sequences in each dataset, training sample size, and the test datasets are
described in details in the “Dataset” section. While reporting the validation
performances, we used ten-fold cross validation and reported the average
performance. To promote reproducibility, we provide the complete
implementation, including the training and evaluation pipelines, as an
open-source codebase.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The datasets underlying this article are available at https://zenodo.org/
records/10215073.Numerical source data for Figs. 2a, b and3a canbe found
in Supplementary Data 1.

Code availability
TransBind is freely available as an open source project at Zenodo63. A server
side application is available at https://trans-bind-web-server-frontend.
vercel.app/.
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