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Domain identification is a critical problem in spatially resolved transcriptomics data analysis, which
aims to identify distinct spatial domains within a tissue that maintain both spatial continuity and
expression consistency. The degree of coupling between expression data and spatial information in
different datasets often varies significantly. Some regions have intact and clear boundaries, while
others exhibit blurred boundarieswith high intra-domain expression similarity. However, most domain
identification methods do not adequately integrate expression and spatial information to flexibly
identify different types of domains. To address these issues, we introduce Spot2vector, a
computational framework that leverages a graph-enhanced autoencoder integrating zero-inflated
negative binomial distribution modeling, combining both graph convolutional networks and graph
attention networks to extract the latent embeddings of spots. Spot2vector encodes and integrates
spatial and expression information, enabling effective identification of domains with diverse spatial
patterns across spatially resolved transcriptomics data generated by different platforms. The
decoders enable us to decipher the distribution and generation mechanisms of data while improving
expression quality through denoising. Extensive validation and analyses demonstrate that
Spot2vector excels in enhancing domain identification accuracy, effectively reducing data
dimensionality, improving expression recovery and denoising, and precisely capturing spatial gene
expression patterns.

Understanding the spatial distribution of cells within tissues is crucial for
elucidating their biological functions and characterizing their interaction
patterns, as the relative positions of cells significantly impact cell behavior
and tissue characteristics1–3. Recent advancements in spatially resolved
transcriptomics (ST), such as 10X Visium4, Stereo-seq5, Slide-seq6, and
MERFISH7, have revolutionized our ability to measure gene expression
within the spatial context of tissue architecture8,9. These cutting-edge
technologies overcome the limitations of single-cell transcriptomics (that is,
single-cell RNA sequencing, scRNA-seq)10 by providing extra spatial
information, offering unprecedented insights into tissue spatial hetero-
geneity and cellular communication11,12. They help reveal complex tissue
structures and functions13,14, enable the tracking of cell fate and

development5,15, and significantly advance our understanding of complex
biological systems16,17.

Identifying spatial domains is one of the most important topics in
ST research. It involves deciphering distinct spatially continuous regions
in tissues with similar expression patterns3. Existing domain identifica-
tion methods can be broadly classified into two categories based on the
utilization of spatial information: non-spatial and spatial clustering
methods. Traditional clustering methods developed for scRNA-seq data,
such as K-means18, and those implemented in the Scanpy toolkit based
on Louvain or Leiden algorithms19–21, can also be applied to ST data.
However, these methods rely only on gene expression data and do not
incorporate spatial information, thus the identified domains will lack
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spatial continuity. In contrast, spatial clustering methods specifically
designed for ST data aim to effectively integrate spatial information with
gene expression data, providing a deeper understanding of the spatial
architecture and its biological implications. For example, SpaGCN
designs a graph convolutional network to integrates gene expression,
spatial location and histology information, and uses an unsupervised
iterative clustering algorithm to identify spatial domains2. STAGATE
employs a graph attention auto-encoder network to learns low-
dimensional latent embeddings of spots by adaptively aggregating
information from its spatial neighbors3. Similarly, DeepST utilizes a
combination of a graph neural network autoencoder and a denoising
autoencoder to jointly produce a latent representation of augmented ST
data1. GraphST integrates graph neural networks with augmentation-
based self-supervised contrastive learning strategy to obtain spot
embeddings22. Besides, stLearn uses a spatial graph-based neural network
to correct for technical noise and performs unsupervised clustering for
ST data23.

While current approaches have proven useful in identifying spatial
domains, they still lack efficiency in addressing several critical challenges. A
key limitation lies in the inflexibility of processing and integrating expres-
sion and spatial information, whose relative importance in the domain
identification task varies across different ST datasets. For instance, in tissues
such as the human brain24, regions exhibit clear boundaries and distinct
layers, making spatial continuitymore important for domain identification.
In contrast, in tissues such as tumor-invaded breast25, domain boundaries
are less delineated, making the similarity of expression information more
crucial. This variability necessitates a more flexible strategy for handling
different domain annotations anddata platforms.Additionally, the inherent
noise in ST data is compounded not only by limited sequencing depth but
also by the delicate experimental steps required to preserve spatial
locations16,26, further complicating the extraction ofmeaningful signals from
technical artifacts. It is essential not only to denoise the data by restoring
expected expression levels and estimating dropout rates, but also to accu-
rately reconstruct the spatial expressionpatternsof genes.Overcoming these
obstacles is vital for revealing the underlying biological significance within
ST data, and helping to interpret the intricate underlying biological
mechanisms within tissues.

To address the aforementioned challenges, we proposed a compu-
tational method, Spot2vector, to extract low-dimensional embeddings of
spots using a zero-inflated negative binomial (ZINB)-based graph-
enhanced autoencoder model. Spot2vector integrates both Graph Con-
volutional Networks (GCN) and Graph Attention Networks (GAT)
within its encoder framework, which enables efficient aggregation of
neighborhood information and adaptive adjustment of graph edge
weights, as well as ensures computational efficiency. Spot2vector encodes
spatial and expression information separately, and adjusts their relative
importance through a tunable parameter λ to accommodate different
types of domains. This approach allows for a flexible preservation of both
types of crucial information across various datasets and domain anno-
tations, thereby extracting effective low-dimensional representations of
spots according to users’ prior knowledge. The decoder framework of
Spot2vector is designed to output the parameters for the ZINB dis-
tribution, and characterize the ST data by optimizing the maximum
likelihood objective. This strategy not only deepens our understanding of
the generation mechanisms underlying ST data, but also contributes to
denoising the expression data to improve its quality.

We have demonstrated through sufficient experiments that Spot2-
vector facilitates superior analysis of ST data generated by different plat-
forms.This includes improvingdomain identificationperformance tobetter
elucidate spatial heterogeneity, integrating spatial and expression infor-
mation more flexibly to better accommodate diverse domain labels and
datasets, denoising gene expression to better portray their spatial patterns,
and identifying subdomains to better reveal finer biological details. Our
studies suggest that Spot2vector is a promising tool to comprehensively
analyze the ST data.

Results
Overview of Spot2vector
Spot2vector leverages a ZINB-based graph-enhanced autoencodermodel to
extract low-dimensional representations of ST data, effectively integrating
spatial and expression information (Fig. 1). Specifically, Spot2vector first
performs basic data preprocessing steps, including normalization and the
screening of highly variable genes (HVGs) (Methods). It then constructs a
spatial graph GS and an expression graph GE , based on the relative spatial
coordinates C 2RS�2 of spots and the gene expression matrix X 2 RS�G,
respectively (Fig. 1a, Methods), where S is the number of spots andG is the
number of genes. Thenetwork architecture of Spot2vector utilizesGCNand
GATas encoders,with three-layermultilayer perceptron (MLP) as decoders
(Fig. 1b). Spot2vector includes two independent graph encoders, one
combining the expression matrix with spatial proximity information, and
the other with gene expression similarity for encoding. Through these two
graph encoders, Spot2vector generates two complementary spot embed-
dings, ZS and ZE , which are then linearly combined using an adjustable
parameter λ (referred to as λtrain during training) to produce the integrated
spot low-dimensional representations Z. Three MLP decoders generate
three parameter matrices- M, Θ, and Π -from the low-dimensional repre-
sentation of spots, corresponding to the expectation, dispersion, and zero-
inflated probability of the ZINB distribution, respectively (Methods). This
strategy enables us to interpret the distribution and generationmechanisms
of ST data, and denoise the expression data to enhance its quality. Notably,
the linear combination parameter λ can be further adjusted during the
inference process (referred to as λinfer). Setting λinfer to 0 means the model
will primarily focus on spatial proximity information, while setting it to 1
emphasizes expression similarity information. (Fig. 1c). This flexibility
allows for tailored integration of the two types of information in the final
low-dimensional representation of spots. The output of Spot2vector can be
utilized for various downstream analyses, including domain identification
tasks that prioritize spatial continuity, cell type clustering that emphasizes
expression consistency, gene expression recovery, and subdomain divi-
sion (Fig. 1d).

Spot2vector demonstrates superior domain identification
performance
To assess the efficacy of Spot2vector in domain identification, we applied it
to several ST datasets with annotated domain labels. These datasets were
generated using various platforms with differing resolutions, including 10X
Visium, Stereo-seq, andMERFISH, enabling a comprehensive evaluation of
method performance (Supplementary Note 1, Supplementary Table S1).
The spot embeddings derived from Spot2vector were employed for unsu-
pervised spatial clustering using themclust algorithm27 (Methods).We then
assessed the alignment of the predicted domain labels with the annotated
labels using adjusted rand index (ARI) and normalizedmutual information
(NMI) metrics. Spot2vector was benchmarked against six state-of-the-art
domain identification methods: Scanpy19, Stlearn23, SpaGCN2, GraphST22,
DeepST1 and STAGATE3 (Supplementary Note 2).

Across all tested ST datasets, Spot2vector consistently demonstrated
superior domain identification performance (Fig. 2a, Supplementary
Figs. S1, S2). The human dorsolateral prefrontal cortex (DLPFC) dataset24 is
recognized as a standard benchmark for evaluating domain identification
methods, consisting of 12 sections. The domain annotations were primarily
derived based on histological organization and cytoarchitecture, empha-
sizing spatial continuity. Spot2vector achieved the highest domain identi-
fication accuracy on this dataset (Fig. 2b, Supplementary Figs. S3-S5). For
instance, Spot2vector successfully identified the spatial hierarchical struc-
ture of human brain in section 151672, while other methods disrupted the
spatial continuity of domains to varying degrees, particularly in “Layer_3”
(Fig. 2c). Additionally, Spot2vector offers several tunable parameters,
including the integration strength between expression and spatial infor-
mation during the training phase (λtrain), and the average degree of nodes in
the spatial and expression graphs (kGS and kGE). Our results demonstrate
that Spot2vector consistently outperforms STAGATE in domain
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Fig. 1 | Overview of the Spot2vectormethod. a Spot2vector first constructs a spatial
graph and an expression graph based on the relative spatial location of spots and the
gene expression matrix, respectively. b Spot2vector employs ZINB-based graph-
enhanced autoencoder to extract low-dimensional representations of spots, using
GCN and GAT as encoders and three-layer MLP as decoders. c The linear

combination parameter can be further adjusted during the inference process: setting
it to 0 focuses on spatial information, while setting it to 1 focuses on expression
information. d The output of Spot2vector can be used for various downstream
analyses.
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(a)

(c)

(d)

(b)

Domain annota�on (151672)

Spot2vector (ARI=0.75)

Scanpy (ARI=0.37) Stlearn (ARI=0.43) SpaGCN (ARI=0.33)

DeepST (ARI=0.53) GraphST (ARI=0.32) STAGATE (ARI=0.57)

Performance on all ST datasets

Fig. 2 | Spot2vector demonstrates superior domain identification performance.
a Performance comparison of seven domain identification methods (Spot2vector,
DeepST, SpaGCN, Scanpy, Stlearn, STAGATE, GraphST) tested on six ST datasets,
using ARI as the evaluation metric. b ARI scores (x-axis) of seven methods (y-axis)
tested on 12 DLPFC sections. Each box plot ranges from the first and third quartiles
with the median as the vertical line, while whiskers represent 1.5 times the inter-
quartile range from the lower and upper bounds of the box. Data beyond the end of

thewhiskers are plotted individually. c Spatial plots of domain annotation, and seven
methods on the section 151676 of DLPFC dataset. Each method colors the spot with
their predictive domain labels. d Spatial plots of domain annotation, and seven
methods on the Mouse Brain dataset. Three regional boundaries are framed by
dashed lines: yellow (Fiber_tract), black (Hypothalamus_2), white
(Hypothalamus_1).
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identification performance across a wide range of parameter combinations,
even when the tunable parameters of STAGATE are varied (Supplemen-
tary Fig. S6).

Additionally, Spot2vector outperformed all other methods (ARI =
0.70) in domain identification on the Mouse Brain 10X Visium dataset
(Fig. 2d). Among the 15 predicted categories, Spot2vector accurately
identified a majority of brain structures with various shapes, including
hooked areas (e.g., Fiber_tract), flat areas (e.g., Hypothalamus_2), and
block-like areas (e.g., Hypothalamus_1). However, other methods failed to
effectively identify these three areas. STAGATE, which primarily relies on
spatial information, mostly generates block-like structures. In contrast,
Scanpy, which overly depends on expression information, produces blurred
boundaries and lacks clear spatial patterns.

To sum up, Spot2vector demonstrates superior performance in
domain identification across all benchmark tests and is capable of preser-
ving fine-grained spatial hierarchical structures, proving its robustness and
versatility for better ST data analysis.

Spot2vector adapts to different annotations for accurate domain
and cell type clustering
Theremay bemultiple spot annotations for the same ST dataset, with some
emphasizing spatial continuity within domains and others focusing on
expression similarity within classes. Consequently, spatial clustering tasks
require careful handling to flexibly adapt to different annotations.

The Allen Mouse Brain Aging (AMBA)MERFISH dataset generated a
cell atlas of mouse brain at single-cell resolution28. This high-resolution ST
dataset includes both cell type annotations (Fig. 3a) and spatial domain
annotations (Fig. 3b). We applied seven methods, including Spot2vector, to
this dataset and assessed their predictive performance across different
annotations. Our analysis reveals that when the ground truth labels are based
on intra-class expression similarity, methods, such as SpaGCN, Stlearn,
DeepST and Scanpy demonstrate superior performance, whereas GraphST
and STAGATEare less effective (Fig. 3a, Supplementary Fig. S7). Conversely,
when the ground truth labels favor intra-class spatial continuity, the per-
formance trends are reversed (Fig. 3b, Supplementary Fig. S8). This indicates
that existing methods typically excel only under a specific labeling paradigm
and lack the flexibility to accommodate alternative labeling schemes. In
contrast, Spot2vector exhibits strong adaptability by adjusting the value of
parameter λinfer for different annotations (Supplementary Fig. S9). This
allows it to derive low-dimensional embeddings that fully integrate spatial
and expression information, thereby achieving outstanding clustering per-
formance for both annotations (Fig. 3c, Supplementary Fig. S10).

Additionally, we observed that one spatial domain typically contains
various cell types, while the same cell types can be distributed acrossmultiple
spatial domains (Supplementary Fig. S11). Accurately deciphering the spa-
tial distribution of cell types and the cellular composition of spatial domains
is essential for understanding tissue organization. The results presented in
Fig. 3d and Fig. 3e highlight Spot2vector’s exceptional performance in both
tasks. The correlation between cell type distribution within the domains
predicted by Spot2vector and the true domains strongly matches the cor-
relation observed among the true domains themselves. Spot2vector also
achieves remarkable accuracy in predicting the spatial distribution of cell
types within these domains. In contrast, other methods, such as STAGATE,
GraphST, and DeepST, fail to perform well across both tasks (Supplemen-
tary Figs. S12-S14). For instance, neuron cells predominantly localize within
three cortical layer regions (V, VI, II/III), which exhibit similar cell type
distributions (Supplementary Fig. S11). Spot2vector accurately predicts all
threedomains,with regions 6, 2, and5 corresponding to cortical layersV,VI,
and II/III, respectively. Spot2vector also precisely identifies neuron cells
(cluster 4 in Fig. 3a, d and e) and their spatial domain distribution. In
contrast, other methods either fail to distinguish neuron cells and their
domain distributions (e.g., STAGATE, Supplementary Fig. S12), or struggle
to identify cortical layers and their cell type distributions (e.g., DeepST,
Supplementary Fig. S14). These results highlight Spot2vector’s superiority in
accurately predicting cell type distribution and domain composition.

Spot2vector enables flexible integration of spatial and expres-
sion information
To further illustrate Spot2vector’s ability to flexibly integrate spatial and
expression information, we applied Spot2vector to the Mouse Organo-
genesis Spatiotemporal Transcriptomic Atlas (MOSTA) dataset generated
using Stereo-seq technology5 (Fig. 4a). This dataset comprises 12 domains
corresponding to various mouse organs, annotated with cluster-specific
marker genes and validated by domain expertise. Comparison of domain
identification results shows that Spot2vector uniquely identified several
critical regions, such as Cavity (cluster 2) and Neural crest (cluster 10),
demonstrating superior identification performance (Fig. 4b, Supplementary
Fig. S15). After model training is complete, the parameter λinfer can be
further adjusted to flexibly integrate expression and spatial information
(Methods). As expected, when the parameter λinfer was set to 0, spatial
information predominated, resulting in more continuous predicted
domains and exhibiting higher spatial consistency. Conversely, when λinfer
was set to 1, expression information became dominant, leading to predicted
domains that prioritized intra-domain expression similarity. As λinfer was
gradually adjusted from 0 to 1, the identified domains progressively trans-
cend rigid boundaries, showcasing more flexible clustering outcomes.
Notably, when λinfer was set to 0.9, themodel achieved an optimal balance in
spatial clustering (Fig. 4c).

Moreover, Spot2vector infers the parameters of the ZINBdistribution
for expression data within its decoder network. Therefore, it can interpret
the original expression data based on mathematical models, thereby
achieving effective data denoising (Methods). Through differential
expression (DE) analysis, we identified several spatially variable genes
(SVGs) across four regions and compared their expression patterns before
and after Spot2vector denoising. We found that these genes showed more
significant spatial expression patterns after Spot2vector denoising, and
corresponded precisely to their respective regions (Fig. 4d, Supplementary
Fig. S16). For genes with dense raw expression, such as gene Hbb-y,
Spot2vector corrected the original expression to produce biologically
meaningful patterns. For genes with sparse raw expression, such as Actc1,
Spot2vector effectively filled in missing dropout values while recovering
count values, significantly enhancing the clarity of gene expressionpattern.
These results demonstrate that Spot2vector has highly effective denoising
capabilities, enhancing the clarity and biological relevance of the identified
SVGs within each domain.

Spot2vector identifies biologically meaningful spatial sub-
domains in breast cancer
To further evaluate the capabilities of Spot2vector in domain identification,
we applied it to the humanbreast cancer 10XVisiumdataset and conducted
detailed analyses of the intricate subdomains and biomarkers discovered.
This dataset was manually annotated into four categories based on H&E-
stained images: Ductal Carcinoma In Situ/Lobular Carcinoma In Situ
(DCIS/LCIS), Invasive Ductal Carcinoma (IDC), healthy tissue, and tumor
edge, resulting in a total of 20 distinct domains29 (Fig. 5a).

Consistent with previous results, Spot2vector outperformed all eval-
uated domain identification methods in terms of identification accuracy
(Fig. 5b, Supplementary Fig. S17). Further analysis of Spot2vector’s domain
identifications revealed that the domain originally labeled as “IDC_2” was
segmented into subdomains 3 and 10 (Fig. 5c). To elucidate the biological
significance of these subdomains, we conducted DE analysis, which suc-
cessfully identified several marker genes for each subdomain, highlighting
their distinct biological characteristics (Fig. 5d). Specifically, the Invasive
Core Subtype (subdomain 10) was marked by genes associated with high
invasiveness andproliferation, suggesting amore aggressive phenotypewith
enhanced metastatic potential. For example,MUC19 contributes to cancer
cell survival and drug resistance when overexpressed, thereby promoting
tumor progression30,31. LTO1 is associated with breast cancer by influencing
the immunemicroenvironment. Higher expression of LTO1 correlates with
more aggressive tumor behavior and poorer clinical outcomes32. Similarly,
ABCC11, a transporter linked to drug resistance in various cancers,
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Fig. 3 | Spot2vector adapts to different annotation paradigms for accurate
domain and cell type clustering on the AMBA dataset. a, b The spatial clustering
performance of various methods, using the (a) cell type annotation and (b) domain
annotation as ground truth labels, respectively. The spatial plots are colored by the
predicted labels of various methods, while the UMAP plots are colored by the
annotation labels. c The NMI scores (y-axis) of seven methods (x-axis) under cell
type (CT) and domain annotations. dThe correlationmatrix of cell type distribution

under true domain labels and Spot2vector predicted domain labels, as well as the
correlationmatrix of domain distribution under true cell type labels and Spot2vector
predicted cell type labels. The color bar goes from blue (negative correlation) to red
(positive correlation), corresponding to the magnitude of the correlation coefficient.
e Same as d, showing the correlation matrices between true domains and between
true cell types.
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Fig. 4 | Spot2vector enables flexible integration of spatial and expression infor-
mation on the MOSTA dataset. a Domain annotation of the MOSTA Stereo-seq
dataset (E9.5). b Spatial clustering results from five methods (SpaGCN, DeepST,
GraphST, STAGATE and Spot2vector), colored by the predicted labels of corre-
sponding methods. c The left-to-right panels illustrate progressive changes in

Spot2vector predictions as the parameter λinfer is tuned from0 (blue arrowheads) to 1
(red arrowheads). d Four mouse embryonic regions (Brain, Cavity, Heart, Neural
crest), and the spatial expression patterns of eight corresponding SVGs (two per
region) before and after Spot2vector denoising.
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Fig. 5 | Spot2vector identifies biologically meaningful spatial subdomains on the
humanbreast cancer dataset. aDomain annotation of the human breast cancer 10X
Visium dataset. b Spatial clustering results of five methods. c From top to bottom:
reference histological images; domains 3 and 10 predicted by Spot2vector super-
imposed on histology; high-contrast enhancement of histological features within the
predicted domains. d,e: (d) The raw and (e) Spot2vector-denoised gene expression
differences of marker genes between subdomains 3 (n = 110) and 10 (n = 349). A
two-sidedWilcoxon Rank Sum test is used to test the difference. fTumor and tumor
edge annotations of the dataset. g,h: (g) The raw and (h) Spot2vector-denoised gene

expression differences of marker genes between the tumor (n = 2490) and tumor
edge (n = 823). A two-sidedWilcoxonRank Sum test is used to test the difference. All
box plots range from the first and third quartiles with the median as the horizontal
line, while whiskers represent 1.5 times the interquartile range from the lower and
upper bounds of the box. i Spatial plots of marker genes, using their raw expression
(upper panels) and Spot2vector-denoised expression (lower panels), respectively.
j Survival analyses of four genes. A two-sided Log-rank test is used to compare the
differences in survival curves between groups. HR stands for Hazard Ratio.

https://doi.org/10.1038/s42003-025-07965-5 Article

Communications Biology |           (2025) 8:556 8

www.nature.com/commsbio


particularly breast cancer33–35, was found to be elevated in more aggressive
subtypes, correlating with lower disease-free survival rates36,37 (Supple-
mentary Fig. S18). In contrast, the Immune-Frontier Subtype (subdomain
3)was characterizedby immune-relatedgenes, indicating an active immune
microenvironment at the tumor boundary. For instance, IGLC3 is closely
associated with antibody production38, high expression of IGLC3 at tumor
boundaries may be implicated in immune evasion mechanisms, where
tumor cells alter the activity of surrounding immune cells to evade detection
anddestruction39,40(Supplementary Fig. S18).CCDC80, anotherkeymarker,
regulates cell migration and adhesion41, and is strongly associated with
immune cell infiltration in the tumor microenvironment42,43. SFRP4 is
known for its involvement in the Wnt signaling pathway, reduced expres-
sionofSFRP4 can lead to increasedWnt signaling activity, promoting tumor
growth and metastasis44,45. Overall, these marker genes revealed the sub-
domains’ distinct biological roles in tumor microenvironment, further
highlighting Spot2vector’s effectiveness in identifying and differentiating
complex domains.

We also compared the differential expression of these marker genes in
the raw and Spot2vector-denoised expression data between two sub-
domains, and demonstrated more significant differences in the denoised
data (Fig. 5e, Supplementary Fig. S18). This not only demonstrate Spot2-
vector’s ability to reconstruct spatial gene expression patterns, but also
underscore the potential biological significance of these marker genes.
Furthermore, given that the ST data is originally annotated with both
tumors (DCIS/LCIS and IDC) and discontinuous tumor edges (Fig. 5f), we
further verified the differential expression of identified marker genes
between tumor and tumor edge regions. As illustrated in Fig. 5g and Fig. 5h,
SFRP4 and CCDC80 are highly expressed at the tumor edge, whileMUC19
and LTO1 are highly expressed at the tumor region. It is noteworthy that
Spot2vector denoising enhances the spatial expression patterns of marker
genes, and clearly delineate the structures of the tumor and its boundary
(Fig. 5i). Further survival analysis also confirmed that high expression of
tumor region marker genes is associated with improved patient outcomes,
while high levels of tumor marker genes are linked to poorer prognosis
(Fig. 5j). These results highlight the reasonableness of the biological inter-
pretation of Spot2vector’s subdomains, and demonstrates its capability in
identifying fine structure of spatial domains.

Spot2vector enhances spatial gene expression patterns through
effective denoising
The incorporation of the ZINBmodule in Spot2vector has proven effective
in recovering biologically meaningful gene expression patterns. To further
evaluate its denoising performance, we conducted a systematic comparison
using the human breast cancer dataset, evaluating it against three widely
used denoising methods � STAGATE3, scVI46, and MAGIC47. First, we
performed DE analysis between tumor and healthy regions (Fig. 5f) based
on the raw expression data, and identified the top 200 DE genes from each
region, yielding a total of 400marker genes.We then quantified the changes
in -log(p-value) for these genes before and after applying each of the four
denoising methods. While all methods enhanced the statistical significance
of marker genes to some extent (Supplementary Fig. S19), Spot2vector
achieved superior denoising performance compared to STAGATE (232 vs.
168), scVI (340 vs. 60), and MAGIC (288 vs. 112), as demonstrated
in Fig. 6a.

To further quantitatively evaluate the enhancement in gene expression
pattern clarity after denoising, we first need to extract the gene expression
patterns after denoising.Wedeveloped a heuristic approach that established
gene-specific thresholds based on the distribution of expression values to
extract spatial expression patterns (Methods, Fig. 6b). For example, while
theMUC19 gene displayed no obvious spatial pattern in the raw expression
data, all four denoising methods revealed more distinct spatial expression
patterns characterized by continuous high-expression regions aligned with
tumor areas and low-expression regions corresponding to healthy areas.
This suggests that denoising effectively restored biologically relevant spatial
expression features.

To quantify and compare the gene expression pattern enhancement
effects after denoising using different methods, we calculated the Ripley’s K
and L curves for each gene (Methods). Taking MUC19 as an example,
Spot2vector consistently achieved the highest Ripley’s K and L scores across
multiple radius (Fig. 6c), reflecting a robust high-expression pattern within
tumor regions after denoising, which aligns with previously reported find-
ings in the literature 30,31. Additionally, we appliedRipley’sK andL functions
to all 400marker genes and derived themaximumvalues fromeach curve as
representative Ripley’s K and L scores. As shown in Fig. 6d, scVI is com-
parable to the original expression, while MAGIC, STAGATE, and Spot2-
vector scores are relatively higher, with Spot2vector being the highest. This
indicates that Spot2vector is able to recover the clearest spatial gene
expression pattern.

In summary, Spot2vector effectively removes noise and restores spatial
gene expression patterns, outperforming other methods in enhancing
marker gene significance and revealing biologically meaningful spatial
features.

Discussion
The emergence of spatially resolved transcriptomics technology has created
opportunities for exploring the spatial structure of tissues. However, the
inherent complexity and heterogeneity of ST datasets present significant
analytical challenges. The spatial continuity and expression similarity vary
significantly across different domains in ST datasets, necessitating domain
identification approaches capable of adapting and adjusting to these var-
iations. In light of this, we introduce Spot2vector, a computational method
that addresses these challenges by integrating spatial and expression
information. Spot2vector employs a combination of the GCN and GAT
models to encode ST data. It uses an MLP to decode the parameters of the
ZINB distribution, providing a mathematical interpretation of observed
gene expression.

One of the key strengths of Spot2vector lies in its ability to balance
spatial continuity and expression similarity, which are often conflicting
objectives in spatial clustering. By incorporating tunable parameters,
Spot2vector allows researchers to tailor the analysis to specific dataset
characteristics and research questions, thereby achieving optimal domain
identification. This flexibility is crucial for accurately interpreting complex
tissues, such as the human brain and cancerous tissues, where spatial
domains often exhibit intricate patterns of heterogeneity.

The denoising capability of Spot2vector further enhances its utility in
ST data analysis. By reconstructing gene expression data while mitigating
the effects of dropout, Spot2vector produces more biologically meaningful
representations of spatial gene expression patterns. This not only improves
clustering performance but also facilitates the identification of spatially
variable genes, providing deeper insights into the underlying biological
processes.

Spot2vector employs L1 regularization in its objective function, applied
to the dispersion parameters of the ZINB distribution. This promotes
sparsity, encouraging some parameters to shrink to zero, which is particu-
larly beneficial for identifying geneswith significant variability across spatial
domains. Comparative analyses demonstrate that L1 regularization con-
sistently achieves superior domain identification accuracy relative to both
L2,1 and L2 regularization terms (Supplementary Fig. S20). Furthermore,
Spot2vector strategically integrates the complementary strengths of GCN
and GAT architectures. While GCN effectively captures local graph struc-
tures through its fixed aggregation mechanism, it may be limited in mod-
eling complex and non-linear relationships. In contrast, GAT employs
attention mechanisms to dynamically weight neighboring nodes, enabling
the capture of nuanced relationships at increased computational cost. By
combiningGCNandGAT, Spot2vector achieves a balance: GCNprovides a
robust foundation for learning local structures, while GAT enhances the
model’s ability to capture complex relationships. Experiments on six
benchmark ST datasets show that the GCN+GAT combination outper-
forms configurations using only GCN or GAT in domain identification
accuracy. Additionally, the GCN+GAT framework maintains
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computational efficiency, with running times and memory usage scaling
linearly with the number of spots and genes (Supplementary Figs. 21, 22).

Despite Spot2vector’s superiority in domain identification tasks
compared to existing methods, there remains room for improvement.
Currently, the selection of the hyperparameter λinfer depends on the user’s
prior knowledge and specific demands. Future work could focus on
developing methods to automatically determine this parameter, or even
explore dynamic weighting mechanisms, such as attention-based or train-
able weight matrices, to adapt to dataset variability. Additionally, incor-
porating multi-omics information or including multi-level structures could
enable more effective and comprehensive domain identification.

Conclusion
Spot2vector is a powerful tool for advancing ST research, offering superior
performance in domain identification and data denoising. Its innovative

integration of GCN, GAT, and ZINB models enables a flexible and robust
analysis of STdata, accommodating diverse biological contexts and research
objectives. By denoising expression data and revealing spatial patterns,
Spot2vector facilitates a deeper understanding of complex tissue archi-
tectures and the biological mechanisms underlying spatial heterogeneity.
This framework holds significant promise for enhancing our understanding
of tissue organization, and disease pathology, paving the way for future
discoveries in spatial transcriptomics and its applications in biomedical
research.

Methods
Data preprocessing
The Spot2vector method takes ST data X;Cð Þ as input, where X 2 RS�G

represents the gene expression matrix, and C 2 RS�2 represents the spots
location, S is the number of spots and G is the number of genes. Several
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Fig. 6 | Spot2vector enhances spatial gene expression patterns through effective
denoising on the human breast cancer dataset. a Scatterplots comparing the sig-
nificance (-log(p-value)) of the marker genes after denoising using Spot2vector (x-
axis) against raw expression, STAGATE, scVI, and MAGIC (y-axis). Each dot
represents a gene (n = 400). b The top panels show the raw and denoised expression
distributions of theMUC19 gene using four methods. The middle panels display the
corresponding high-expression regions extracted using gene-specific thresholds,

and the bottom panels show the gene expression values. c Ripley’s K and L curves of
MUC19 gene across raw data and data denoised by four methods. d Boxplots
compare themaximumRipley’s K and L scores for 400marker genes across raw data
and denoised datasets. All box plots range from the first and third quartiles with the
median as the horizontal line, while whiskers represent 1.5 times the interquartile
range from the lower and upper bounds of the box. Data beyond the end of whiskers
are plotted individually.
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preprocessing steps are applied to the rawSTdata to ensure data quality and
emphasize biologically relevant features. Specifically, the dataset was filtered
to retain only those genes with more than 100 total counts across all spots,
ensuring that only sufficiently expressed genes were included. Normal-
ization was performed by scaling the total counts to 10,000 per spot, fol-
lowed by a logarithmic transformation to stabilize the variance across
different expression levels. Subsequently, HVGs were identified using the
Seurat v3 method48, selecting the top 8,000 most variable genes by default.
This step reduces the dataset’s dimensionality and focuses on genes that are
most likely to capture the underlying biological variance.

Spatial and expression graph construction
To construct the spatial proximity graph GS and the expression similarity
graphGE , we utilized the spatial coordinatesC 2 RS�2 and gene expression
profiles X 2 RS�G, respectively. In both graphs, nodes correspond to
individual spots,while edges represent either spatial proximityor expression
similarity between spots. The spatial graph GS is constructed using the
radius-based method, implemented by the “radius_neighbors_graph”
function from the “scikit-learn” Python library. Specifically, two spots are
connected if their Euclidean distance is within a predefined radius r. This
approach captures the local spatial relationships between spots, ensuring
that only physically proximate spots are connected in GS. In addition, the
expression graph GE is constructed using the k-nearest neighbors’method,
implemented by the “kneighbors_graph” function from the “scikit-learn”
Python library. Specifically, each spot is connected to its k nearest neighbors
based on expression similarity. This approach captures the functional
relationships between spots, ensuring that spots with similar gene expres-
sion profiles are connected in GE . The selection of r and k involves a trade-
off between computational efficiency and the preservation of local structure.
Empirically,we set theseparameters such that the averagenodedegree in the
resulting graphs does not exceed 8 3,23. This guideline ensures that the graphs
are sufficiently informative while avoiding excessive computational over-
head. The specific values of r and k used for each dataset in our study are
provided in Supplementary Table S2. To validate the robustness of Spot2-
vector under different values of r and k, we conducted extensive tests by
varying r and k across a range of values (from 3 to 8). The results demon-
strate that Spot2vector’s performance remains stable under different para-
meter settings (Supplementary Fig. S6).

ZINB-based graph-enhanced autoencoder model
The network architecture of Spot2vector consists of twomain components:
the graph encoders and the MLP decoders. The graph encoder in Spot2-
vector is designed as a combination of the graph convolutional network
(GCN) and the graph attention transformer (GAT).

Graph encoder. The GCN layers leverages the local neighborhood
information in the graph to update node features. This process involves
aggregating features from neighboring nodes to learn more robust
representations. The standard GCN layer is mathematically defined as
follows49:

Z lþ1ð Þ ¼ σ eD�1
2eAeD�1

2Z lð ÞW lð Þ
� �

where Z lð Þ 2 RS�Dl is the input node feature matrix at layer l, Dl is the
dimensionof the feature at layer l, andZ 0ð Þ ¼ X. eA ¼ Aþ I is the adjacency
matrix A with added self-connections (identity matrix I), and eD is the
diagonal degree matrix of eA, where eDii ¼

P
j
eAij: W lð Þ is the trainable

weight matrix at layer l, and σ is the ELU (Exponential Linear Unit)
activation function to ensure stable training and faster learning.

The node features and graph structures output by GCN are input into
GAT to further enhances the graph representation by applying attention
mechanisms that allow for the adaptive weighting of edges. This attention
mechanism assigns different importance to each neighbor, enabling the
model to focus onmore relevant features and improving the expressiveness

of the learned embeddings. The update rule for GAT layer is defined as
follows50:

Z lþ1ð Þ
i ¼ σ

X
j2N ið Þ

α lð Þ
ij Z

lð Þ
j W

lð Þ

0
@

1
A

where Z lþ1ð Þ
i is the updated feature representation of node i at layer l þ 1;

andN ið Þ represents the set of neighbors of node i. The attention coefficient
α lð Þ
ij is computed as:

α lð Þ
ij ¼

exp LeakyReLU aT Z lð Þ
i W

lð Þ k Z lð Þ
j W

lð Þ
h i� �� �

P
k2N ið Þ exp LeakyReLU aT Z lð Þ

i W
lð Þ k Z lð Þ

k W
lð Þ

h i� �� �
where a is the learnable attention vector, k denotes the concatenation
operation, W lð Þ is the trainable weight matrix at layer l, and LeakyReLU
(Leaky Rectified Linear Unit) is the activation function used to introduce
non-linearity.

Dual embeddings. Two separate graph encoders, ES and EE , have the
same network architecture and both receive the gene expressionmatrixX
as input (initial node features), but are trained on different graphsGS and
GE . The dual encoder approach in Spot2vector generates two com-
plementary embeddings ZS and ZE by leveraging information from
spatial or expression neighbors. The embeddings derived from two
encoders are then linearly combined using a tunable parameter λ (default
as 0.5 during training, referred to as λtrain):

Z ¼ λZE þ 1� λð ÞZS

Here,λ canbe further adjustedduring the inferenceprocess (referred to
as λinfer) withfixed embeddingsZS andZE .When λinfer equals 0, it generates
embeddings entirely based on spatial neighbor information; when λinfer
equals 1, it generates embeddings entirely based on expression neighbor
information. This allows Spot2vecotr to adjust the low-dimensional
embeddings according to different needs, ensuring the retention of critical
information specific to various datasets.

Note that λtrain and λinfer serve distinct roles in our framework. λtrain
is fixed during training to ensure a balanced integration of expression
and spatial information, while λinfer is adjustable during inference
to adapt to specific dataset characteristics and annotation priorities
(Supplementary Note 3, Supplementary Table S2). This distinction
ensures that the model is trained consistently while allowing flexibility in
inference to optimize performance based on the dataset’s unique
requirements.

MLP decoder. The decoder component of Spot2vector consists of a
three-layer MLP framework designed to output parameters for the ZINB
distribution. From the low-dimensional representations obtained
through the encoder, we used three MLP decoders (Dμ, Dθ and Dπ) to
generate matrices M ¼ ðμijÞS�G, Θ ¼ ðθijÞS�G and Π ¼ ðπijÞS�G, repre-
senting the expectation, dispersion and zero-inflated probability of the
ZINB distribution, respectively51.

The probability distribution function of the negative binomial (NB)
distribution is expressed in terms of its mean M and dispersionΘ:

NB XjM;Θð Þ ¼ Γ X þΘð Þ
X!Γ Θð Þ

Θ

ΘþM

� �Θ M
ΘþM

� �X

The ZINB distribution incorporates zero-inflation probability para-
meters Π to account for dropout event in gene expression data:

ZINB XjM;Θ;Πð Þ ¼ Πδ0 Xð Þ þ 1� Πð ÞNB Xð Þ
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where δ0 xð Þ is the Dirac delta function, which is equal to 1 if x ¼ 0, and 0
otherwise.

The parametersM,Θ, andΠ are inferred through theMLPdecoders as
follows:

M ¼ softplus ðDμ Zð ÞÞ

Θ ¼ exp Dθ Zð Þ� �

Π ¼ sigmoid Dπ Zð Þ� �
Optimization
The optimization objective of Spot2vector involvesminimizing the negative
log-likelihood of the ZINB distribution given the ST data X:

minM;Θ;Π � log ZINB XjM;Θ;Πð Þð Þ þ αjjΘjj1
where the L1 regularization term jjΘjj1 is added to encourage sparsity in the
dispersion parameters Θ.

Expression recovery
The matrix M represents the expected counts of expression data. This
adjustment removes noise and recovers spatial expression patterns of genes.
The denoised expression data helps distinguish true zeros, which occur
when certain genes are biologically inactive in specific cell types (e.g., a gene
not expressed in a non-relevant cell type), from false zeros that arise due to
random variation or technical noise (e.g., low-expressed genes not detected
by sequencing technology). Compared to direct denoising by fitting the
originalmatrix, thismethod can provide stronger capabilities for expression
data recovery, and it can also explain the origins of the noise through a
mathematical model.

Calculation of Ripley’s K and L functions
Ripley’s KðrÞ and LðrÞ are used to analyze spatial point distributions for
clustering and uniformity. KðrÞ reflects the point distribution pattern by
calculating the number of point pairs within a radius r. LðrÞ is a smooth
transformation of KðrÞ, typically computed as L rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K rð Þ=π

p
� r,

removing the theoretical effect of uniformdistribution.However, in ST data
such as 10X Visium, the spatial spots are arranged in a regular hexagonal
grid, with a fixed minimum spacing dmin. This regularity violates the
assumption of random spatial distributions underlying the classical KðrÞ
and LðrÞ calculations, necessitating an adjustment to account for the hex-
agonal arrangement.

To accommodate this structural constraint and ensure accurate spatial
analysis, a normalization method is introduced. Given a minimum point
distance of dmin, the theoretical number of point pairs within a radius r is
computed as:

NðrÞ ¼ πr2

d2min

Then, the normalization factor is calculated as:

Fnorm rð Þ ¼
ffiffiffiffiffiffiffiffiffi
N rð Þ
π

r

Finally, LðrÞ is adjusted to:

LðrÞ ¼
ffiffiffiffiffiffiffiffiffi
K rð Þ
π

r
� Fnorm rð Þ

This normalization method effectively removes the influence of the
regular hexagonal spacing, providing a more accurate description of the
actual spatial structure in ST data.

Adaptive thresholding of gene expression
To identify the expression threshold for separating background and signal,
we utilize the density distribution of gene expression values, estimated via
Gaussian Kernel Density Estimation (KDE). First, the peaks in the
expression density curve are located using a peak detection algorithm. If two
or more peaks are identified, the minimum value (trough) between the first
two peaks is determined, and its corresponding expression value is used as
the threshold, under the assumption that the first peak represents back-
ground and the second and subsequent peaks represent signal. If no distinct
bimodal distribution is detected, the global median of the expression values
is used as a fallback threshold.

This peak-based threshold selection algorithm adapts to scale differ-
ences introduced by various denoising algorithms applied to gene expres-
sion data, ensuring robust and consistent separation of background and
signals.

Implementation
The Spot2vector framework was implemented using PyTorch. The model
was trained using the Adam optimizer with a learning rate of 1× 10�4.
Based on empirical validation, the embedding dimension was defaulted to
32, which not only ensures optimal performance but also maintains com-
putational efficiency. This specific dimension adequately captures essential
features without incurring excessive resource consumption. To further
understand the impact of embedding dimensionality, we evaluated the
robustness of Spot2vector’s performance using the MouseBrain dataset
(Supplementary Fig. S23). The results indicate that Spot2vector maintains
robust domain identification performance when the embedding dimen-
sionality varieswithin a reasonable range. The parameter λtrain was set to 0.5
to ensure balanced learning from both spatial and expression information.
This equalweighting allows themodel to effectively integrate bothdata types
during training.

Unsupervised clustering
Afterobtaining the embeddings of spots,we canuse unsupervised clustering
algorithms to identify the domain classifications, and compare them with
the true domain labels. In this study, we use the “mclust” algorithm to
perform spatial clustering27, which was developed based on Gaussian
Mixture Model (GMM) to infer the latent structure of data. We also con-
ducted additional experiments using three alternative clustering methods:
Louvain, Leiden, and Bayesian Gaussian Mixture (BGMM). Our compre-
hensive comparison revealed that the domain identification results were
relatively stable across different clustering methods for most datasets, and
mclust consistently demonstrated superior clustering performance. (Sup-
plementary Fig. S24). Since the clustering algorithm is an independent
downstream analysis step separate from the Spot2vector model, we have
integrated Louvain and Leiden into the downstream analysis module of
Spot2vector to provide users with more flexible options. By default, mclust
remains the recommended clustering method due to its proven perfor-
mance and robustness.

Statistics and reproducibility
The scripts related to this study are available at https://github.com/amssljc/
Spot2vector/tree/main/tutorials. The parameters of the tools utilized have
not been specifically optimized. Users are encouraged to download all raw
data (https://github.com/amssljc/Spot2vector/tree/main/data) and can
freely modify parameters according to the provided scripts.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All datasets analyzed in this study were publicly available (Supplementary
Note 1). The human DLPFC datasets were downloaded from the source
study at https://github.com/LieberInstitute/spatialLIBD. The raw 10X
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Visium Human Breast cancer dataset can be downloaded from https://
www.10xgenomics.com/datasets/human-breast-cancer-block-a-section-1-
1-standard-1-1-0, and its annotation was downloaded from https://
huggingface.co/datasets/han-shu/st_datasets/tree/main. For the adult
mouse brain 10X Visium dataset, a pre-processed version with domain
labels was downloaded from https://squidpy.readthedocs.io/en/stable/api/
squidpy.datasets.visium_fluo_adata_crop.html#. The AMBA MERFISH
data was downloaded from https://gene.ai.tencent.com/SpatialOmics/
dataset?datasetID=184. The MOSTA data was downloaded from https://
ftp.cngb.org/pub/SciRAID/stomics/STDS0000058/stomics/. More details
about the datasets are provided in Supplementary Table S1. The source data
of the main figures are at Supplementary Data 1.

Code availability
The Spot2vector software is available at https://github.com/amssljc/
Spot2vector.
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