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Hippocampal systems for event encoding
and sequencing during ongoing narrative
comprehension
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Narrative comprehension requires encoding individual events and sequencing them into coherent
structures. This study demonstrates how the hippocampus contributes to these processes during
ongoing narrative processing. Participants viewed a temporally scrambled movie and subsequently
recounted its inferred original story during functional magnetic resonance imaging (fMRI) scans.
Content encodingandevent sequencingabilitieswere assessedbycomparing semantic similarity and
temporal order between movie annotations and recall. Functional connectivity between the
hippocampus and ventromedial prefrontal cortex (vmPFC) predicted sequencing ability during
moments when past and present information are integrated, identified through pre-defined narrative
structures and data-driven language models. Conversely, hippocampus-posterior medial cortex
(PMC) connectivity predicted content encoding abilities following event boundaries. These findings
reveal two distinct hippocampus-centered memory systems in narrative processing: the
hippocampus-PMC system for event encoding and the hippocampus-vmPFC system for their
integration into coherent narratives.

Natural experiences unfold as interconnected events, each containing
organized sensory, semantic, and social information. Understanding such
narratives requires encoding detailed information from temporally discrete
events while inferring their sequential relationships through temporal and
causal connections1–6. To construct coherent narrative representations in
real time, the brain needs to integrate each new event with previously
encoded context, analogous to solving an evolving puzzle where each piece
contributes to an emerging sequential picture.

Neuroimaging studies using naturalistic stimuli, such as movies and
verbal stories, have revealed the involvement of the hippocampus and default
mode network (DMN) in encoding narrative events, particularly at event
boundaries7–11. Neural state dynamics in the posterior medial cortex (PMC)
represent the event structure of narratives and show coupling with hippo-
campal activity following boundaries7,12,13. The PMC exhibits response pat-
terns to each event during movie viewing that closely resemble those during
subsequent recall, suggesting its role in capturing narrative content shared
across memory encoding and retrieval. Furthermore, hippocampal activity
following event boundaries correlates with subsequent event memory14,15.

Beyond encoding individual events, narrative comprehension requires
the integration of events separated in time into coherent representations.
The hippocampus16,17 and medial prefrontal cortex (mPFC)18,19 are known

to support these memory integration processes20–22. Lesions to the
hippocampus-mPFC system impair the ability to integrate information
scattered across time and multiple episodes16,19,23. Importantly, the hippo-
campus and mPFC interact dynamically to assess whether current events
align with or diverge from existing schemas20,21. Reduced hippocampus-
mPFC synchronization may facilitate integration of schema-congruent
information with prior memories, while increased synchronization may
prioritize encoding of novel or incongruent events24–27.

Recent computational studies have proposed optimal strategies for when
memory encoding and sequencing should occur during ongoing processing
of incoming stimuli3,25,28. Neural network models trained to predict future
states suggest that memory encoding occurs selectively at event boundaries to
capture complete event representations28. Additionally, when current events
require additional contextual information from past experiences to resolve
their temporal or causal relationships, the memory system dynamically
sequences themwith relevant prior events to construct a coherent schema28,29.
These computational principles align with recent fMRI studies showing that
semantically related events trigger reactivation of past event representations in
the hippocampus, facilitating integration of past and present information30–32.
These findings indicate two computationally efficient processes for con-
structing memories with predictable event sequences: encoding complete
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events at boundaries and sequencing them by reactivating related past events
when additional context is needed to resolve uncertainty.

In this study, we investigated how the human brain leverages these dis-
tinct memory processes during ongoing narrative comprehension. Specifically,
we examined how individual events are encoded and organized into coherent
narratives through connections with accumulated context. We hypothesized
that two distinct hippocampus-centered memory systems support key aspects
of narrative processing: the hippocampus-PMC system encodes event content
at boundaries, while the hippocampus-mPFC system sequences events by
evaluating their congruency with ongoing narrative context.

To test these hypotheses, we conducted an fMRI experiment where
participants viewed a temporally scrambled movie and later recounted the
story in its inferred original sequence. Using topicmodeling33,34, we assessed
participants’ narrative comprehension through free recall, measuring both
content and temporal ordermemory.We thendevelopedpredictivemodels
of content encoding and event sequencing abilities based on hippocampal
functional connectivity (FC) with DMN regions, particularly the PMC and
vmPFC. Lastly, we employed a pre-trained large languagemodel (LLM)35 to
identify critical moments when event sequencing likely occurs based on
narrative context. The LLM revealed periods of high narrative coherence
associated with hippocampus-vmPFC interactions during memory
sequencing. This novel data-driven approach demonstrates how LLMs can
illuminate dynamic memory processes during naturalistic experiences of
narratives without relying on experimentally manipulated narrative struc-
ture. Our findings reveal how human memory systems dynamically con-
struct coherent narratives from temporally fragmented information during
ongoing processing.

Results
Event encoding and sequencing during ongoing narrative
comprehension
During fMRI scans, participants viewed a temporally scrambled movie and
subsequently recalled the story in its original chronological sequence

(N ¼ 65). This temporal scrambling required them to actively infer the
original narrative structure5. For successful story reconstruction, partici-
pants needed to both encode event content and determine temporal rela-
tionships between events. Previous studies suggest that encoding of
individual events occurs optimally at event boundaries, where complete
representations of current events can be capturedwithminimal interference
from adjacent events28,36. Supporting this boundary-specific encoding, prior
work has shown selective hippocampal responses at event boundaries7,15.
Similarly, our study revealed elevated hippocampal activity following
boundaries, enabling us to definemoments of event encoding (4 s, from4 to
7 s after boundaries, Supplementary Fig. 1a, b).

Beyond encoding individual events, constructing coherent narratives
requires sequencing current events with relevant past information. The
timing of this integration process varied according to the original temporal
order of events. When current events preceded previously viewed events,
their temporal relationships emerged toward the event’s end (e.g., sequen-
cing events 2 and 3 in Fig. 1). However, when current events followed past
events, these relationships became apparent at the event’s beginning (e.g.,
sequencing events 3 and 4 in Fig. 1). Based on these patterns, we identified
expected sequencing moments (4 s at the beginning or end of each corre-
sponding event) for event integration in the scrambled movie (Fig. 1; see
Supplementary Fig. 1a for details).

To independently examine content encoding and event
sequencing during narrative comprehension, we developed quanti-
tative measures of each process using topic modeling. This approach
embedded the semantic content of movie annotations and partici-
pants’ recalls in a common space33,34 (Fig. 2a), generating a movie-
recall similarity matrix that captured semantic correspondences
between the original narrative and each recall33. From this matrix, we
derived two independent measures of narrative memory: content
scores and ordering scores (Fig. 2b). Content scores quantified
semantic information retained from the original narratives, regard-
less of sequence12,32,33, while ordering scores measured participants’

Fig. 1 | Experimental design and memory processes in narrative reconstruction.
Participants viewed a scrambled movie (middle) and later recounted the story in its
inferred original sequence (bottom). We proposed two distinct memory processes
essential for narrative comprehension: encoding individual event content (green)
and sequencing events (purple). Event sequencing was hypothesized to occur at

moments where participants could link current events with previously viewed
content (dotted circles), while content encoding was expected to follow each event
boundary (dotted lines). The figure shows five event segments for illustration; the
complete narrative contained seventeen segments. SeeMethods and Supplementary
Fig. 1 for detailed scrambling procedures and sequencing moment specifications.
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ability to reconstruct the chronological sequence of the original story
through rank correlation of matched indices in the similarity matrix.
These ordering scores reflect participants’ ability to accurately
determine event sequences by assessing how each event fits within
the evolving narrative context. The independence of these measures
was confirmed by their lack of significant correlation (Fig. 2c,
r ¼ 0:173; p ¼ 0:166), indicating that they capture distinct aspects of
narrative comprehension.

Hippocampo-cortical FC predicts event encoding and sequen-
cing abilities
To examine the neural basis of individuals’ event encoding and sequencing
abilities in functional brain networks, we developed connectome-based
models predicting memory performance from FC patterns37–39. Previous
studies have shown the involvement of the hippocampus and mPFC in
memory sequencing20–23, and the hippocampus and PMC in post-boundary
memory encoding7,14,15,28. Based on these findings, we hypothesized that
hippocampus-vmPFC connectivity would predict ordering scores during
sequencingmoments,whilehippocampus-PMCconnectivitywouldpredict
content scores during post-event boundary periods. To test these hypoth-
eses, we constructed a hippocampo-cortical FC model using the hippo-
campus as a seed and compared its predictive performance to a cortico-

cortical FC model excluding the hippocampus. We evaluated these models
across three time periods: 1) expected sequencing moments when current
and past events were integrated (4 s, Supplementary Fig. 1a), 2) post-event
boundary moments, identified by peak hippocampal activity following
event boundaries (4 s, from 4 to 7 s after boundaries, Supplementary
Fig. 1a, b, and 3) all movie time points for comparison.

Although the hippocampo-cortical FC model included far fewer
initial edges than the cortico-cortical FC model (200 vs. 19,900), a much
higher proportion of its edges were significantly correlated with memory
performance during training (~10 vs. 4%, all ps < 0:001), indicating the
robust behavioral relevance of hippocampal connections. The
hippocampo-cortical FC model successfully predicted both memory
measures: using sequencing moments, it showed significant predictive
performance for ordering scores, (Fig. 3a, cross-validated
r ¼ 0:314; p ¼ 0:023, one-tailed for this and all subsequent predictive
modeling analyses), while using post-event boundary moments, it
showed significant predictive performance for content scores (Fig. 3a,
Post-event boundary moments: cross-validated r ¼ 0:299; p ¼ 0:034;
All time points: cross-validated r ¼ 0:247; p ¼ 0:067). In contrast, the
cortico-cortical FC model did not yield significant prediction perfor-
mance for either memory score (Fig. 3a), even when the number of
edges was matched to the hippocampal model (Supplementary Fig. 3a).

Fig. 2 | Assessment of content and sequence memory in ongoing narrative
comprehension. a Topic modeling embedded movie annotations and participant
recalls in a common topic space. Left panel: topic vectors of the movie (top) and
sample recalls from four participants (bottom, s1–s4). Right panel: movie-recall
similarity matrices computed from moment-by-moment cosine similarity between
movie and recall topic vectors. The diagonal pattern emerges when narrative content
is recalled in the correct sequence. b Analysis of two memory metrics from a movie-
recall similarity matrix. Content scores quantified semantic information retained
from the movie, regardless of sequence, based on similarity between movie and recall

content distributions. Ordering scores measured temporal sequence accuracy using
rank correlation between movie and recall event orders. c Correlation between
ordering and content scores. Each circle represents a participant. High ordering
scores produced clear diagonal patterns in the movie-recall similarity matrix (top
right). Some participants showed low content scores but high ordering scores, indi-
cating accurate temporal ordering despite partial recall, but no participants showed
high content scores with low ordering scores. Error bars indicate ± one standard error
per participant across scores, calculated from 50 topic model iterations with different
random seeds. See the Methods and Supplementary Fig. 2 for details.
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These findings support our hypothesis about distinct roles of the hip-
pocampus in narrative memory: integrating past and present events for
sequence reconstruction and encoding event content at boundaries
(Fig. 3a). The results remained consistent across multiple cortical par-
cellations with varying numbers of ROIs, confirming their robustness
(Supplementary Fig. 4).

To further evaluate the impact of the hippocampus on narrative
memory prediction, we first analyzed how the number of ROIs included in
the model affects performance. We hypothesized that if the hippocampus-
centered system is essential, incorporating additional irrelevant cortical
ROIs would reduce performance, potentially due to overfitting or under-
fitting. Indeed, models including the hippocampus showed significantly
decreased predictive performance withmore cortical ROIs (Supplementary
Fig. 6, ordering score: r ¼ �0:921; p < 0:001; content score:
r ¼ �0:902; p < 0:001), highlighting the importance of functionally rele-
vant edges for accurate prediction. In contrast, cortico-cortical FC models
without the hippocampus consistently underperformed in predicting both
memory scores, regardless of the number of ROIs (Supplementary Fig. 6, all
ps < 0:001). To validate these findings, we compared the prediction per-
formance of FC models using different seed regions. The hippocampus-
centered FC models outperformed most models based on other cortical
regions in predicting both memory scores (Supplementary Fig. 7, all
ps < 0:05). Notably, the hippocampus-based FCmodel achieved the highest
accuracy in predicting ordering scores, providing further evidence for its
critical role in integrating narrative information over time.

Next, to identify critical hippocampal functional connections for pre-
dicting narrative memory, we examined the consistently selected edges of
the hippocampo-cortical FC model across cross-validation folds40,41 and
cortical parcellations. The model revealed two key connections: the FC
between the hippocampus and vmPFC significantly contributed to pre-
dicting ordering scores during sequencing moments, while the FC between
the hippocampus andPMCwas crucial for predicting content scores during
post-event boundary moments (Fig. 3b, see Supplementary Fig. 3b for an
extended view). Statistical analysis confirmed the specificity of these

connections. The hippocampus-vmPFC edge was selected exclusively for
ordering score prediction (100% of CV folds) and not for content score
prediction (0%; χ2 1;N ¼ 65ð Þ ¼ 130:0; p < 0:001). Conversely, the
hippocampus-PMC edge was predominantly selected for content score
prediction (87.6% of CV folds), and not for ordering score prediction (0%;
χ2 1;N ¼ 65ð Þ ¼ 101:5; p < 0:001). These selective contributions remained
consistent across different cortical parcellations (Supplementary Fig. 5),
supporting distinct roles of hippocampus-vmPFC connections in event
sequencing and hippocampus-PMC connections in content encoding.

Finally, we observed distinct patterns in the relationships between FC
and each memory score. Hippocampus-vmPFC connectivity negatively
correlatedwithordering scores during sequencingmoments (Fig. 3c top left,
r ¼ �0:369; p ¼ 0:002), while hippocampus-PMC connectivity positively
correlatedwith content scores duringpost-event boundaries (Fig. 3c bottom
right, r ¼ 0:258; p ¼ 0:037). This functional decoupling between the hip-
pocampus and vmPFC in participants with high ordering scores aligns with
previous studies showing enhanced hippocampus-vmPFC interactions
during encoding of schema-incongruent information24–27. In our task,
constructing accurate narrative sequences requires recognizing relation-
ships with existing event schemas rather than encoding novel information.
Thus, higher ordering scores may reflect successful integration of current
events into previously structured schemas through hippocampus-vmPFC
desynchronization, rather than treating themas novel, schema-incongruent
events. In contrast, the positive correlations between hippocampus-PMC
connectivity and content scores suggest that enhanced hippocampus-PMC
coupling supports event encoding at boundaries7,14,15,28. Supporting the
specificity of hippocampal-cortical systems for each memory process,
hippocampus-vmPFC FC showed no correlation with content scores
(Fig. 3c; r ¼ 0:036; p ¼ 0:77), nor did hippocampus-PMC FC with
ordering scores (Fig. 3c, r ¼ 0:029; p ¼ 0:812). Statistical comparison
using Steiger’s Z-test42 further revealed stronger hippocampus-vmPFC FC
correlations with ordering than content scores (zð62Þ ¼ 2:614; p ¼ 0:008),
while hippocampus-PMC FC correlations showed no significant differ-
ence (zð62Þ ¼ 1:436; p ¼ 0:15).

Fig. 3 | Predictive modeling of content and ordering scores using functional
connectivity patterns. a Hippocampo-cortical FC models (blue) successfully pre-
dicted bothmemory scores, whereas cortical FCmodels excluding the hippocampus
(black) did not. The model predicted ordering scores during sequencing moments
and content scores during post-event boundaries, with marginal prediction when
using all time points. Statistical significance was determined by comparing actual
model performance against a null distribution generated by randomly permuting
narrative memory scores across participants (n ¼ 1000, one-tailed). Results from a
control analysis matching the number of edges between the hippocampo-cortical
and cortico-cortical FC models are shown in Supplementary Fig. 3a. b FC edges
consistently selected for predicting eachmemory score were identified. For ordering

score prediction, the FC between the hippocampus and vmPFCwas reliably selected
(top), while for content score prediction, the FC between the hippocampus andPMC
was consistently selected (bottom). Additional selected ROIs are presented in
Supplementary Fig. 3b. c Hippocampus-vmPFC connectivity negatively correlated
with ordering scores during sequencing moments (top left), while hippocampus-
PMC connectivity positively correlated with content scores during post-event
boundaries (bottom right). Neither hippocampus-PMCFC correlated with ordering
scores (top right), nor did hippocampus-vmPFC FC correlate with content scores
(bottom left), supporting distinct hippocampal-cortical systems for sequence and
content memory.
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LLM reveal sequencingmoments in narrativememory formation
While our previous analysis identified sequencing moments using pre-
defined narrative structures, recent research suggests that the human brain
reactivates relatedmemories based onperceived narrative coherence during
ongoing comprehension30,31. Approaches based solely on pre-defined nar-
rative structures may fail to capture a full range of contextually relevant
moments of coherenceduring naturally unfolding narrative experiences. To
address this, we utilized pre-trained LLMs to identify sequencing moments
in a data-driven manner.

Using bidirectional encoder representations from transformers
(BERT), we quantified the narrative coherence of each moment within
the movie. We first fed detailed movie annotations into BERT as input
and computed next sentence prediction (NSP) likelihoods35 —the like-
lihood that one sentence logically and temporally follows another—
between each 2-second segment and its preceding segments (Fig. 4a).
Each segment’s highest NSP likelihood among its preceding segments
(Fig. 4b) served as its narrative coherence measure, indicating its degree
of connection with preceding segments. To isolate narrative connections
from semantic effects, we regressed out semantic similarity using the
universal sentence encoder (USE)5,43. The resulting LLM-generated
narrative coherence index significantly correlated with human-rated
moment-by-moment narrative comprehension from our previous study5

(Fig. 4c, r ¼ 0:259; p ¼ 0:016), while raw NSP likelihood and semantic
similarity alone showed no correlation with the reported narrative
comprehension levels (Fig. 4d, NSP likelihood: r ¼ 0:187; p ¼ 0:06;
semantic similarity: r ¼ 0:08; p ¼ 0:212). These findings suggest that
LLM-generated coherence effectively captures the cognitive dynamics of
narrative processing, highlighting the importance of sequential coher-
ence in ongoing comprehension. Since high narrative understanding
moments reported by humans involve integrating past and present
events based on their causal relationships5, we identified high-coherence
moments generated by the LLM as likely moments of event sequencing
within narrative context (LLM-generated sequencing moments, Fig. 4c).
For a more detailed comparison of the temporal characteristics of LLM-

generated and pre-defined sequencing moments, see Supplemen-
tary Fig. 8a.

Our hippocampo-cortical predictive model based on the LLM-
generated sequencing moments demonstrated significant prediction accu-
racy for ordering scores, comparable to the original model based on pre-
defined sequencing pairs (64 time points from 16 pairs with 4 s each) from
the scrambled narrative structure (Fig. 5a, model using top 50 moments,
r ¼ 0:305; p ¼ 0:034).However,models using eithermoments of high raw
NSP likelihood, or moments of high semantic similarity alone, failed to
predict ordering scores (NSP likelihood: r ¼ �0:026; p ¼ 0:51; semantic
similarity: r ¼ 0:036; p ¼ 0:42). Notably, model performance declined as
the number of sequencing moments used for training is increased, indi-
cating that event sequencing likely occurs primarily at specific moments of
high narrative coherence (Fig. 5a). Consistent with previous results,
hippocampus-vmPFC connectivity remained crucial for predicting order-
ing scores (Fig. 5b, c, r ¼ �0:301; p ¼ 0:014), highlighting its role in
integrating previously acquired information.

Our model, based on LLM-generated sequencing moments, both
validated and extended the findings from the model based on pre-defined
sequencing moments. While pre-defined sequencing moments exhibited
higher narrative coherence than other movie segments
(tð608Þ ¼ 2:91; p ¼ 0:003, Supplementary Fig. 8b), the LLM-based
approach identified additional high coherence moments not captured by
the pre-defined structure. With ~15% overlap between the two sets of
moments (Supplementary Fig. 8b), these findings demonstrate how LLMs
can reveal previously unidentified moments critical for event sequencing.
These converging results across independent methods further validate the
role of hippocampus-vmPFC connectivity in event sequencing.

The hippocampus-vmPFC FC during LLM-generated sequencing
moments showed selective prediction for predicting ordering scores, being
selected in every cross-validation fold (100%) for ordering scores and never
selected (0%) for content scores across models with varying numbers of
moments (all ps < 0:001, Supplementary Fig. 8c), consistent with our
findings using pre-defined narrative structures. While hippocampus-

Fig. 4 | Identification of event sequencing moments using LLMs based on
moment-by-moment narrative coherence. a An LLM pre-trained on the NSP task
assessed logical and causal relationships between narrative segments by measuring
the likelihood that one sentence follows another. b Initial pairwise NSP likelihoods
showed bias toward adjacent segments due to shared semantics. After controlling for
semantic similarities, we identified narrative relationships between distant events,
enabling detection of sequencing moments (red box) c LLM-derived narrative

coherence correlated significantly with group-level narrative comprehension during
movie viewing, as previously reported by participants5. High-coherence moments
(red dots, top 50) were identified as likely sequencing moments. d LLM-generated
narrative coherence showed robust correlation with human-rated narrative com-
prehension, while NSP likelihood without semantic control and semantic similarity
alone showed no correlation. Null distributions, generated from phase-randomized
time series, are indicated in gray.
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vmPFC connectivity significantly correlated with ordering but not with
content scores (Fig. 5c, ordering score: r ¼ �0:301; p ¼ 0:014; content
score: r ¼ �0:104; p ¼ 0:409), Steiger’s Z-test revealed no significant dif-
ferences between these correlations. The results remained robust across
different cortical parcellations, including both prediction performance and
the importanceof vmPFCconnections (SupplementaryFigs. 4 and5).These
findings highlight the significance of narrative coherence in sequencing
related events and the value of our data-driven approach for identifying
critical event integration moments during ongoing comprehension.

Discussion
This study demonstrated how distinct hippocampus and DMN memory
systems support content encoding and temporal sequencing during ongo-
ing narrative comprehension. Using natural language processing techni-
ques, we developed quantitative measures that selectively captured the
processes of encoding event content and reconstructing their temporal
sequence fromparticipants’ free recall data. Our findings revealed that these
distinct memory processes rely on separate hippocampus-centered systems
operating at specific moments during narrative processing. The
hippocampus-vmPFC FC during expected event sequencing moments
predicted participants’ ability to reconstruct the temporal order of narra-
tives, while hippocampus-PMC connectivity at post-event boundaries
predicted content memory. Furthermore, our LLM-based approach iden-
tified periods of high narrative coherence where hippocampus-vmPFC
interactions support event sequencing.

Using FC-based predictive modeling37–39 across different time points
and brain regions, we identified key neural features that predict memory
performance during narrative processing. These findings align with and
extend previous lesion19,23, electrophysiology10,27, and neuroimaging
studies7,13,30,31. First, recent work has demonstrated that the hippocampus
and DMN regions are engaged during narrative processing, particularly at
event boundaries12,13 and during encounters with semantically related past
events30,31. In line with these findings, our study found that hippocampus-
PMC connectivity at event boundaries was positively correlated with par-
ticipants’ ability to encode detailed narrative content. These findings not
only align with recent human neuroimaging studies showing content
encoding around event boundaries but also deepen our understanding of
individual differences in narrative memory encoding. Second, the negative
correlation between hippocampus-vmPFC connectivity and narrative
sequencing ability (Fig. 5c) extends previous human and animal studies
implicating these regions in memory sequencing. For instance, hippo-
campal or mPFC damage disrupted memory sequencing of odor experi-
ences in rodents19,23, and hippocampal-mPFC desynchronization has been
observed when animals explored contextually coherent objects while

discriminating between familiar and novel events27. Human neuroimaging
studies have also reported that the FC between the hippocampus and
vmPFC was strengthened when processing novel information inconsistent
with prior event schemas24,26. This suggests that elevated hippocampus-
vmPFC connectivity during predicted sequencing moments in our study
may reflect difficulty integrating current events into existing narrative
schemas, resulting in lower ordering scores.

Despite its crucial importance, demonstrating memory sequencing
during ongoing narrative processing presents two key challenges: limited
sequencing demands in typical linear narratives, and the difficulty of
identifying precise moments when sequencing processes occur during
continuous experiences. To address these challenges, we experimentally
induced enhanced demands for event sequencing5 by presenting a tem-
porally scrambled movie. This scrambled narrative structure enabled us
to infer likely moments when current events could be linked to prior ones
as part of a coherent narrative. Our results demonstrate that neural
signals centered on the hippocampus and vmPFC at these moments are
predictive of participants’ ability to reconstruct narrative structure
through event sequencing. While natural experiences rarely contain such
salient temporal discontinuities, our LLM-based approach provides a
data-driven method for identifying critical moments of narrative inte-
gration, when ongoing narrative events are processed in the context of
related past information. This approach offers broad utility for analyzing
existing datasets without requiring additional experimental manipula-
tions or a priori assumptions, though further validation across diverse
narrative contexts is needed.

One limitation of the present study is that we did not acquire direct
measurements of event sequencing performance, as we intentionally avoi-
ded including an explicit sequencing task during narrative viewing to pre-
serve the naturalistic experience of ongoing narrative comprehension.
Instead, we inferred the likely occurrence of sequencing based on the
scrambled narrative structure. The event sequencing process likely involves
multiple cognitive operations, such as retrieval44, reactivation31, and
integration30, which were not independently dissociated or explicitly mea-
sured in our study. Future research combining neuroimaging with con-
current behavioral probes during narrative viewing or computational
modeling approachesmay allow for amore precise characterization of these
component processes and their neural correlates during narrative com-
prehension. Also, the fixed scrambling order and the limited number of
narrative events in this study potentially constrain the generalizability of our
findings. While these methodological limitations are common challenges
associated with using naturalistic stimuli, future research could system-
atically address these constraints by using multiple randomized scrambling
schemes or utilizing more complex and longer narratives with diverse

Fig. 5 | Predictive performance of the hippocampo-cortical model using LLM-
generated sequencing moments. a The hippocampo-cortical model using LLM-
generated sequencing moments (red) achieved prediction accuracy comparable to
the original model based on pre-defined movie structure (blue cross). In contrast,
models using either high NSP likelihood without semantic control (brown) or high
semantic similarities alone (black) failed to predict ordering scores. bThe predictive
model using LLM-generated sequencing moments consistently selected

hippocampus-vmPFC FC as a significant predictor of ordering scores.
cHippocampus-vmPFC connectivity showed a significant negative correlation with
ordering scores during LLM-generated sequencing moments (left), but no correla-
tionwith content scores (right), confirming its specific role in event sequencing (as in
Fig. 3c). See Supplementary Fig. 5 for analyses with varying numbers of top
moments.
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temporal structures. Such extensions would help establish the robustness of
the observed findings across varied narrative contexts.

Natural experiences unfold as open-ended and uncertain sequences
requiring continuous updating and integration of newly encountered
information into coherent representations. To understand how the brain
solves this sequential puzzle, it is essential to examine how narrativemodels
are constructed to weave our experiences together. By combining novel
behavioral metrics, FC-based predictive modeling, and LLM-based ana-
lyses, we have demonstrated the crucial role of the hippocampus andDMN
in both encoding and sequencing events to comprehendongoingnarratives.
These findings illuminate how distinct memory systems dynamically sup-
port the integration of complex, naturalistic information into meaningful
narratives, providing insights into the neural mechanisms underlying real-
world memory processes.

Methods
Participants
A total of 71 participants (26 females, mean age = 22.78 ± 2.28 years) were
recruited for the study. Six participants were excluded from the data ana-
lysis: one due to a global artifact in the functional images and five due to
excessive head motion during the experiment, with a framewise displace-
ment (FD) exceeding 0.5 mmformore than 5%of the total images acquired.
All participants receivedmonetary compensation for their participation and
provided informed consent before the experiment, which had been
approved by the Institutional Review Board of Sungkyunkwan University.
All ethical regulations relevant to human research participants were fol-
lowed. It was confirmed that none of the participants had viewed themovie
used in the study prior to their participation.

Stimulus
A10min audiovisual animatedmovie, “Mr. Bean: TheAnimated Series, Art
Thief” (season 2, episode 13; 2003, Fehrenbach), was used for the fMRI
experiment.Thismoviewas composedof 17 events, primarilydefinedby the
director’s cut, each lasting ~36 s. These eventswere temporally scrambled in
an identical pseudorandom order across all participants (Supplementary
Fig. 1a). The chronological event order of the movie was scrambled to
engage participants in inferring the narrative structure of the original story
while viewing the scrambledmovie.This scrambling resulted in twelve event
boundaries, each preceded or followed by an event paired with its related
event. In these pairs, one event occurring either before (e.g., sequencing
events 2 and3 inFig. 1) or after the other event (e.g., sequencing events 3 and
4 in Fig. 1) in its original sequence, appeared earlier in the scrambled order
(see Supplementary Fig. 1a for details). The movie stimulus was presented
using the Psychophysics Toolbox 345 and an MR-compatible video (PRO-
Pixx projector, VPixx Technologies) and audio (OptoActive ANC head-
phones, Opto-acoustics) system. To prevent abrupt transitions in
audiovisual features and provide a buffer period, a 30 s video of a nature
scene, such as a waterfall, with moderate audiovisual features similar to
those of the movie, was inserted before the start of the movie (for a detailed
description of the movie stimulus, see our previous study5.)

Experimental procedure
The fMRI session comprised four consecutive functional runs and one
anatomical run. In the first functional run, participants viewed a 10min
scrambled movie, followed by a free recall task where they recounted the
story they believed to be the most likely original version. During this task,
participants were encouraged to construct a coherent story based on their
recollections, even if they could not perfectly reconstruct the original story
and were given unlimited time for recall. Participants verbally indicated the
conclusion of their recall by stating, “I am finished,” at which point the
corresponding run was terminated. In the subsequent run, participants
viewed the intact versionof the samemovie to fully comprehend theoriginal
story. Following this, they viewed the scrambled movie again, followed by a
second recall task. The last run was a resting-state fMRI run without a task.
For the present study, only the fMRI data acquired during the first run,

involving the initial viewing of the scrambled movie and subsequent free
recall, were analyzed. The duration of the functional run was contingent
upon the length of participants’ free recall (mean = 3.59min, SD = 2.03
min). Prior to the fMRI experiment, participants completed a practice
session involving a different scrambled movie, “Oggy and the Cockroaches:
The Animated Series, Panic Room” (season 4, episode 8; 2013, Jean-Marie),
and recounted its story in the inferred original sequence. The free recall data
from the practice session were qualitatively evaluated to ensure that parti-
cipants understood the task instructions and recalled the story with an
appropriate level of detail.

Measure of narrative memory: content and ordering scores
Four independent annotators generated detailed annotations of the original
movie content at two-second intervals. Free recall data were transcribed at
5 s intervals. Merging sentences from all annotations and transcripts, the
text data were tokenized using the KoNLPy Python package, designed for
Korean natural language processing46. Only nouns and verbs were extracted
from the annotations and transcripts through part-of-speech tagging. A
user-defined word dictionary, containing 67 words, was utilized to match
synonymous words between the recall transcripts and movie annotations.
For example, “wrench” and “spanner,” and “artworks” and “paintings”were
considered equivalent. Next, sentences were aggregated based on a specified
window size parameter and converted into sentence vectors using the bag-
of-words model and the scikit-learn Python package47. This preprocessed
dataset was used for topic modeling to assess the similarity between the
movie annotations and participants’ free recalls, enabling the evaluation of
narrative memory performance33.

We initially trained a topicmodel using the annotatedmovie data. The
latent Dirichlet allocation model was employed to discern the abstract
semantic content within the movie annotation. Both the annotated movie
data and participants’ recall were thenmapped onto semantic vectors in the
topic space using this trainedmodel. Similarities between these vectors were
determined based on cosine similarity. Unlike prior studies that used events
identified through a hidden Markov model33, our study calculated the
movie-recall similarity for each sentence, since the event structure in free
recall of a scrambled movie was less discernible than that of intact movies.

Using the topic model, we quantified two types of narrative memory
scores: ordering scores evaluated how accurately participants reconstructed
the temporal sequence of events during recall, while content scores mea-
sured the degree of semantic overlap between recalled narrative elements
and the movie annotation. To compute ordering scores, we converted the
movie-recall cosine similarity matrix into a binary matrix by applying a
threshold, indicating the matched indices between the sentences in recall
and the movie annotation. Using this binarized matrix, we computed
Spearman’s rank correlation to compare the recall order and the original
chronological order to assess the similarity in temporal sequencing of
matched sentences. For content scores, we generated a recall content dis-
tribution by averaging topic similarities across all recalled elements for each
time segment of the original movie in the movie-recall similarity matrix,
independent of recall order. This distribution represents the amount of
content recalled from the movie across time. We then derived a movie
content distribution from the movie-movie similarity matrix. Content
scores, which reflect the similarity between these two distributions, were
obtained as the inverse of the Kullback-Leibler divergence, 1=ð1þ DKLÞ,
ranging from 0 to 1 (Supplementary Fig. 2a).

To optimize the hyperparameters for the topic model and validate our
narrativememory scores it produced, we recruited two independent human
raters to manually evaluate participants’ free recall data. These raters seg-
mented the original annotation into distinct events based on perceived
narrative transitions, such as character changes, shifts in time or location,
and changes in topic. This segmentation resulted in 46 and 25 events for the
two raters, respectively. The raters then matched events from each partici-
pant’s recall with corresponding events in the annotation, arranging the
recalled events chronologically. Ordering scores were computed using
Spearman’s rank correlation based on the recalled events identified by the
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raters. Content scores were determined by computing the ratio of recalled
events identified by the raters against the total number of events in the
annotation.Theordering andcontent scores fromboth raterswere averaged
to provide a comparative human-rated measure against the model-derived
scores. To optimize the topic model, we tested a range of hyperparameters
including the number of topics (from 10 to 80), the window size for both
movie annotation (0–10) and free recall (0–6), and the threshold hyper-
parameter for binarizing the movie-recall similarity matrix (0.3–0.9). The
optimal settings selected were 80 topics, a window size of 0 for both movie
annotation and free recall, and a threshold of 0.3 for the similarity matrix.
These parameters were chosen to maximize correlations between scores
generated by the topic model and those assessed by human raters (Sup-
plementary Fig. 2c). Notably, even across diverse hyperparameter settings,
model-derived scores closelymatched human-rated scores (Supplementary
Fig. 2d), validating the topic model’s effectiveness in accurately quantifying
narrative memory performance. Building on this validation, we further
evaluated the robustness of these narrativememory scores by assessing their
predictive power using FC-based modeling across the full range of tested
hyperparameter configurations. Most parameter combinations yielded
positive prediction performance, with several even outperforming the
selected model (Supplementary Fig. 2e). This comprehensive evaluation
demonstrates that our narrativememory scores are stable across a broad set
of modeling choices and are not simply the result of narrowly optimized
parameters.

Data acquisition
The data were acquired using a 3 T Siemens PrismaMRI scanner with a 64-
channel head coil located at Sungkyunkwan University and the Institute of
Basic Science, Center for Neuroscience Imaging Research. T2*-weighted
functional images sensitive to blood oxygenation level-dependent contrast
were obtained using an echo-planar imaging sequence (voxel size: 3 mm
isotropic; TR: 1000ms; TE: 30ms; FOV: 240 x 240mm; 48 slices covering
the whole brain; flip angle: 90˚; multi-band factor: 3). High-resolution
anatomical data were also acquired using a T1-weighted magnetization-
prepared rapid gradient echo sequence (voxel size: 1mm isotropic; TR:
2200ms; TE: 2.44ms; FOV: 256 x 256mm; 256 slices; flip angle: 8˚).

Preprocessing
The functional and anatomical data were preprocessed using the
fMRIprep48 pipeline. The anatomical data underwent intensity non-
uniformity correction, skull-stripping, brain segmentation, and surface
reconstruction. All functional data were motion corrected and registered to
the MNI152 standard space for further analyses. Additional denoising was
performed using noise components obtained during preprocessing49,
including six motion parameters (x, y, z, roll, pitch, and yaw), their deri-
vatives, global signals extracted from whole-brain masks, FD, and six
physiological regressors extracted fromcerebrospinalfluid andwhitematter
provided by aCompCor50. Following denoising, spatial smoothing with a
full-width half-maximum of 5mm and intensity normalization were
applied to the functional images using AFNI51.

FC-based predictive modeling
To predict participants’ narrative memory scores, we employed FC-based
predictive modeling37–39. We identified the hippocampus from the Brain-
netome atlas52 and cortical ROIs from the Schaefer atlas53, which offers
parcellations with varying numbers of cortical ROIs, to assess the reliability
of prediction performance across different parcellations used for training
the model. After averaging each ROI’s time course across its voxels, we
computed the FC using Pearson’s correlation, and then transformed it to a
Fisher’s z-value.

Connectivity patterns were calculated during three distinct periods:
expected sequencing moments, post-event boundaries, and all time points.
For all time points, the full fMRI data of 610 TRs, including the 10min
movie (600 TRs) and ten additional TRs from a blank screen, were used.
Among these time points, post-event boundary moments were identified

based on hippocampal activity7,14,15 around event boundaries (21 time
points, 10 s before and after boundaries). A t test compared activity at each
time point to baseline, with false discovery rate (FDR) correction applied
(q < 0:001). Four seconds showing significantly elevated hippocampal
activity were selected for each of the 17 scrambled events, resulting in 68
time points (Supplementary Fig. 1b). Sequencingmoments were defined by
aligning four seconds per sequencing pair with the temporal structure of
post-event boundaries. These moments were selected either three seconds
before or after event boundaries, depending on the relative position of
current eventswithin the original narrative, yielding a total of 64 time points
(Supplementary Fig. 1a).

To assess the model’s prediction performance, we implemented a
leave-one-subject-out cross-validation method. During the training phase,
FC edges significantly correlatedwith the narrativememory score (p < 0:05)
were identified from the training set. The Fisher’s z-transformed correlation
coefficients of these selected edges were then summed separately for both
positive and negative correlations, establishing two predictors37. Using these
predictors, a linear regression model was created to estimate the narrative
memory score, and this model was subsequently applied to the left-out
subject for prediction. Finally, themodel’s cross-validated performance was
determined using Pearson’s correlation between the actual and predicted
narrative memory scores. The statistical significance of the model’s per-
formance was assessed using a permutation test, where the narrative
memory scoreswere shuffled across participants to create a null distribution
with 1000 iterations. P-values were calculated based on the fraction of
sampled permutations that were greater than or equal to the actual pre-
diction performance.

To evaluate the predictive role of hippocampal connectivity, we con-
structed a hippocampo-cortical FCmodel using the hippocampus as a seed
(200 edges) and compared its performance to awhole-brain cortico-cortical
FC model excluding the hippocampus (19,900 edges). To control for dif-
ferences in feature dimensionality, we also conducted a control analysis in
which the number of edges was matched between the twomodels. For each
training fold, we recorded the number of functional edges selected in the
hippocampo-cortical model and selected the same number of top-ranking
cortico-cortical edges based on their absolute correlation with memory
performance (Supplementary Fig. 3a).

To determine whether specific FC edges were consistently selected
during predictivemodel building at a rate significantly higher than expected
by chance, we conducted a one-tailed binomial test for each edge. For each
model and participant, we recorded the number of cross-validation folds in
which a given edge was selected during feature selection. Assuming a null
hypothesis where edges are selected randomly with a probability of 0.05
(reflecting the nominal p value threshold for initial selection), we computed
the probability of observing the actual or greater selection count using the
binomial distribution. The resulting p-values were corrected for multiple
comparisons across all 200 edges using FDR correction. Edges that survived
FDR correction at q < 0:001 were considered significantly and consistently
selected, and only these edges were visualized in the brain figures.

Hippocampal contribution to FC-based predictive model
To evaluate the role of the hippocampus in predicting narrative memory
performance, we utilized twomodels: a hippocampo-cortical FCmodel and
a cortico-cortical FC model excluding the hippocampus. The cortico-
cortical FC model incorporated all interconnecting edges among cortical
parcellations, excluding subcortical ROIs, including thehippocampus. Forn
cortical ROIs, the model included nðn� 1Þ=2 edges. The hippocampo-
cortical FCmodel employed the hippocampus as a seed in a seed-based FC
model and focused on the FC between the hippocampus and each cortical
ROI, excluding connections among cortical ROIs. We derived the hippo-
campus’ time course by averaging across all voxels in its four subregions (left
anterior, left posterior, right anterior, and right posterior hippocampus)
from the Brainnetome atlas51. Consequently, the number of FC edges in this
modelwas equal to the number of cortical ROIs.We assessed the robustness
ofmodel performance using various cortical parcellations, ranging from100
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to 1000 parcels (Supplementary Fig. 4). Note that our main analysis
employed the model with 200 parcels.

To further assess the specific contribution of the hippocampus in
predicting narrative memory scores, we conducted two complementary
analyses. First, we tested whether including the hippocampus improved
predictive performance in our FC-based models. For this comparison, we
constructed two models: one that included the hippocampus and one that
excluded it. Both models were constructed using identical sets of randomly
selected cortical ROIs (ranging from 10 to 200), generated using a fixed
random seed. This controlled design ensured that any differences in per-
formance could be attributed specifically to the unique contribution of
hippocampal connectivity rather than to differences in model complexity
(Supplementary Fig. 6).

In the second analysis, we evaluated the predictive power of each brain
region by using it as a seed in an FC-based model, encompassing both
cortical and subcortical regions. To test whether the hippocampus’s pre-
dictive performance was significantly better than expected by chance, we
conducted a permutation-based rank analysis. Specifically, we ranked all
ROIs based on their prediction accuracy for ordering and content scores,
then generated a null distribution of hippocampal ranks by randomly
shuffling thebehavioral scores 500 times and recalculating the ranks for each
iteration. The observed hippocampus rank was compared to this null dis-
tribution to calculate a p value, assessing the statistical significance of its
predictive advantage (Supplementary Fig. 7).

To test whether each FC (hippocampus-vmPFC and hippocampus-
PMC) differentially contributes to predicting distinct types of narrative
memory scores (ordering and content), we employed a chi-square test and
Steiger’s Z-test42. We selected Steiger’s Z-test to evaluate the association
between FC and narrative memory scores since this test addresses differ-
ences between two correlations that share a common variable (i.e., FC)
within the same sample. For the chi-square test, we compared observed
frequencies of functional edge selection against expected frequencies cal-
culated under the null hypothesis of no association between FC selection
and memory score type in our predictive modeling.

LLM-generated narrative coherence
We proposed a quantitative measure to assess the likelihood of memory
sequencing during ongoing narratives by leveraging the LLM, BERT35, pre-
trained on the NSP task. The NSP task is one of the two pre-training
objectives employed by BERT to understand sequential contextual rela-
tionships between sentences in a text corpus. During this task, BERT was
trained to predict whether a given sentence logically or causally follows
another sentence, enabling themodel to capture narrative relationships that
extend beyond individual sentences.

Three additional independent annotators provided detailed descrip-
tionsof each segmentof the scrambledmovie at two-second intervals,which
were then fed into theBERTmodel.Wecalculated theNSP likelihoodvalues
between each segment and all of its preceding segments in the movie. For
each segment, we assigned the highest likelihood among all of its past
segments to serve as its NSP likelihood. This provided an estimate of
potential memory sequencing likelihood for each segment, similar to pre-
defined sequencing moments of the scrambled narrative. To account for
elevated NSP likelihoods between two segments due to shared semantics
rather than logical or causal relationships, we used the USE43 to create
semantic vectors for each segment.We then computed semantic similarities
between segments using cosine similarity. By regressing out semantic
similarities from NSP likelihoods and applying a canonical hemodynamic
response function, we derived an LLM-generated narrative coherence index
for each movie segment. All metrics were averaged across multiple
annotators.

To validate our approach, moment-by-moment human-rated nar-
rative comprehension was adapted from our previous study5, where 20
participants responded when they felt they had understood the narrative
while viewing the same scrambled movie used in the current study. We
computed the time course similarity between this human-rated narrative

comprehension and the LLM-generated narrative coherence using
Pearson’s correlation. We determined statistical significance by com-
paring the actual correlation with a null distribution, generated by ran-
domly permuting the phase of the time series for each dataset (n ¼ 1000
permutations) (for details of the behavioral experiments, see our previous
study5).

To examine the effectiveness of LLM-generated narrative coherence
in assessing temporal memory sequencing during ongoing comprehen-
sion, we constructed a predictive model for ordering scores using LLM-
generated sequencing moments. These sequencing moments were
determined by selecting the top N time points ranked by LLM-generated
narrative coherence. We varied the number of top time points used to
compute the hippocampo-cortical FC pattern, ranging from 20 to 80. For
the results shown in Fig. 5b and 5c, we selected the top 50 time points
with the highest NSP likelihood scores. The predictive modeling proce-
dure was identical to that of the main analysis. For comparison, we also
extracted sequencing moments using raw NSP likelihood values from an
LLM, which did not account for semantic similarity effects, and
sequencing moments based on semantic similarity alone, calculated from
USE. All other procedures, including the process of assigning the highest
value obtained from all past pairs to each moment, remained identical to
the original analysis.

Statistics and reproducibility
FC-based predictive performance was evaluated using leave-one-subject-
out cross-validation, with statistical significance assessed via permutation
testing. To assess the consistency of FC edge selection across cross-
validation folds, one-tailed binomial tests were conducted, and results
were corrected for multiple comparisons using FDR. Permutation-based
rank analyses were performed to determine whether hippocampus-
seeded predictive models ranked significantly higher than expected by
chance in predicting memory scores. Differences between correlation
coefficients were evaluated using Steiger’s Z-test, and chi-square tests
assessed the association between FC edge selection and memory score
type. For LLM-based analyses, predictive performance and the associa-
tion between LLM-derived features and human-rated narrative com-
prehension were tested using the same cross-validation and permutation
procedures. Sample sizes were informed by prior naturalistic fMRI stu-
dies. No data were excluded beyond predefined quality control criteria.
Results were reproducible across participants and robust to variations in
model parameters and brain parcellations. All analysis code was verified
to run successfully in an independent environment, and all results are
fully reproducible with the provided code, dependencies, and data
resources.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The fMRI data are openly available at OpenNeuro54 with the following link
https://openneuro.org/datasets/ds005215.

Code availability
The behavioral data and Python code are available on GitHub (https://
github.com/jwparks/NarrativePuzzle), with a fixed version archived on
Zenodo55. The bert-base-uncased language model is publicly available on
Hugging Face56.
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