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Interplay between particle trapping and
heterogeneity in anomalous diffusion
Haroldo V. Ribeiro 1✉, Angel A. Tateishi2, Ervin K. Lenzi3, Richard L. Magin4 & Matjaž Perc 5,6,7,8,9✉

Heterogeneous media diffusion is often described using position-dependent diffusion coef-

ficients and estimated indirectly through mean squared displacement in experiments. This

approach may overlook other mechanisms and their interaction with position-dependent

diffusion, potentially leading to erroneous conclusions. Here, we introduce a hybrid diffusion

model that merges a position-dependent diffusion coefficient with the trapping mechanism of

the comb model. We derive exact solutions for position distributions and mean squared

displacements, validated through simulations of Langevin equations. Our model shows that

the trapping mechanism attenuates the impact of media heterogeneity. Superdiffusion occurs

when the position-dependent coefficient increases superlinearly, while subdiffusion occurs

for sublinear and inverse power-law relations. This nontrivial interplay between heterogeneity

and state-independent mechanisms also leads to anomalous yet Brownian, and non-Brownian

yet Gaussian regimes. These findings emphasize the need for cautious interpretations of

experiments and highlight the limitations of relying solely on mean squared displacements or

position distributions for diffusion characterization.
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R ichardson’s 1926 paper on atmospheric diffusion1 is a
landmark in the study of anomalous diffusion. This work
introduces the concept of a state-dependent diffusion

coefficient as a paradigm for describing transport properties in
heterogeneous media. Richardson’s approach to modeling the
heterogeneity of turbulent diffusion is primarily grounded in two
crucial physical insights. Firstly, it considers the separation dis-
tance between neighboring particles as the spatial variable, rather
than focusing solely on the individual positions of the particles.
Secondly, Richardson recognized that the influence of diffusion
agents, which manifest as eddies of varying sizes, depends on the
scale of separation distance. Small-scale eddies exert a significant
influence on diffusion when particles are closely packed, whereas
large-scale eddies become more pertinent as particles become
widely dispersed. These mechanisms ultimately render the dif-
fusion coefficient a state-dependent variable, and the connection
between heterogeneity and generalized diffusion equations with
state-dependent diffusivity has been formally established in sev-
eral contexts.

One of the earliest derivations of a generalized diffusion
equation featuring a state-dependent diffusion coefficient can be
traced back to Zwanzig’s paper in 19592. This work presents a
procedure for reducing Hamilton’s equations of motion asso-
ciated with a system of harmonic oscillators into an action dif-
fusion equation where the diffusion coefficient contains the
dynamics of oscillator-solvent interactions. Expanding on
Zwanzig’s findings, Grote and Hynes3, as well Carmeli and
Nitzan4, examined reaction rates governed by an energy diffusion
equation, with the latter authors deriving it from a generalized
Langevin equation. State-dependent diffusion equations also arise
within the framework of random walks. For instance, Machta5

derived a diffusion coefficient applicable to random walks subject
to static disorder, where the disorder manifests as random var-
iations in lattice site separation. Similarly, Fujisaka6 investigated
chaotic maps incorporating variable cell sizes to obtain a gen-
eralized diffusion equation. O’Shaughnessy and Procaccia7,8 used
scaling arguments to demonstrate that diffusion on fractal lattices
also leads to a generalized diffusion equation with a position-
dependent diffusion coefficient.

State-dependent diffusivity plays a crucial role in reducing
high-dimensional dynamic processes to a single-coordinate
variable. One of the earliest examples illustrating this concept is
the Jacob–Fick equation. Initially derived heuristically by Jacobs9,
this one-dimensional equation describes the diffusion in a non-
uniform cross-sectional tube, where the position-dependent dif-
fusion accounts for the varying cross-sectional area. Zwanzig10

proposed a formal derivation of Jacobs’ approach from a two-
dimensional Smoluchowski equation with an entropic barrier.
Kalinay and Percus11 presented a more compelling derivation of
the Zwanzig equation utilizing a projection technique. Bradley12

further generalized Zwanzig’s work for diffusion in a narrow two-
dimensional channel with a curved midline and varying width,
accounting for additional heterogeneities. Berezhkovskii and
Szabo13 rigorously proved that time-scale separation leads to a
position-dependent diffusion along a slow coordinate. Addition-
ally, Lançon et al.14,15 reported experimental results for particles
trapped between two nearly parallel walls, demonstrating that
confinement and diffusion coefficient become space-dependent in
a controllable manner.

In the context of the energy landscape theory of protein fold-
ing, Brygelson and Wolynes16 showed that changing from a
complex deterministic description to a probabilistic one yields a
generalized diffusion equation, where the coordinate-dependent
diffusivity directly results from projecting the multidimensional
energy landscape onto a one-dimensional reaction coordinate.
Simulations and experiments corroborate this coordinate

dependence of the diffusion coefficient. For example, Best and
Hummer17,18 established this relationship through coarse-grained
molecular simulations of proteins, Chahine et al.19 used a poly-
mer chain to represent the protein on a three-dimensional cubic
lattice model, and Foster et al.20 investigated position-dependent
diffusion in folding reactions using single-molecule force spec-
troscopy. Light diffusion in disordered waveguides represents
another established application area for the position-dependent
diffusion coefficient. This dependence is mainly related to the
breaking of translational symmetry present in finite media. Its
rigorous derivation was obtained from self-consistent theory21

and supersymmetric field theory22. Payne et al.23 compared
approaches and demonstrated that position-dependent diffusion
has genuine physical relevance beyond its mathematical utility,
with experimental evidence reported by Zhang24, Yamilov25,
Huang26, and their collaborators.

Despite the versatility of state-dependent diffusion coefficient
approaches, direct experimental measurements of this quantity
remain a technical challenge20, particularly in heterogeneous
biological systems where multiple mechanisms of anomalous
diffusion may coexist. Indirect evaluation of position-dependent
diffusion coefficients through estimates of mean squared dis-
placement is a standard statistical method used in experimental
research27. However, relying solely on the mean squared dis-
placement is problematic and may lead to incorrect conclusions
about the diffusive behavior of systems. A critical example is the
work of Wang et al.28, which demonstrated that non-Gaussian
distributions can co-occur with a linear time dependence of mean
square displacement. Consequently, a comprehensive under-
standing of the role of state-dependent diffusion coefficients and
their interaction with other mechanisms of anomalous diffusion
is crucial to accurately interpreting the behavior of mean squared
displacement. Here, we propose investigating the combined
effects of a position-dependent diffusion coefficient with another
anomalous diffusion mechanism based on a geometrical con-
straint. Our analysis focuses on the comb model29–40 from both
analytical and numerical perspectives. In its original
formulation41, the comb model generalizes the diffusion equation
in two dimensions by introducing a Dirac delta function that
multiplies the spatial derivative in the x-direction. This mod-
ification creates a structure with a backbone along the line y= 0
and perpendicular branches in the y-direction. The backbone
emerges because diffusion in the x-direction only occurs when
y= 0, whereas the branches are formed because diffusion in the
y-direction is restricted to the current x-position, and the random
walker must return to the backbone to access another branch. The
branches act as traps that modify the sojourn times in the
backbone, leading to subdiffusive motion in the x-direction. The
probability of accessing a branch is uniform across all positions
within the backbone, making this anomalous diffusion mechan-
ism state-independent.

In addition to this geometrical constraint, we consider that the
diffusion coefficient within the backbone is related to the
x-position via an inverse power-law function with exponent η,
which accounts for the medium’s heterogeneity as a scale-
invariant property. Our hybrid model integrates Richardson’s
seminal state-dependent diffusivity with the comb model’s state-
independent constraint in a manner that simultaneously incor-
porates the influence of the medium’s heterogeneity and trapping
mechanisms on diffusion along the backbone. This hybrid model
distinguishes between two mechanisms of anomalous diffusion
and allows the study of the interplay between them. By employing
techniques to solve partial differential equations, we obtain exact
solutions for the mean squared displacement and the temporal
evolution of the probability distribution for positions along the
backbone. Additionally, we establish a connection between our
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diffusion equation and a Langevin equation using the
Hänggi–Klimontovich (isothermal) interpretation42–45, allowing
us to simulate the dynamics of this system and validate our exact
results. Our research demonstrates that the motion along the
backbone becomes more subdiffusive than in the original comb
model when the power-law exponent η is positive. However,
contrary to expectations, the position distributions transition
from tent-like to bell-like shapes as η increases in the positive
direction, resulting in non-Brownian yet Gaussian diffusion when
η= 1. In contrast, the diffusive motion along the backbone is
enhanced as η decreases, becoming superdiffusive for η <−1, and
leading to anomalous yet Brownian diffusion when η=−1.

In what follows, we detail these results by first introducing the
diffusion equation associated with our hybrid model and pro-
viding exact solutions for the mean squared displacement and
position distributions. Subsequently, we establish the connection
between our diffusion equation and a Langevin equation, fol-
lowed by the presentation of in silico experiments and a thorough
discussion of our findings. Lastly, we conclude our article by
offering a concise outlook and final remarks.

Results
Analytical solutions. We begin by writing Richardson’s seminal
equation1

∂ρðx; tÞ
∂t

¼ ∂

∂x
DxðxÞ

∂ρðx; tÞ
∂x

� �
; ð1Þ

where ρ(x, t) denotes the probability density function of the
particle positions at time t and Dx(x) is a position-dependent
diffusion coefficient describing the medium’s heterogeneity.
Richardson’s equation stands as one of the pioneering models
capable of generating non-Brownian and non-Gaussian diffusion.
Specifically, when Dx(x) ~ ∣x∣−η, Eq. (1) yields a power-law

dependence for mean squared displacement, hx2ðtÞi � t
2

2þη, as well
as compressed (η > 0) or stretched (η < 0) Gaussian distributions.
This model further exhibits subdiffusive motion for η > 0,
superdiffusion for η < 0, and retrieves the standard diffusion
equation when η= 0 (constant diffusion coefficient). It is worth
remarking that in addition to appearing in the articles we have
mentioned in our introduction, Eq. (1) also emerges in the con-
text of Fokker–Planck equations related to stochastic differential
equations (Langevin equations) with multiplicative noise46–48. As
we shall discuss, this connection will be used for numerically
simulating our hybrid comb model through its equivalent Lan-
gevin equation in the Hänggi–Klimontovich (isothermal or
kinetic) interpretation42–45.

In turn, the comb model was initially proposed by Arkhincheev
and Baskin in 199141 and represents a generalization of the two-
dimensional diffusion equation. In this model, the spatial
derivative in the x-direction is multiplied by a Dirac delta
function, yielding

∂

∂t
ρðx; y; tÞ ¼ δ

y
l

� �
D ∂2

∂x2
ρðx; y; tÞ þD ∂2

∂y2
ρðx; y; tÞ; ð2Þ

where ρ(x, y, t) is the joint probability density function of the
particle positions (x and y coordinates) at time t, and D
represents the standard diffusion coefficient and l is constant with
a dimension of length. The delta function restricts the diffusion
along the x-direction to the line y= 0 (backbone), while the
diffusion along the y-direction gives rise to a branch-like structure
reminiscent of a comb. The motion along the backbone is
subdiffusive, characterized by 〈x2(t)〉 ~ t1/2, and exhibits a
position distribution with tails decaying slower than a Gaussian.

We combine the position-dependent diffusion coefficient of
Richardson’s equation (a state-dependent mechanism) with the

geometric constraint of the comb model (a state-independent
mechanism) to form our hybrid model, which is described as
follows:

∂

∂t
ρðx; y; tÞ ¼ δ

y
l

� � ∂

∂x
DxðxÞ

∂

∂x
ρðx; y; tÞ

� �

þD ∂2

∂y2
ρðx; y; tÞ:

ð3Þ

We further assume DxðxÞ ¼ Djxj�η (with η >−2 to ensure the
existence and uniqueness of the solution49), so that the time
evolution of the probability distribution function of our hybrid
comb model is given by

∂

∂t
ρðx; y; tÞ ¼ δ

y
l

� � ∂

∂x
Djxj�η ∂

∂x
ρðx; y; tÞ

� �

þD ∂2

∂y2
ρðx; y; tÞ:

ð4Þ

In this model, the diffusion along the backbone is simulta-
neously influenced by both the particle trapping of the comb
model and the medium’s heterogeneity associated with the
power-law dependence of the diffusion coefficient along the x-
direction (see Fig. 1). Furthermore, to avoid any possible
confinement effects within a limited domain, we employ the
unlimited boundary conditions, limjrj!1 ρðr; tÞ ¼ 0, where
r= (x, y) for simplifying notation (hereafter we will use this
notation whenever possible). Additionally, we consider the
arbitrary initial condition ρ(r, 0)= φ(r). We further remark that
a similar model was investigated by Sandev et al.50. However,
their diffusion equation is based on the Stratonovich interpreta-
tion of a Langevin equation with position-dependent diffusivity,
resulting in a different structure for the spatial derivatives that
cannot be associated with Richardson’s equation. Moreover, the
solutions of their diffusion equation yield distributions that either
vanish or diverge at x= 0, a behavior that, as we shall see, is in
stark contrast to the solutions associated with our model.

Having defined our model, we now focus on obtaining the
exact solutions for the probability density function of the particle
positions. To do so, we employ the Green’s function approach
and observe that the Green’s function Gðr; r0; tÞ associated with
Eq. (4) must satisfy the equation

∂
∂t Gðr; r0; tÞ � δ y

l

� �
∂
∂x Djxj�η ∂

∂x Gðr; r0; tÞ
� �

�D ∂2

∂y2 Gðr; r0; tÞ ¼ δðy � y0Þδðx � x0ÞδðtÞ; ð5Þ

subjected to the conditions limjrj!1 Gðr; r0; tÞ ¼ 0 and
Gðr; r0; tÞ ¼ 0 for t < 0, where r0 ¼ ðx0; y0Þ. Once the Green’s
function is determined, the position distribution can be expressed
as the convolution between the initial condition and the Green’s
function, that is

ρðr; tÞ ¼
Z 1

�1
dy0
Z 1

�1
dx0φðr0ÞGðr; r0; tÞ: ð6Þ

To solve Eq. (5), we assume that the Green’s function can be
expressed in terms of the integral transform

Gðr; r0; tÞ ¼ 1
2

Z 1

0
dkxkx ψþðx; kxÞ~Gþðkx; y; r0; tÞ

�
þ ψ�ðx; kxÞ~G�ðkx; y; r0; tÞ

	
;

ð7Þ

where

~G± ðkx; y; r0; tÞ ¼ 1
2

R1
�1 dxψ ± ðx; kxÞGðr; r0; tÞ; ð8Þ

with G± ðkx; y; r0; tÞ determined by Eq. (5), and ψ±(x, kx)
representing suitable eigenfunctions. These eigenfunctions can
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be obtained by considering the Sturm–Liouville problem

∂

∂x
jxj�η ∂

∂x
ψ x; kx
� �� �

¼ �jkxj2þηψ x; kx
� �

; ð9Þ

subjected to the boundary conditions limjxj!±1 ψðx; kxÞ ¼ 0.
The solutions for Eq. (9) are the eigenfunctions:

ψþðx; kxÞ ¼ jxjjkxj
� �1þη

2 J�ν

2 jkxjjxj
� �2þη

2

2þ η

0
@

1
A ð10Þ

and

ψ�ðx; kxÞ ¼ xkx jxjjkxj
� �1þη

2 �1
Jν

2 jkxjjxj
� �2þη

2

2þ η

0
@

1
A; ð11Þ

where Jν(x) denotes the Bessel function51 with order ν= (1+ η)/
(2+ η). The diffusion coefficient exponent η determines the order
of Bessel functions and their arguments. Consequently, the
eigenfunctions of Eqs. (10) and (11) encode information about
the position-dependent diffusion coefficient, which is then
transferred to Green’s function through Eq. (7).

Using the eigenfunctions, we can now substitute Eq. (7) into
Eq. (5), and then, exploiting the orthogonality of the eigenfunc-
tions and applying Fourier transforms on the spatial variables, we
obtain the following differential equation:

∂
∂t
~G± ðkx; ky; r0; tÞ þ lDjkxj2þηG± ðkx; 0; r0; tÞ

þDk2y~G± ðkx; ky; r0; tÞ ¼ 1
2ψ ± ðx0; kxÞe�ikyy

0
δðtÞ:

ð12Þ

The second term on the left side of the preceding equation
represents Green’s function in the Fourier space [G± ðkx; 0; r0; tÞ]
related to the diffusion along the backbone (y= 0). By solving
Eq. (12) and applying the inverse Fourier transform to the
y-coordinate, we find

~G± ðkx; y; r0; tÞ ¼ 1
2ψ ± ðx0; kxÞGyðy � y0; tÞ

�lDjkxj2þη
R t
0 dt

0Gyðy; t � t0Þ~G± ðkx; 0; r0; t0Þ;
ð13Þ

where we observe a convolution between G± ðkx; 0; r0; tÞ and the
Green’s function for the branches, Gyðy; tÞ ¼ e�y2= 4Dtð Þ=

ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p
,

clearly demonstrating the influence of diffusion within the
branches (in the y-direction) on diffusion along the backbone.
Combining these findings and applying the Laplace transform to

the time domain, we can express the Green’s function associated
with the diffusion along the backbone in the Fourier–Laplace
domain as

~G± ðkx; 0; r0; sÞ ¼
1
2

ψ ± ðx0; kxÞ
1þ l

ffiffiffiffiDp
k2x= 2

ffiffi
s

p� �Gyðy0; sÞ: ð14Þ

We can now calculate the Laplace transform of Eq. (13),
substitute Eq. (14) into the resultant expression, and subsequently
apply the inverse Fourier transform concerning the x-coordinate.
This yields the Green’s function in the Laplace domain

Gðr; r0; sÞ ¼ δðx � x0Þ Gyðy � y0; sÞ � Gyðjyj þ jy0j; sÞ
h i

þ
Z 1

0
dkx

e�
ffiffi
s
D

p
jyjþjy0 jð Þffiffi

s
p þ l

ffiffiffiDp
k2x

2

∑
i¼�;þ

ψx;iðx; kxÞψx;iðx0; kxÞ;

ð15Þ

where the first term on the right side corresponds to the diffusion
within the branches, while the second term is related to the
diffusion along the backbone. Finally, by applying the inverse
Laplace transform to the preceding equation, we can express the
Green’s function associated with our model as

Gðr; r0; tÞ ¼ δðx � x0Þ Gyðy � y0; tÞ � Gyðjyj þ jy0j; tÞ
h i

þ 1

2Dt
ffiffiffiffiffi
πt

p jxx0j12ð1þηÞ
Z 1

0

du
ð2þ ηÞul uþ jyj þ jy0j� �

e�
1

4Dt uþjyjþjy0 jð Þ

´ e�
jxj2þηþjx0 j2þη

ð2þηÞ2ul I�ν

2 jxjjx0jð Þ12ð2þηÞ

ð2þ ηÞ2ul

 !
þ xx0

jxjjx0j Iν
2 jxjjx0jð Þ12ð2þηÞ

ð2þ ηÞ2ul

 !" #
;

ð16Þ

where I±ν(x) is the Bessel function of modified argument51. The
first term on the right side of Eq. (16) describes the usual
diffusion occurring on the branches. In turn, the second and
more complex term describes the diffusion along the backbone,
which simultaneously depends on the y-coordinate and the
diffusion coefficient exponent η. The deviations from Brownian
diffusion along the backbone become more evident by rewriting

Fig. 1 Schematic illustration of our hybrid comb model. This model is defined by Eq. (4) and simultaneously accounts for the medium’s heterogeneity and
trapping mechanisms. The Dirac delta that multiplies the second term of Eq. (4) is responsible for trapping particles along the x-direction each time they
leave the line y= 0. Consequently, diffusive motion in the x-direction only occurs when y= 0, and diffusion along the y-direction is restricted to the current
x-position, requiring particles to return to the line y= 0 to resume movement along the x-direction. As a result, we observe the emergence of a structure
characterized by a backbone along the line y= 0 and perpendicular branches extending in the y-direction. In turn, the term DxðxÞ ¼ Djxj�η inside the first
spatial derivative of the second term of Eq. (4) accounts for the medium’s heterogeneity by modifying the diffusion coefficient along the backbone. aWhen
η < 0, the diffusion coefficient increases as particles move away from the origin (x= 0). b On the other hand, for η > 0, the diffusion coefficient decreases
with the distance from the origin. In both panels, blue arrows depict possible particle trajectories, vertical dashed lines indicate the branch-like structure,
and the color bar along the x-axis illustrates the variation of the diffusion coefficient with respect to the position along the backbone.
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Eq. (16) as

Gðr; r0; tÞ ¼ δðx � x0Þ Gyðy � y0; tÞ � Gyðjyj þ jy0j; tÞ
h i

þ 1

2
ffiffiffiffiffiffiffi
πDp jxjjx0jð Þ12ð1þηÞ jyj þ jy0j� �

´
Z t

0
dt0

e�
1

4Dðt�t0 Þ jyjþjy0 jð Þ
½ðt � t0Þt0�3=2

Gx;þðx; x0; t0Þ þ
xx0

jxjjx0jGx;�ðx; x0; t0Þ
� �

;

ð17Þ

where Gx;± ðx; x0; tÞ is defined in terms of the generalized Fox H
function52,53

Gx;± ðx; x0; tÞ ¼
1

jxj12ð2þηÞ H1;0;1;1;1
2;½0:1�;0;½0:2�

x0=x


 

2þη

2þ η
� �2 ffiffiffiffiffiffiDt

p
=jxj2þη

2�ν
2 ; 1

� �
; 2 ± ν

2 ; 1
� �

��; ð0; 1Þ
��;��
� ν

2 ; 1
� �

; ± ν
2 ; 1

� �
; ð0; 1Þ; 1

2 ;
1
2

� �












3
7775

2
6664 :

ð18Þ

The Fox H and the generalized Fox H functions frequently arise
as solutions to fractional diffusion equations, which are
commonly used to model anomalous diffusion phenomena.

Now that we have derived Green’s function for our hybrid
comb model, we can proceed to determine the probability density
function of the particle positions by evaluating the integral
presented in Eq. (6) with an appropriate initial condition φ(r).
For the sake of simplicity, we assume the particles to be initially
localized at the origin, that is, φ(r)= δ(r). Under this assumption,
the solution to our model is

ρðr; tÞ ¼ jyj
Γ 1

2þη

� �
jxj

Z t

0
dt0

e�
jyj2

4Dðt�t0 Þ

½ðt � t0Þt0�3=2

´ H2;0
1;2

jxj
ð2þ ηÞ2l ffiffiffiffiffiffiffiDt0

p� 	 1
2þη

1
2 ;

1
2ð2þηÞ

� �
0; 1

2þη

� �
; 1þη

2þη ;
1

2þη

� �









3
75

2
64 :

ð19Þ

To better investigate the diffusion phenomena occurring along
the backbone and within the branches, we evaluate the marginal
distributions for the x and y variables. These distributions
represent the probability of finding a particle at a specific position
along one coordinate, regardless of its position along the other
coordinate. The marginal distribution for the y-coordinate is
calculated as ρyðy; tÞ ¼

R1
�1 dxρðr; tÞ, resulting in a Gaussian

distribution given by ρyðy; tÞ ¼ e�y2=ð4DtÞ=
ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p
. Moreover,

using this distribution, we can calculate the mean squared
displacement along the y-direction, obtaining a linear dependence
on time: 〈y2(t)〉∝ t. The Gaussian distribution and the linear
behavior of 〈y2(t)〉 are defining features of usual diffusion. Thus,
the diffusion within the branches is usual, which is the expected
outcome in the absence of any alterations in the diffusion term
along the y-direction in our model. In contrast, the marginal
distribution for the x-coordinate, which can be calculated
via ρxðx; tÞ ¼

R1
�1 dyρðr; tÞ, is expressed in terms of the Fox

H function as

ρxðx; tÞ ¼ 1

Γ 1
2þη

� �
ð2þ ηÞ2l

ffiffiffiffiffiffiDt
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jxj
ð2þ ηÞ2l
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ð20Þ
and yields a non-linear dependence for the mean squared
displacement along the backbone:

x2ðtÞ� � / tαx ; with αx ¼
1

2þ η
: ð21Þ

Considering the restriction η >−2, the diffusion along the
backbone may thus exhibit a superdiffusive regime (αx > 1)
when− 2 < η <−1, a subdiffusive regime (αx < 1) when η >− 1,
or a Brownian regime (αx= 1) when η=−1.

Equations (20) and (21) represent the main analytic findings of
our article. These equations demonstrate that the diffusive motion
along the backbone is anomalous and simultaneously influenced
by two factors: the power-law behavior of the position-dependent
diffusion coefficient (via the exponent η) and the inherent
trapping mechanism present in the comb model. We note that
η= 0 corresponds to a constant diffusion coefficient (diffusion on
a homogeneous medium) and the original comb model. Even in
this case, the distribution given by Eq. (20) deviates from a
Gaussian distribution, and the corresponding mean squared
displacement, 〈x2(t)〉∝ t1/2, characterizes a subdiffusive behavior
solely attributed to the particle trapping of the comb model. By
comparing the diffusive exponent αx= 1/(2+ η) in Eq. (21) with
the corresponding exponent associated with Richardson’s equa-
tion [Eq. (1) with Dx(x) ~ ∣x∣−η], αR= 2/(2+ η), we observe that
the particle trapping weakens the diffusion along the backbone,
leading to αx= αR/2. For example, ballistic diffusion (αx= 2) is
obtained without the trapping mechanism when η=−1, but in
its presence, this regime only occurs when η=− 3/2. The
occurrence of Brownian diffusion in our hybrid comb model is
also a nontrivial result, as this behavior does not arise from
standard diffusion in a homogeneous medium. Instead, it arises
from the interplay of different anomalous diffusion mechanisms,
where the particle trapping of the comb model attenuates the
influence of the medium’s heterogeneity.

Numerical simulations. The richness of diffusive regimes
emerging from our model becomes more evident when analyzing
the marginal distributions for the x-position in combination with
the mean squared displacement for different values of η. To do so
and further validate our analytic results, we propose to simulate
our hybrid comb model through its connection with a Langevin
equation. Specifically, using the Hänggi-Klimontovich (iso-
thermal or kinetic) interpretation42–45, we find that the diffusion
equation expressed in Eq. (3) is equivalent to the following
coupled Langevin equations:

d
dt

xðtÞ ¼ δðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
DxðxÞ

p d
dx

ffiffiffiffiffiffiffiffiffiffiffiffi
DxðxÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
DxðxÞ

p
ζxðtÞ

� �
;

d
dt

yðtÞ ¼
ffiffiffiffi
D

p
ζyðtÞ;

ð22Þ

where ζx(t) and ζy(t) are Gaussian uncorrelated noise terms with
zero mean and unit variance.

To numerically simulate Eq. (22), we use the same power-law
dependence that was previously employed for the diffusion
coefficient, DxðxÞ ¼ Djxj�η (with η >−2), and approximate the
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derivatives using first-order finite differences. By doing so, Eq.
(22) becomes equivalent to the following set of recurrence
equations:

xtþ1 ¼ xt � δðyÞ ηD
2

sign ðxÞjxj�η�1 �
ffiffiffiffi
D

p
jxj�η

2ζxðtÞ
� �

;

ytþ1 ¼ yt þ
ffiffiffiffi
D

p
ζyðtÞ ;

ð23Þ
where sign(x) denotes the sign function. Additionally, we mimic
the effect of the Dirac delta in the previous equation by updating
the x-position only within a narrow band of thickness ε, that is
when ∣yt∣ ≤ ε. This approximation has already been used to
simulate the comb model54, and the value of ε does not
significantly affect the diffusion, as long as it has the same order
of magnitude of D, such that the variable y does not exhibit
relevant dynamics within the backbone. Furthermore, to avoid
numerical instabilities and divergences, we add a small positive
number ϵ to the argument of the modulus function (∣x∣→ ∣x+ϵ∣).
For the sake of simplicity, we set D ¼ 0:2 (with ε= ϵ= 0.1) and
iterate Eq. (23) for 106 steps with the initial condition x0= y0= 0
in all our simulations. We further vary the value of η from −1.5
to 1.5 in steps of 0.25, creating an ensemble with 50,000 simulated
trajectories for each η.

Figure 2 illustrates examples of simulated trajectories obtained
by iterating Eq. (23) with three values of η∈ (−1/2, 0, 1/2). We
recall that η= 0 corresponds to a constant diffusion coefficient,
hence representing the usual comb model. For negative values of
η, the diffusion coefficient increases as the random walker moves
away from the origin (x= 0). Consequently, the trajectories along
the backbone are characterized by long jumps when the walker is
far from the origin, while small jumps occur when it is close to
the origin. Conversely, for positive values of η, the diffusion
coefficient decreases as the random walker moves away from the
origin. This position-dependent behavior of the diffusion
coefficient confines the trajectories along the backbone closer to
the origin than in the usual comb model. Simultaneously, we
observe the effect of the particle trapping of the comb model,
which halts the particle’s motion along the backbone whenever it
accesses the branch structure, regardless of the walker’s position.

We use our ensemble of simulated trajectories to estimate the
temporal evolution of the mean squared displacement along the
backbone. The behavior of the mean squared displacement 〈x2(t)〉
is shown in Fig. 3a–h using a logarithmic scale for eight distinct
values of η∈ (−3/2,− 1,−1/2,−1/4, 0, 1/2, 1, 3/2). Within these
insets, dashed lines depict the behavior for the usual comb model
[〈x2(t)〉 ~ t1/2], while solid lines represent the adjusted power-law
relationships, hx2ðtÞi � tαx . We estimate the values of αx by fitting

a linear model to the relationship between the logarithm of the
mean squared displacement and the logarithm of time. In this
linearized form [loghx2ðtÞi � αx log t], the linear coefficient
corresponds to the value of αx. To ensure robust fits, we consider
the mean squared displacement values for t exceeding 103,
thereby avoiding transient behaviors. We emphasize that
although the transient behaviors appear to have the same
duration as the adjusted behaviors on the log–log scale, they
only constitute 1% of the trajectory length. Figure 3(i) shows the
relationship between αx and η estimated from our in silico
experiments (circle markers) in comparison with the exact
expression αx= 1/(2+ η) obtained from Eq. (21) (dashed curve).
We observe an almost perfect agreement between the theoretical
predictions and simulated results, confirming that Brownian
diffusion occurs when η=−1, while subdiffusion and super-
diffusion emerge when η >−1 and−2 < η <−1, respectively.

We also use the simulated trajectories to investigate the
temporal evolution of the marginal distribution associated with
the particle positions along the backbone, ρx(x, t). Figure 4 depicts
the evolution of these distributions for several values of η. For
negative values of η, wherein the diffusion coefficient Dx(x)
increases with the distance from the origin, two distinct behaviors
emerge. The first behavior corresponds to a superlinear increase
of Dx(x), which occurs for−2 < η <−1 and yields superdiffusion,
while the second refers to a sublinear increase of Dx(x), occurring
for−1 < η < 0 and yielding subdiffusion. In the superlinear case,
the probability of finding walkers close to the origin diminishes
rapidly over time, and the tails of the distributions become
significantly broader compared to the sublinear case, which in
turn reflects the existence of huge jumps when−2 < η <−1.
Conversely, for positive values of η, Dx(x) decreases as the
distance from the origin increases, and the system is always
subdiffusive. This dependence decreases the probability of large
jumps as the particles move away from the origin, confining them
near the origin and flattening the peaks of the distributions.

To better examine the marginal distributions ρx(x, t) and
facilitate the comparison between the simulated results and the
exact expression given by Eq. (20), we introduce the change of
variable ξx ¼ x=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ðtÞi

p
. This transformation renders these

distributions independent of time, yielding

ρxðξxÞ ¼ aH2;0
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where a is normalizing constant and b is another constant. Both a
and b depend on η, but not on the time t. Therefore, this rescaling
operation of the position along the backbone should collapse the

Fig. 2 Simulated trajectories of our hybrid comb model. a–c These trajectories are obtained by iterating Eq. (23) for 106 steps with three distinct values of
the diffusion coefficient exponent η (displayed in the panels). The color code illustrates the progression of time. The case η= 0 corresponds to the original
comb model. When η < 0, the diffusion coefficient increases as the walker moves away from the origin (x= 0). For η > 0, the diffusion coefficient decreases
with the distance from the origin. Consequently, the space covered by the walker along the backbone is significantly broader for negative values of η
compared to positive values. This observation alludes to the fact that diffusion is enhanced as η decreases.
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marginal distributions into a single curve for each value η. Each
panel in Fig. 5 displays the distributions of ξx calculated from the
simulated data for various values of t and a given value η. In these
plots, the black solid line represents the expected behavior given
by Eq. (24), while the dashed line corresponds to the Gaussian
distribution with zero mean and unit variance. We observe a
good-quality collapse of the simulated distributions as well as an
excellent agreement between our in silico experiments and
theoretical predictions.

By combining the results of the mean squared displacement
(Fig. 3) with the distributions of rescaled positions ξx (Fig. 5), we
can identify two noteworthy cases: anomalous yet Brownian
diffusion (for η=−1) and non-Brownian yet Gaussian diffusion
(for η= 1). In the first case (η=−1), the mean squared
displacement increases linearly with time, but the position
distribution does not correspond to a Gaussian. These distinctive
characteristics define a pattern that was initially discovered by
Wang et al.28 in various systems associated with the diffusion of
colloidal particles. One of the main approaches to modeling this
behavior is due to Chubynsky and Slater55, who introduced
dynamics to the diffusion coefficient based on the advection-
diffusion equation, a model known as “diffusing diffusivity.”
However, in our hybrid model, the anomalous yet Brownian
diffusion emerges from the nontrivial interplay between the
medium’s heterogeneity and the particle trapping of the comb
model, which constitutes a quite different mechanism compared
to that of Chubynsky and Slater55.

In the second case (η= 1), both the analytic and simulated
distributions agree with the standard Gaussian, but the mean
squared displacement increases sublinearly with time (αx= 1/3).
Drawing inspiration from the terminology used by Wang et al.28,

we refer to this scenario as non-Brownian yet Gaussian diffusion.
This phenomenon also arises from time-rescaled Brownian
motion (which can be associated with the usual diffusion
equation featuring a time-dependent diffusion coefficient),
fractional Brownian motion, and generalized Langevin equations
with long-range memory56. In all these instances, non-Brownian
yet Gaussian diffusion stems from a single mechanism associated
with memory or other temporal processes. Conversely, in our
model, this behavior represents another nontrivial outcome
resulting from the interplay between the medium’s heterogeneity
and trapping mechanisms. An additional example of a system
displaying subdiffusion and Gaussian distributions is single-file
diffusion57,58. This process refers to the diffusive motion of
particles in narrow channels where particles are unable to pass
each other, resulting in prolonged trapping periods akin to those
observed in the comb model. However, it is worth noting that
single-file diffusion is characterized by a diffusive exponent
αx= 1/257,58, while in our hybrid comb model, the Gaussian
distribution is associated with a smaller diffusive exponent
αx= 1/3.

We further characterize the distributions of rescaled positions
along the backbone by estimating their average kurtoses κx as a
function of the diffusion coefficient exponent η. This quantity
measures whether a distribution exhibits fatter (κx > 3) or thinner
(κx < 3) tails relative to a Gaussian distribution (κx= 3). Figure 6
depicts the relationship between κx and η obtained from our in
silico experiments. Consistent with our previous observations, we
note that the distributions of ξx for η= 1 have the same kurtosis
of a Gaussian. Additionally, as the diffusion coefficient exponent
increases beyond η= 1, the kurtosis assumes values smaller than
κx= 3. Therefore, when the diffusion coefficient decreases faster

Fig. 3 Diffusive regimes in the hybrid comb model. a–h Time evolution of the mean squared displacement 〈x2(t)〉 obtained from the simulations for eight
distinct values of the diffusion coefficient exponent η∈ (− 3/2,− 1,− 1/2,− 1/4, 0, 1/2, 1, 3/2). In these log-log plots, circles represent results obtained
from our in silico experiments, solid lines display the adjusted power-law relationships, and dashed lines indicate the behavior of the usual comb model.
i Relationship between the diffusive exponent αx and the diffusion coefficient exponent η. The black dashed curve represents the exact result of Eq. (21).
The circles represent simulated results, with the gray shaded band indicating the standard error of the estimate for αx. The horizontal solid line marks the
boundary between superdiffusion (blue background) and subdiffusion (red background), while the horizontal dashed line indicates the subdiffusive regime
of the usual comb model.
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Fig. 4 Spreading patterns of particle positions along the backbone of the hybrid comb model. Each panel shows the temporal evolution of the marginal
distribution ρx(x, t) for the x-coordinate obtained from our in silico experiments for a specific value of the diffusion coefficient exponent η (indicated within
the panels). These curves represent kernel density estimates using Gaussian kernels with bandwidths determined following Scott’s rule. The color code
illustrates the progression of time.

Fig. 5 Collapse of the distributions of rescaled positions along the backbone. Each panel displays the marginal distributions ρx(ξx) of rescaled positions
ξx ¼ x=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ðtÞi

p
obtained from our simulations at different time values and a specific value of the diffusion coefficient exponent η (shown within the

panels). The colored curves represent kernel density estimates using Gaussian kernels with bandwidths determined according to Scott’s rule. The solid
curves correspond to the theoretical predictions of Eq. (24), while the dashed lines represent the Gaussian distribution with zero mean and unit variance.
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than an inverse proportion with the x-position, the combined
effects of trappings and heterogeneity impose strong enough
confinement on particles, causing their distribution tails to
decrease faster than a Gaussian. The kurtosis is not considerably
different from that of a Gaussian when η= 0 (usual comb,
κx ≈ 3.6), and by inspecting the distribution profiles in Fig. 5, we
observe that this value separates tent-like shapes from bell-like
shapes. The kurtosis increases rapidly as the value of η decreases
below the threshold separating superdiffusion from subdiffusion
(η=−1). For instance, κx ≈ 14 at the threshold value, whereas for
η=−3/2, the kurtosis is κx ≈ 100, reflecting the existence of huge
jumps caused by the superlinear increase of the diffusion
coefficient with distance from the origin along the backbone.

Conclusions
Nearly a century after Richardson’s seminal paper on atmo-
spheric diffusion in 19261, the concept of a state-dependent dif-
fusion coefficient continues to be one of the key paradigms for
understanding anomalous diffusion in heterogeneous media. In
its turn, the more recently introduced comb model41 offers a
simplified representation of diffusion on fractals and is widely
recognized as a paradigmatic model for subdiffusion resulting
from the state-independent (quenched) trapping mechanism. In
this manuscript, we have presented a hybrid model that combines
Richardson’s position-dependent diffusion coefficient with
branch structures emerging from the comb model that effectively
trap particles along the backbone of the comb. We have con-
sidered a power-law relationship between the diffusion coefficient
and the position along the backbone, expressed as
DxðxÞ ¼ Djxj�η, and obtained exact solutions for the joint and
marginal position distributions, as well as for the mean squared
displacement over the branches and along the backbone. More-
over, we have explored the connection between the diffusion
equation of our model and Langevin equations within the

isothermal interpretation, which in turn allowed us to simulate
the hybrid comb model and validate our exact findings.

Our hybrid comb model thus simultaneously incorporates the
influence of the medium’s heterogeneity and trapping mechan-
isms on diffusion along the backbone, allowing for the distinction
between these two mechanisms and the study of their interplay
on the diffusive process. Despite its simplicity, we have shown
that our model displays various diffusive regimes, and precisely
because of its simplicity, these patterns can all be comprehended
in terms of the combined effects of trapping and heterogeneity
mechanisms. We have observed that particle trapping along the
backbone attenuates the impact of the position-dependent dif-
fusion coefficient. As a result, superdiffusion can only occur when
the diffusion coefficient increases superlinearly with the x-posi-
tion, whereas in the absence of trapping, this diffusive regime
emerges whenever the diffusion coefficient increases with the x-
position. Our model exhibits anomalous yet Brownian diffusion28

when the diffusion coefficient is proportional to the position
along the backbone. This special case, where the mean squared
displacement increases linearly with time but the position dis-
tribution is not Gaussian, is often modeled by introducing tem-
poral dynamics to the diffusion coefficient, an approach known as
diffusing diffusivity55. However, anomalous yet Brownian diffu-
sion arises from an entirely different mechanism associated with
the nontrivial interplay between the two anomalous diffusion
mechanisms present in our model.

In addition, our hybrid comb model presents non-Brownian
yet Gaussian diffusion, characterized by a sublinear behavior of
the mean squared displacement with time accompanied by a
Gaussian position distribution. This type of diffusive behavior is
often associated with memory or other temporal processes56, but
in our case, it represents another consequence of the medium’s
heterogeneity and trapping mechanisms. The non-Brownian yet
Gaussian diffusion of our model somehow resembles the behavior
observed in single-file diffusion57,58, in which particles move
through narrow channels without the possibility of passing each
other. This type of diffusive motion is characterized by prolonged
trapping periods caused by the queuing of particles that need to
move in the same direction to allow individual particle move-
ments. Despite these similarities, the subdiffusive exponent of our
hybrid model is smaller than the one observed in single-file
diffusion.

Our work, however, is not without limitations, and one
undoubtedly pertains to the lack of explicitly considering interac-
tions among particles. Even short-range repulsive forces, such as
excluded volume interactions (where particles must not occupy
space already occupied by others), can completely modify the
resulting diffusive behavior of low-dimensional systems, as observed
in the case of single-file diffusion57,58. Indeed, research has counter-
intuitively found that hard-core particles moving on lattices with
comb-like structures, in the high-density limit, diffuse faster along
the backbone compared to the usual comb model59. This phe-
nomenon occurs because interactions reduce the time particles
spend on the branches due to collisions with other particles59,60.
Thus, the interplay between the medium’s heterogeneity and inter-
actions on the diffusive motion of particles on branch structures is a
fascinating question for future research to address. Other possibilities
for future investigations include understanding the effects of the
medium’s heterogeneity on the diffusive motion over more general
branched structures such as bundled structures61,62, as well as on
encounters between walkers63–65. Random collisions between par-
ticles can model various natural phenomena (such as chemical
reaction kinetics, pharmacokinetics, and foraging), and when
occurring over branched structures, they exhibit a property called
two-particle transience63, where two particles never meet but a single
particle can visit any site. Understanding whether and how the

Fig. 6 Fat-tail and thin-tail distributions emerging from the hybrid comb
model. Relationship between the kurtosis κx of the distributions of rescaled
positions ξx and the diffusion coefficient exponent η. The circles represent
the average kurtosis of the distributions of ξx obtained from our simulations
for t exceeding 103 (to avoid the transient behavior observed in Fig. 3).
Additionally, the gray shaded band indicates the standard deviation of κx.
The vertical solid line at η=−1 marks the boundary between superdiffusion
(blue background) and subdiffusion (red background), while the horizontal
dashed line indicates the Gaussian kurtosis (κx= 3) that separates fat-
tailed distributions (κx > 3, background with vertical stripes) from thin-tailed
distributions (κx < 3, background with horizontal stripes).
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medium’s heterogeneity affects two-particle transience remains an
open question.

Despite its limitations, our simple model contributes valuable
insights and encourages more cautious interpretations of
experimental measurements concerning the mean squared dis-
placement. Particularly when using these measurements to infer
properties of heterogeneous media, it is crucial to remain aware of
the potential existence of other unknown state-independent
mechanisms of anomalous diffusion that could modify the effects
of position-dependent diffusion coefficients. Furthermore, the
interplay between the anomalous diffusion mechanisms in our
model indicates that solely relying on the isolated detection of the
usual diffusion fingerprints may result in misinterpretation of
findings.
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