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Validity of gyrokinetic theory in
magnetized plasmas
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Gyrokinetics, as a reduced kinetic theory derived from adiabaticity, provides a general framework for
the long-term dynamics of magnetized plasmas. While its validity limits are stated in terms of formal
expansion parameters, more quantitative test of such is not widely mentioned even if it existed. Here
we show, by detailed analyses of the Hamiltonian map with a test particle model, that gyrokinetic
theory rests on the inherent nature of particle dynamics as a boundary layer problem. For low-
frequency fluctuations, we demonstrate the existence of a frequency-independent threshold in the
normalized amplitude, below which gyrokinetics is generally applicable. However, this threshold
becomes sensitive towave parameters in the high-frequency regime,which raises concerns about the
generality of high-frequency gyrokinetic theory. Further analyses indicate that constructing a reduced
kinetic equation based on superadiabaticity is not feasible. These findings contribute to a deeper
understanding of the basic physics behind gyrokinetic theory.

Magnetized plasmas are ionized gases in which the ambient magnetic field
significantly alters particle trajectories. They are known to play crucial roles
in various fields, including fusion research, solar-terrestrial and astro-
physical environments, and plasma-based industries. Physically, the fun-
damental challenge in understanding magnetized plasmas is the vast
disparity between the very fast gyromotion time scale of a charged particle
and the much slower characteristic time scales for collective instabilities.
Gyrokinetics provides a unified framework for describing the long-term
spatiotemporal evolution of magnetized plasmas (see refs. 1–3 and refer-
ences therein).As oneof themajor achievements inmodernplasmaphysics,
this theory was established by an asymptotic construction of the magnetic
moment adiabatic invariant �μ, initially through the gyro-averaging
method4–8 and later through the Lie-transform perturbation theory9–13.
The details of the charged particle’s gyromotion are not of dynamical
importance in the resulting gyrokinetic equation, which thereby reduces the
kinetic problem from six dimensions to five. After half a century of intense
pursuit, gyrokinetics now is the basis of numerous simulation codes and
theoretical models used to study plasma instabilities, turbulence, and
transport processes1,2,14–16. A notable example in this regard is the recent
launch of ambitious simulation projects that strive to deliver a high-fidelity
whole-device model of magnetic fusion devices within the gyrokinetic fra-
mework (see, e.g., ref. 17).

Despite its practical success, the validity regime of gyrokinetic theory is
typically stated by the nonlinear gyrokinetic ordering in terms of the formal
expansion parameters1,8,18 and often assumed. The gyrokinetic theory is a
reduced kinetic theory derived from adiabaticity. To ensure its generality, it

is essential to establish the robustness of adiabatic invariant across a wide
range of plasma conditions. Previous studies, however, mainly focus on the
construction of adiabatic invariant4,19–21, a clear physics picture of the
destructionmechanism is still lacking. The aim of this study is to illuminate
what kind of physics sets the validity limits of gyrokinetic theory. Below, we
will perform a thorough analysis of the nonlinear particle dynamics to
investigate (i) underwhich conditions the adiabaticitywould be broken and,
accordingly the gyrokinetic theory would become invalid; (ii) why the high-
frequency gyrokinetic theory, which was developed in the early 1980s18,22–26,
has not gained much popularity in implementation; (iii) whether the
superadiabaticity27 could also be utilized to construct a reduced kinetic
theory.

In this work, we show the conventional ordering assumption is not
precise enough for the strict validity of the gyrokinetic theory. The particle
dynamics must constitute a boundary layer problem to guarantee the per-
sistent existence of adiabatic invariant over a reasonably wide range of
conditions. Consequently, in contrast to previous ordering arguments
which are semi-quantitative in nature, we find a quantitative, frequency-
independent threshold in the normalized amplitude below which the
gyrokinetic theory is generally valid for low-frequency perturbations. Given
the ordering of spatiotemporal scales and fluctuation strength in the stan-
dard low-frequency gyrokinetic theory1, one could conclude that the cor-
responding normalized fluctuation level is considerably lower than the
threshold. Therefore, the existence of such a threshold exhibits the
robustness of the low-frequency gyrokinetic theory. The adiabaticity in
high-frequency regimes, however, is sensitive to wave parameters, which
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raises concerns about the fundamental hypotheses of high-frequency
gyrokinetic theory. Further analyses suggest that it is not possible to con-
struct a reduced kinetic equation from superadiabaticity.

Results
The model
To elucidate the key physics involved in these highly complex problems, we
restrict our attention to Taylor’s model4. This paradigm concerns the
charged particlemotion in a uniformmagnetic fieldB = Bezwith transverse
perturbations, which, after a straightforward derivation, is described by the
Hamiltonian

H ¼ 1
2
ðp2 þ q2Þ þ A cosωt cos q: ð1Þ

Here ω is the wave frequency and time is normalized to the gyroperiod
Ω−1 =mc/eB, with e being the charge and m the mass. Though simple,
Taylor’s model is of fundamental importance in magnetized plasmas and
was one of the seminal bases for the modern development of gyrokinetic
theory1. It represents the simplest paradigm for wave-particle dynamics in
both the electrostatic drift wave (with A ¼ �k2?eδϕ=ðmΩ2Þ)4 and shear
Alfvén wave (with A = (k⊥vA/Ω)(δB⊥/B))

28 (see Methods, section ‘Deriva-
tion of the model Hamiltonian’), where k⊥ is the perpendicular
wavenumber, vA denotes the Alfvén velocity, and δϕ and δB⊥ are,
respectively, amplitudes of the fluctuating electrostatic potential and
magnetic field. Note that here, the nonlinearity parameter A is determined
by the spatial scale and amplitude of the perturbation, but is independent of
the wave frequency. The particle dynamics in Eq. (1) can be conceptually
separated into two parts: the gyromotion about the background magnetic
field (the q2/2 term), and the wave-particle trapping due to the perturbation
(the A cosωt cos q term). Furthermore, one can easily verify that the phase
space flow arising from Eq. (1) exhibits time-reversal symmetry.Whenever
(q(t), p(t)) is an orbit of the system with the initial condition (q0, p0), both
(−q(− t),p(− t)) and (q(− t),−p(− t))will be physically allowable orbits,
with the initial conditions (−q0, p0) and (q0,−p0), respectively. For periodic
orbits, the associated dynamical invariant can be formulated as the action
integral

I ¼
I
γ
pdq; ð2Þ

where γ is a closed orbit at constant time.
Further progress is possible if one introduces a variableh conjugate to t,

yielding the extended phase space Hamiltonian

H ¼ 1
2
ðp2 þ q2Þ þ A cosωt cos q� h: ð3Þ

In this way, the time-dependent one-dimensional Hamiltonian system is
replaced by a two-dimensional Hamiltonian systemwhere time plays a role
analogous to that of an angle variable. Technically, to illustrate the long time
scale (ωt≫ 1) dynamical complexity of the system (which determines the
existence of invariants), we construct the Poincaré map in extended phase
space: xnþ1 ¼ MTxn, where x = (q, p), and the mapping MT is defined
such that the point xn at tn is advanced by Eq. (3) to the next crossing point
xn+1 at tn+1 = tn + T, with T = 2π/ω.

Stability analysis
The global property of a Hamiltonian system can be understood by
examining the orbits close tofixed points, which are either elliptic (stable) or
hyperbolic (unstable). As depicted in Fig. 1,MT exhibits two different types
of fixed points in accordance with the significance of nonlinearity. The
primary fixed point xp = (0, 0) is also the fixed point of the original system
(1). It becomes unstable when the linear parametric resonance29 occurs.
Secondary fixed points xs, as assured by Poincaré–Birkhoff theorem30, are

nonlinearly generated by a finite amplitude perturbation, half of which are
elliptic and the other half hyperbolic in an alternating sequence. In general,
the stability of secondary fixed points is not amenable to analytical analysis,
numerical computations are mandatory.

To clarify the nature of the primary fixed point, linear stability analysis
has been performed analytically via a perturbative treatment [Methods,
section “Stability of primary fixed point”]. It follows that different unstable
domains can be labeled by themarginal stability condition (ω = 2/m,A = 0),
with m a positive integer. Notably, a numerical evaluation of the linear
growth rate Imλ (see Fig. 2) identifies two distinct regimes. In the high-
frequency regime with ω≳Oð10�1Þ, the threshold amplitude Ac varies
rapidly with ω. However, the low-frequency regime (ω≲Oð10�1Þ) is

Fig. 1 | Examples of (primary and secondary) fixed points and (adiabatic,
superadiabatic, and chaotic) orbits. Colors indicate distinct particles in the phase
space, and x = (q, p) are the canonical coordinates. In this case, first, we evolve 180
particle orbits in time according to the Hamiltonian (1) for ω = 0.5 andA = 1.3, with
initial conditions (q0, p0) selected randomly in [ − 5, 5] × [ − 4, 4]. Then the phase
space portrait of the 2D Hamiltonian map xnþ1 ¼ MTxn is constructed such that
the point xn at tn is advanced to the next crossing point xn+1 at tn+1 = tn+ T, with the
wave period T = 2π/ω.

Fig. 2 | Stability diagram for the Taylor’s model. The color contours show Imλ of
Eq. (17), which measures the growth rate of separation of initially close orbits near
the primary fixed point x = (0, 0). ω and A are the wave frequency and amplitude,
respectively. The color bar represents the magnitude of Imλ. The white (magenta)
line is the threshold numerically evaluated for the onset of superadiabatic (chaotic)
orbits.
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characterized by a dense spectrum corresponding to high- order resonances
with m ≫ 1, where Imλ is insensitive to m and Ac piles up at a constant
value Ac = 1.

The dynamical features of the system are intrinsically linked to the type
of fixed points and, as illustrated in Fig. 1, can be put into three categories.
The adiabatic orbit rotates with respect to the primary fixed point in the
Poincaré map. The associated Kolmogorov–Arnold–Moser (KAM) torus30

is deformed but remains intact topologically. It possesses the adiabatic
invariant �μ, which can be derived from Eq. (2) via a perturbative treatment,
as in ref. 4. In regions of phase space where resonances take place, the
original KAM torus will be destroyed, and the perturbation series for �μ fails
to converge20.Nonetheless, the emergenceof anewKAMtorus gives rise to a
superadiabatic invariant27, leading to the orbit rotating around a secondary
fixed point. We refer to this type of orbit as the superadiabatic orbit.
The distinguishing feature of chaotic orbits is the destruction of separating
KAM tori. Quantitatively, the chaotic orbit in the present study is deter-
mined by the finite size Lyapunov exponent λL (for details, see “Methods:
Lyapunov analysis of orbit topology”). Examples in Fig. 3 show the topo-
logical differences between adiabatic, superadiabatic, and chaotic orbits in
extended phase space. The orbit in Fig. 3c displays a chaotic behavior with
λL ≃0.014.

We now examine the transition from adiabatic to superadiabatic/
chaotic orbits by scanning A and ω. A result, shown by the white line in
Fig. 2, is the identification of a quantitative, frequency-independent
thresholdAc≃ 1 for ω≲Oð10�1Þ, which ensures the general applicability of
adiabaticity in the low-frequency regime. To understand the physics of this
threshold, we notice that Eq. (1) can be rendered into a boundary layer
problem in the low-frequency limit, yielding

ω2 d
2q

dθ2
þ q� A cos θ sin q ¼ 0; ð4Þ

with θ =ωt. Equation (4) displaysmanifestly the disparity between the short
gyromotion time scale (∣∂θ∣ ~ ω−1), the wave-particle trapping time scale
(j∂θj∼

ffiffiffiffi
A

p
=ω), and the long time scale of the wave period (∣∂θ∣ ~ 1). On the

gyromotion time scale, cos θ can be treated as a constant, and one can easily
show that the primary fixed point becomes unstable when A > 1, in
agreement with Fig. 2. Here, the adiabaticity threshold Ac = 1 could be
interpreted as the condition that the wave-particle trapping frequency
(’

ffiffiffiffi
A

p
) of resonant particles is comparable to the gyrofrequency (=1). On

the long time scale ∂θ~1, we have q� A cos θ sin q ’ 0, then the secondary
fixed points, which appear on time scales long compared to thewave period,
are only possible if A ’ jq= sin qj≥ 1. Additionally, numerical analyses
suggest that Ac = 1 also gives a quantitative estimate for the chaotic
threshold in low-frequency regime, as seen in Fig. 2. There are no
superadiabatic or chaotic orbits forA < 1 in the low-frequency limit (see for
example, Fig. 4a, b). Figure 4c shows that a chaotic layer arises as the
homoclinic tangle30 formed in the proximity of the hyperbolic primaryfixed
point. But the onset of chaos via the heteroclinic tangle30, originating from
unstable hyperbolic secondary fixed points, is observed as well (see Fig. 4d).

Validity of gyrokinetic theory
From the discussion above, it follows that the gyrokinetic theory is valid in
the low-frequency regime. Even though this is consistent with the gyroki-
netic ordering assumptions1, the underlying physical interpretation is sub-
stantially different. The formal validity of gyrokinetic theory relies on the
particle dynamics constituting a boundary layer problem in the present
paradigm. This requirement establishes a quantitative, frequency-
independent adiabaticity threshold, ensuring the persistent existence of
the adiabatic invariant across a wide range of conditions. Thus, here, the
validity of the gyrokinetic theory is a quantitative issue. Once below the
threshold, gyrokinetics exhibits equal accuracy for all low-frequency waves.
In the conventional qualitative paradigm, however, the low-frequency
gyrokinetic theory is expected to be more accurate for the wave with lower
frequency. Therefore, the inherent nature of particle dynamics as a
boundary layer problem is essential for the validity of gyrokinetic theory.
Specifically, recalling the spatiotemporal scales and relativefluctuation levels
assumed in the low-frequency nonlinear gyrokinetic theory1:
k?v=Ω∼Oð1Þ, ∣ω/Ω∣≪ 1 and ∣eδϕ/mv2∣, ∣δB⊥/B∣≪ 1, one can readily show
that the associated normalized fluctuation amplitude is typically lower than
the threshold Ac = 1. The existence of such a quantitative and frequency-
independent adiabaticity threshold thus reveals the robustness of the
standard low-frequency gyrokinetic theory.

The separation of time scales does not apply for high-frequency per-
turbations. Accordingly, Fig. 2 shows that both the superadiabatic and
chaotic thresholds are highly sensitive to the wave frequency. Thus the
adiabaticity is not universally preserved, as opposed to the low-frequency
case. This difference calls into question the validity of high-frequency
gyrokinetic theory, which is derived from the assumption of adiabatic
orbits18,24–26. In addition, the breakdown of adiabaticity also vitiates the
fundamental hypothesis of high-frequency gyrokinetics that the existence of
gyrocenter coordinates is independent of ω. More specifically, noting that
the perpendicular particle velocity in the present uniform plasma model
satisfies vx∝ p and vy∝ q4, the phase space portraits ofMT (shown in Fig. 5)
indicate that the near identity transformation between the particle and
gyrocenter coordinates, which is expressed as an asymptotic expansion in
powers of the wave amplitude in Lie perturbation theory1,2,18,24, will be
invalidated by the presence of superadiabatic/chaotic orbits. The high-
frequency gyrokinetic theory is, therefore, strictly valid only in the linear
limit with A = 0+22,23. Nevertheless, when considering small but finite
amplitude perturbations, the linear high-frequency gyrokinetic theory
becomes inadequate for describing the particle dynamics near resonant
points (ω = 2/m), due to the neglect of parametric resonance effect. Con-
sequently, it cannot be utilized to develop quasilinear or weak turbulence
theories.

Unlike in the low-frequency regime, Fig. 2 shows that while high-
frequency perturbations break the adiabaticity more easily, the onset of
chaos deviates significantly from the superadiabatic threshold. In this
situation, one may attempt to construct a new reduced kinetic theory from
the superadiabatic invariant. Unfortunately, this possibility is excluded.
First, the intrinsically nonperturbative nature of superadiabatic orbits and

Fig. 3 | Comparison of the adiabatic, superadiabatic, and chaotic orbits in the extended phase space. The orbits are plotted for A = 1.3 and ω = 0.5 with different initial
conditions (q0, p0): (q0 = 3.2, p0 = 0) for the adiabatic orbit in (a), (q0 = 2.5, p0 = 0) for the superadiabatic orbit in (b), and (q0 = 1.0, p0 = 0) for the chaotic orbit in (c).
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the associated complexity of phase space structures (cf. Fig. 5) make it
difficult, if not impossible, toderive a comprehensive analytic description for
the superadiabatic invariant. Secondly, a general reduced kinetic theory
requires that all particles possess the same invariant over a reasonably broad

range of conditions. However, Fig. 5 demonstrates that different particles
could have distinct superadiabatic invariants at a fixed ω and, for each
specific particle, the existence of corresponding superadiabatic invariant
also depends sensitively on physical parameters.

Fig. 5 | Phase space portrait of the 2D Hamiltonian map in a high-frequency
regime.Colors indicate distinct particles. In this case, we evolve 180 particle orbits in
time according to the Hamiltonian (1) for a ω = 0.50, A = 0.9, b ω = 0.52, A = 0.9,
c ω = 1.00, A = 0.9, d ω = 0.98, A = 0.9, e ω = 0.50, A = 1.3, f ω = 0.52, A = 1.3,

g ω = 1.00, A = 1.3, and h ω = 0.98, A = 1.3, where initial conditions (q0, p0) are
selected randomly in [ −5, 5] × [ − 4, 4]. Then the 2D Hamiltonian map xnþ1 ¼
MTxn is constructed such that the point xn at tn is advanced to the next crossing
point xn+1 at tn+1 = tn+ T, with the wave period T = 2π/ω.

Fig. 4 | Phase space portrait of the 2DHamiltonianmap in low-frequency regime.
Colors indicate distinct particles. In this case, we evolve 180 particle orbits in time
according to the Hamiltonian (1) for a ω = 0.06, A = 0.9, b ω = 0.059, A = 0.9, c ω =
0.06,A = 1.01, anddω = 0.059,A = 1.01, where initial conditions (q0, p0) are selected

randomly in [− 3, 3] × [− 1.5, 1.5]. Then the 2DHamiltonianmap xnþ1 ¼ MTxn is
constructed such that the point xn at tn is advanced to the next crossing point xn+1 at
tn+1 = tn+ T, with the wave period T = 2π/ω.
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Whilst it is well established that the Lie series20 of adiabatic/super-
adiabatic invariantwill not converge for chaotic orbits due to the presence of
nonlinear resonance28,31, intuition suggests that it might be possible to
construct a gyrokinetic theory valid for a sufficiently long time via the gyro-
averaging approach, if the orbit is onlymarginally chaotic.However, wefind
that once the chaotic threshold is exceeded, homoclinic and heteroclinic
tangles can scatter the particle motion into different types of orbits without
regularity, as shown in Fig. 6. In this scenario, the gyro-averaging (which
refers to the integration along unperturbed adiabatic/superadiabatic orbits
here) is ill-defined. It is thus impossible to properly account for the chaotic
motion in both gyro-averaging and Lie perturbation approaches.

Discussion
We investigate the validity of gyrokinetic theory by employing the simplest
paradigm. It is demonstrated that the conventional ordering assumption
may not be precise enough for the strict validity of the gyrokinetic theory.
The particle dynamics must constitute a boundary layer problem to guar-
antee the persistent existence of adiabatic invariance over a wide range of
conditions. Accordingly, contrary to previous semi-quantitative ordering
arguments, we find a quantitative, frequency-independent adiabaticity
threshold Ac below which the gyrokinetic theory is universally valid in the
low-frequency regime. In particular, using the spatiotemporal scales and
fluctuation levels in the low-frequency nonlinear gyrokinetic theory, it can
be estimated that the corresponding normalized fluctuation amplitude is
considerably lower than the thresholdAc. In this sense, the existence of such
a threshold reveals the robustness of the standard low-frequency gyrokinetic
theory. In the high-frequency regime, however, the adiabaticity displays
sensitive dependence on the wave parameters, which thereby raises con-
cerns about the fundamental hypotheses of high-frequency gyrokinetic
theory. Furthermore, unlike the situation with adiabaticity, it is not feasible
to develop a new general reduced kinetic theory based on superadiabaticity.

From these considerations, we conclude that once the wave amplitude
satisfies A < Ac, the gyrokinetic theory is reasonably applicable to the low-
frequency drift-Alfvénic turbulence, whose wave frequency is typically
Oð10�2Þ smaller than thegyrofrequency16.Meanwhile, recalling thedefinition
ofA, it is worthmentioning the conditionA <Ac implies that the drift kinetic
theory, which assumes k⊥→ 0+ and ω≪Ω, applies for arbitrary fluctuation
amplitudes, consistent with previous results32,33. But still, it is of great concern
whether one can employ the gyrokinetic theory, for example, in the vicinity of
the separatrix of modern divertor tokamaks, where the radial wavenumber
tends todivergedue to themagnetic topology change34. Since there exist global
nonlinear gyrokinetic codes including the divertor X-point region, such as
XGC35, it would be important to compare the predictions of turbulent fluxes
and plasma profile evolution across the separatrix resulting from nonlinear
gyrokinetic simulations with those of first-principle kinetic analyses at fixed
boundary conditions (by this, we mean decoupling the well known compli-
cations of extending kinetic simulations into the plasma scrape-off layer.).

Moreover, we remark that while this study only deals with a single-
frequency fluctuation in order to simplify the presentation, the present
analysis can be readily generalized to turbulencewith a broad spectrum, and
the conclusions remain valid. In addition to the time scale considered here,

spatial variations may also break the adiabatic invariant, as observed
numerically in spherical tokamaks36,37. Though a similar approach could
also apply here, a systematic and analytically treatable formalism incor-
porating both the spatial and time scales on an equal footing is beyond the
intended scope of this study.

Methods
Derivation of the model Hamiltonian
Following4, we consider the motion of a charged particle immersed in a
uniform magnetic field B = Bez with the electrostatic perturbation

E ¼ �∇Φ � ∇½δϕ cosðωtÞ cosðk?xÞ�: ð5Þ

The associated particle Hamiltonian can be written

H ¼ 1
2m

½p2x þ ðpy �
eBx
c
Þ2 þ p2z � þ eΦ; ð6Þ

where the momenta py =mvy + eBx/c and pz are constant. Then, the
equations of motion are

_px ¼
eB
mc

ðpy �
eBx
c
Þ � ek?δϕ cosðωtÞ sinðk?xÞ;

_x ¼ px
m
:

ð7Þ

By taking py = 0, Eq. (7) becomes an oscillator under the influence of
external force

€x þΩ2x ¼ � ek?δϕ
m

cosðωtÞ sinðk?xÞ: ð8Þ

Normalizing the space to k�1
? and time to Ω−1, Eq. (8) is readily cast as

€qþ q ¼ A cosωt sin q; ð9Þ

which is derivable from the Hamiltonian (1) with A ¼ �k2?eδϕ=ðmΩ2Þ,
q = k⊥x, and p ¼ _q. Therefore, it can be recognized that parameter A is the
normalized amplitude of the perturbed force and quantifies the strength of
nonlinearity.

Equation (1) offers a simple paradigm for the wave-particle dynamics
in shearAlfvénwave (SAW)28 aswell.To see this, letus consideranobliquely
propagating (k = kzez+ kxex) shear Alfvén wave, whose electromagnetic
fluctuation, by employing the Walén relation38, can be expressed as
δB = δByey and δE = (vA/c)δByex. Then the Lorentz equations of motion are

m _vx ¼
e
c
½vyBþ ðvA � vzÞδBy�;

vy ¼ �Ωx;

m _vz ¼
e
c
vxδBy;

ð10Þ

and the energy v2 ¼ v2x þ v2y þ ðvz � vAÞ2 is a constant of motion.
Although Eq. (10) states that SAW can influence the parallel particle

dynamics and bring relevant extra-dimensions to the system, it was
shown39 that the particle motion is non-chaotic for parallel propagation
SAWs (k = kzez). The perpendicular dynamics with a finite kx is essential
for the chaotic behavior of the system40. To provide analytical insights
and, thus, clarity in illustration, we focus on the particles initially cold in
the laboratory frame (v2z ð0Þ≪v2A). To the first order in δBy/B, one arrives
at the formula

€x þΩ2x ¼ ðvA � vzð0ÞÞΩ
δBy

B
: ð11Þ

1

Fig. 6 | Typical evolution of the 2D Hamiltonian map for marginally chaotic
orbits.The particle is randomly scattered into different types of orbits by homoclinic
(a) or heteroclinic (b) tangles.
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Again, if we normalize x to k�1
? and time to Ω−1, and take the SAW fre-

quency ωA ≃ k∥vA/Ω, Eq. (11) can be rendered into

€qþ q ¼ k?ðvA � vzð0ÞÞ
Ω

δBy

B
: ð12Þ

WritingδBy ¼ δB? cosððωA � kkvzÞtÞ sinðk?xÞ andω=ωA−k∥vz(0)≃ωA,
Eq. (12) becomes identical to Eq. (9) with A= (k⊥vA/Ω)(δB⊥/B) and q = k⊥x.

Furthermore, it should be stressed that the arguments presented in the
current study can also be applied to ascertain the existence of adiabaticity
when retaining parallel dynamics. In particular, using ðvz � vAÞ2 ¼
v2 � v2x � v2y , Eq. (12) can be cast as

€qþ q ¼
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2?v2 �Ω2ð _q2 þ q2Þ

q
Ω

δB?
B

cosðkk
Z t

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 �Ω2

k2?
ð _q2 þ q2Þ

s
dt0

Ω
Þ sin q;

ð13Þ

in which σ denotes the sign of vA − vz. For the primary fixed point, line-
arizing Eq. (13) around (q = 0, p = 0) yields the same expression as Eq. (15)
with v2 ¼ ðvzð0Þ � vAÞ2. Hence, Fig. 2 also characterizes the primary fixed
point stability of the system (10).On the other hand, noting that Eq. (13) is a
boundary layer problem in the low-frequency limit, we find the secondary
fixed points appearing on long time scales are only possible if

k?v
Ω

δB?
B

’ j qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ω2

k2?v2
ð _q2 þ q2Þ

q
cosðkk

R t
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � Ω2

k2?
ð _q2 þ q2Þ

q
dt0
Ω Þ sin q

j>1:

ð14Þ

As a result, the system (10) still possesses the quantitative and frequency-
independent adiabaticity threshold Ac = (k⊥v/Ω)(δB⊥/B) = 1 in the low-
frequency regime.

Stability of primary fixed point
The derivation of the stability condition of the primary fixed point starts
from the Hamiltonian in Eq. (1). By approximating cos q ’ 1� q2=2, the
corresponding equation of motion reduces to a Mathieu equation:

€qþ ð1� A cosωtÞq ¼ 0: ð15Þ

According to the Floquet theory, the formal solution of Eq. (15) can be
expressed as

q ¼ eiλt
X
n

Qne
inωt ; ð16Þ

where the Floquet characteristic exponent λ is a measure of the rate of
separationof orbits close to theprimaryfixedpoint.xp is elliptic (hyperbolic)
if λ is real (complex). Substituting Eq. (16) into Eq. (15) and following the
procedure in ref. 41, one obtains

λ ¼
ω
π arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð0Þsin2ðπωÞ

q
; ω≠ 1

l ;

ω
2π arccos½2Dðω2Þ � 1�; ω ¼ 1

l ;

8<
: ð17Þ

where D is the determinant of an infinite tridiagonal matrix D = (djk) with

djk ¼
1 if k ¼ j;

A
2½ðλþjωÞ2�1� if k ¼ j± 1;

0 otherwise:

8><
>: ð18Þ

l, j, k are integers. For sufficiently smallA≪ω2/2, an analytic expression for
D(0) can be concisely given as D(0) ≃ 1 − RA2 with

R � ðπ=ωÞ cotðπ=ωÞ=2ð4� ω2Þ41. Bymeans of Eq. (17), one can derive the
threshold for hyperbolic xp

A2
c ¼

R�1 if R>0;

R�1ð1� sin�2 π
ωÞ otherwise:

(
ð19Þ

Equation (19) allows one to label different unstable domains using the
marginal stability condition (ω = 2/m, A = 0), withm a positive integer.

Lyapunov analysis of orbit topology
Chaotic orbits in this work are determined in terms of amodified version of
the finite size Lyapunov exponent (FSLE) λL.

Consider at t = 0 a reference trajectory x(0) and a perturbed trajectory
x0ð0Þ ¼ xð0Þ þ δxð0Þ, the basic idea behind FSLE is to quantify the average
rate of error growth at different scales when subject to non-infinitesimal
perturbations42. Specifically, let us first take an infinitesimal initial pertur-
bation δmin ≪ 1 and choose a set of thresholds at different scales δn = δ0ρ

n.
Here, δmin≪ δ0≪ 1, n = 0,⋯, N, ρ > 1, and δN accounts for the maximum
allowed separation. The parameters we have adopted for the current study
are δmin = 10−6, d0 = ∣δx(0)∣+ 10−5 and ρ ¼ ffiffiffi

2
p

. The trajectories are
advanced using a fourth-order Runge–Kutta algorithm. After the pertur-
bationhas grown from δmin to δ0, wemeasure the time ti(δn) from δn to δn+1.
A single error-doubling experiment completes when the error reaches δN.
Then this procedure is repeatedM times to obtain the set of doubling times
{ti(δn)} for i = 1, ⋯, M error-doubling experiments. The growth rate γi is
estimated through the average of τi across different scales,

γi ¼
ln ρ

hτiðδnÞiδ
: ð20Þ

We define the averaged FSLE as the averaging over doubling experiments
λL ¼ hγiiM . Numerically, we find Eq. (20) converges much faster than the
FSLE originally given in ref. 42.

Data availability
The data depicted in the plots of this paper is available from the corre-
sponding author upon reasonable request.
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