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Enhancing urban resilience through
machine learning-supported flood risk
assessment: integrating flood
susceptibility with building function
vulnerability
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Urban flooding threatens urban resilience and challenges SDGs 11 and 13. This study assesses urban
building flood risk in Guangzhou by integrating flood susceptibility with building function vulnerability.
Using a Random Forest (RF) model, it predicts flood susceptibility based on flood records,
hydrological, topographical, and anthropogenic features. TheCategorical Boosting (CatBoost) model
identifies building functions using POI and AOI data. Results reveal significant spatial variations:
central districts exhibit higher flood susceptibility, while peripheral areas remain less affected. Over
half of the buildings are moderately vulnerable, with only a small fraction highly vulnerable. Based on
flood susceptibility and functional vulnerability, Guangzhou is classified into three district types:
central urban (Type I), intermediate urban (Type II), and suburban/rural (Type III). The study
underscores the need for tailored flood risk management strategies to address these disparities and
mitigate climate change-induced water hazards.

Urban flooding—which occurswhen rainfall overwhelms drainage capacity
—is an increasingly pressing challenge for global cities, especially with the
compounding effects of climate change1,2. The primary causes of flooding
include rapid urbanization, which increases impervious surfaces and
reduces natural absorption, as well as inadequate drainage infrastructure
that struggles to handle intense precipitation3. These conditions are further
exacerbated by climate change, which drives more frequent rainfall events
and alters storm patterns4.

The impacts of urban flooding are extensive, causing personal injuries,
significant property damage, and disruptions to essential urban infra-
structure such as transportation, healthcare, and water services5. These
consequences pose substantial barriers to achieving the Sustainable Devel-
opment Goals (SDGs), notably SDG 11.5 and 13.1, for resilient actions to
combat climate change6–8. This study spares time on building risk caused by
urban flooding and explores potential coping measures.

Previous studies focus on the direct impacts of flooding on building
structures and the resulting economic losses9–11. However, research on the

disruption of building functions (or functional disruptions for short) caused
by flooding and its socio-economic implications remains relatively
limited5,12. These oversights may underestimate the long-term socio-eco-
nomic impacts of flooding6, misallocate resources, exacerbate societal bur-
dens in the aftermath of floods11, and hinder the rapid recovery of critical
facilities, such as hospitals and shelters, during floods13,14.

In the field of flood risk management and disaster reduction,
physically-based models remain a predominant approach for simu-
lating the physical processes contributing to flooding, such as rainfall,
runoff, and infiltration. Thesemodels are grounded in the fundamental
principles of hydrology and physics, offering detailed simulations that
enhance our understanding of flood dynamics. Common examples
include the MIKE Flood Model, PCSWMM 2D, and HEC-RAS. While
these models are highly effective for understanding flood events, they
require extensive calibration data and substantial computational
resources, which can limit their applicability in regions with inade-
quate data infrastructure, particularly in developing countries15,16.
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Furthermore, these models are not well-suited for flood susceptibility
modeling in large-scale regions17,18.

Machine learning (ML)methods, on the other hand, are emerging as a
promising alternative in flood risk management and disaster reduction19,20.
Unlike physically-based models, ML approaches leverage algorithms to
automatically learn patterns from historical data, such as rainfall, land use,
and flood records21. Popular Algorithms like Random Forest (RF)22,23,
SupportVectorMachines (SVM)24,25, andCatBoost26,27 arewidely applied to
predict flood susceptibility. Specifically, previous studies have shown that
the RF performs better than methods like LightGBM, Artificial Neural
Networks (ANN), and SVM in flood susceptibility mapping16,28.

Rivals of these ML models are the Deep Learning (DL) methods. For
example, Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) are commonly used in flood susceptibility analysis. The
drawbacks of these DL methods include significant computational power,
massive historical data, and the complexity of multiple hyperparameters16.
These limitationsmakeDL techniques less practical in scenarios where data
and computational resources are constrained.

Considering the resource-intensive nature of DL methods and the
practical constraints in the analyzed case, this study relies onML techniques.
They offer a balanced solution with limited data availability, combining
efficiency and reliability without the need for extensive datasets or complex
architectures.

In China, the use of machine learning in flood risk and disaster
management research has grown significantly29–31. One research area is to
testify the performance of single and hybrid ML models in the flood sus-
ceptibility analysis. For instance, Yao et al. (2022) compared sixMLmodels
(linear regression, K-nearest neighbors, support vector machine, random
forest, stacking ensemblemodels, and blending ensemblemodels), and used
them to evaluate the flash flood susceptibility in Jiangxi32. Another promi-
nent direction involves using new data sources to improve flood suscept-
ibility mapping, addressing the limitations of sparse and insufficient flood
inventory data from historical records and field surveys. Li et al. (2023)
addressed data scarcity issues in Chengdu by leveraging Sina Weibo data,
which allowed for urban flood susceptibility assessment and monitoring33.
Fang et al. (2022) incorporated the simulation results of the hydrodynamic
model (HEC-HMS/RAS) and rapid floodmodel (Height Above theNearest
Drainage,HAND) into theRFmodel to enhance the training and validation
procedures for the flood susceptibility assessment of Xinluo watershed18.

Despite these attempts inML techniques, studies exploring the broader
applications of flood susceptibility mapping remain limited in China. Some
global studies have utilized susceptibilitymaps to assessflood risk for critical
infrastructures. For instance, Yousefi et al. (2020) and Pourghasemi et al.,
(2021) evaluated the flood risk to schools and other infrastructures in
Iran34,35.Nkeki et al. (2022) examined theurban infrastructural susceptibility
of bridges and culverts, road networks, and buildings inNigeria36. Similarly,
Ruiz and Rajib (2022) developed a flood susceptibility index for critical
infrastructure inUS cities37. In this context, our research seeks to bridge this
gap by exploring building flood risk based on susceptibility maps, offering a
Chinese case study.

Guangzhou is a deltaic megacity, long been severely affected
by flooding, which not only poses a threat to the safety of its residents
but also creates ongoing challenges for infrastructure and economic
development4,38,39. Although various policy innovations have been imple-
mented since 2000, including the extensive promotion of green infra-
structure and the enhancement of urban drainage systems40,41, the
importance of building functionality has consistently been overlooked.
This phenomenon is common across most cities in China. The findings of
this research enrich the knowledge on how different urban elements con-
tribute to city resilience, and how adaptation strategies are designed42–44.

Results
Multicollinearity analysis and sensitivity analysis
Figure 1 shows the pairwise correlations between flood conditioning fea-
tures. The Pearson coefficients for all tested features are under the threshold

of 0.8. It indicates that all flood conditioning features are independent,
thereby further utilizing the RF model for the FSM.

For sensitivity analysis, we used feature importance from theRFmodel
to evaluate the influence of various factors onflooding (Fig. 2). Landuse and
land cover, NDVI, and distance from roads emerge as the most influential
factors. In contrast, features such as elevation, building density (NDBI), and
distance from culverts and interchanges exhibit moderate influence. Other
features, including distance to rivers, slope, plan curvature, and annual
average daily rainfall, show comparatively low feature importance.

Figure 3 illustrates the cumulative variance explained by the first 15
principal components (PCs) derived from the PCAprocess. It demonstrates
that the first 15 principal components cumulatively explain over 80% of the
variance in the original dataset, ensuring that these components effectively
capture the most significant information.

The sensitivity analysis of theCatBoostmodelwas conducted using the
feature importance derived from the principal components (PCs). Figure 4
displays the feature importance of the 15 principal components (PCs) as
used by the CatBoost model for classifying building functions. The x-axis
represents the feature importance score, while the y-axis lists the 15 PCs.
PC1, PC2, and PC3 are the most important components, with feature
importance scores exceeding 8. These PCs capture the dominant patterns in
the data and are crucial for accurately identifying building functions. PC4,
PC5, and PC6 show moderate importance, with scores between 5 and 7.
These components contribute secondary but still significant information for
the model’s predictions. PC10 through PC15 have relatively lower impor-
tance, with scores below 4. These PCs account forminor patterns in the data
that have a limited impact on the model’s performance.

Urban Flood Susceptibility
Figure 5 presents the distinct spatial distribution of flood susceptibility in
Guangzhou across the urban fabrics (resolution: 100m×100m). The “Very
High” susceptibility zones are predominantly situated in Guangzhou’s
central urban districts, such as Liwan, Yuexiu, Tianhe, Haizhu, and Baiyun
districts. The “High” and “Moderate” susceptibility areas are commonly
aligned with major road networks. In contrast, the “Low” and “Very low”
susceptibility regions aremainly found inGuangzhou’s peripheral northern
and eastern districts, such as the Conghua and Zengcheng districts.

Table 1 shows the area and percentage of each urban flood suscept-
ibility level. A significant 61.45% of the area falls within the “Very Low”
susceptibility category, demonstrating areas that are least likely to experi-
ence urban flooding under normal circumstances. The “Low” and “Mod-
erate” categories encompass 12.39% and 9.13% of the area, respectively,
indicating regions where flood probabilities are present but less extensive.
Notably, the “High” and “VeryHigh” susceptibility levels, while comprising
just over 8.51% and 8.52%, respectively.

“Very High” susceptibility districts are characterized by their dense
urban development and substantial population clusters, which can
exacerbate the risk and consequences of flooding events. This linear dis-
tribution of “Moderate” susceptibility areas along thoroughfares could be
indicative of the areas where water tends to accumulate during heavy
rainfall, due to the impervious surfaces and possible inadequacies in drai-
nage systems. The “Low” and “Very low” areas are characterized by less
intensive development and lower population densities and might benefit
from natural drainage basins and more permeable land surfaces, which
would reduce flood susceptibility.

Building function vulnerability
Figure 6 presents the map of building functions in Guangzhou. Table 2
provides statistics on the number and proportion of buildings for each
function and each function vulnerability. The “LowVulnerability” category
includes 637,966 commercial buildings, accounting for 35.64% of the total,
55,491 industrial buildings, comprising 3.10%, and 1211 cultural buildings,
which represent 0.07%. The combined sum for this category is 694,668
buildings,making up38.81%of the total. Residential buildings fall under the
“Moderate Vulnerability” category, with a total count of 1,077,961,
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representing the largest proportion at 60.22%. The “High Vulnerability”
category includes 552 public service buildings (0.03%), 3057 healthcare
buildings (0.17%), and 13,903 educational buildings (0.85%). The total
count for “High Vulnerability” buildings is 17,512, which constitutes 0.98%
of the total.

Figure 7 shows the result of building function vulnerability. Figure 8
shows the proportion of buildings of each level of function vulnerability in

each district. The spatial distribution of building function vulnerability
reveals significant variations across Guangzhou’s districts. Low-
vulnerability buildings account for the majority in districts like Yuexiu
(64.75%), Liwan (64.67%), and Baiyun (54.66%). Moderate vulnerability

Fig. 2 | Flood conditioning features importance.

Fig. 3 | Cumulative variance explained by first 15 PCA components of building
function identification features.

Fig. 1 | The pairwise correlation heatmap of the flood conditioning features.Values range from –1 (strong negative correlation) to+1 (strong positive correlation), with
red representing positive correlation and blue indicating negative correlation.
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buildings (primarily residential buildings) are most prevalent in suburban
and less urbanized areas, such as Conghua (83.66%), Nansha (70.62%), and
Zengcheng (70.26%). High-vulnerability buildings, including hospitals,
schools, and other essential public infrastructure, are rare across all districts,
with slightly higher concentrations in Tianhe (4.32%) and Yuexiu (4.10%).
These districts may host a greater number of critical public facilities,
increasing their vulnerability to flood impacts.

Building flood risk
Figure 9 shows the result of building flood risk. The flood risk levels of
buildings are determined using the natural breaks method. This method
seeks to minimize the variance within classes and maximize the variance
between classes. Table 3 describes the statistical results of buildingflood risk.
Buildings falling under the “Very Low” and “Low” risk categories account
for 13.66% and 24.16%, respectively. This suggests that most buildings are
situated in low susceptibility zones or designed with less vulnerable func-
tions. Conversely, the “Very High” risk categories encompass 15.99% of the
total buildings. These buildings are likely in flood-prone locations or per-
form functions critical enough that even minor flooding could result in
substantial consequences.

Figure 10 shows the percentage of buildings in each flood risk class at
the district level. Districts such as Conghua, Nansha, and Zengcheng have a
significant proportion of buildings in the very low and low-risk categories
(Fig. 10a and b). For instance, Conghua has 34.38% of its buildings in the
very low-risk category and 26.44% in the low-risk category, making a
combined total of over60%. Similarly, Zengchenghas 25.80%of buildings at
very low risk and 27.22% at low risk, indicating a lower overall flood risk in
these districts.

The proportion of moderate-risk buildings is highest in Yuexiu and
Liwan (Fig. 10c), accounting for 56.83% and 55.07%, respectively. Districts
like Haizhu, Tianhe, and Panyu exhibit higher proportions of buildings in
the high and very high-risk categories (Fig. 10e and f). Haizhu stands out
with 36.28% of its buildings categorized as very high risk and an additional
10.45% at high risk. Tianhe also shows a considerable proportion of high-
risk buildings, with 15.13% at high risk and 30.87% at very high risk. Panyu
has 19.67% of its buildings at high risk and 30.61% at very high risk.

This study categorizes Guangzhou’s districts into three types based on
the flood susceptibility and functional vulnerability of buildings at very high
and high risk. These types are central urban districts (Type I), intermediate
urban districts (Type II), and suburban/rural districts (Type III) (Fig. 11).
The primary distinction among these types lies in the flood susceptibility
range where moderate and high function vulnerability are concentrated. In
central urban districts (Tianhe, Liwan, Yuexiu, Haizhu), buildings exhibit
the highest flood susceptibility, with values concentrated in the 0.9–1.0
range. Intermediate urban districts (Baiyun, Huangpu, Panyu) show a
broader flood susceptibility range, from 0.7 to 0.9, where buildings with
moderate to high functional vulnerability face similar levels of risk. In
suburban and rural districts (Nansha, Conghua, Huadu, Zengcheng), flood
susceptibility is moderate, with values primarily concentrated in the
0.6–0.8 range.

Validation
The RF model for urban flood susceptibility mapping demonstrates high
accuracy, with a score of 0.9132, further validation through the ROC curve,
and anAUCvalue of 0.9494, as depicted in Fig. 12a. The training accuracy is
0.9627. The 5-fold cross-validation scores for the model are as follows:
0.9179, 0.9254, 0.9254, 0.8731, 0.9328, with a mean cross-validation accu-
racy of 0.9149. Given these metrics, we assess the model’s predictive per-
formance as adequate for the intended application.

The CatBoost model for building function identification shows rela-
tively high accuracy, with a score of 0.8561. The ROC curves and AUC
values for each class are shown in Fig. 12b. The accuracy is as follows:
commercial class 0.8333, residential class 0.8595, industrial class 0.8451, and
educational class 0.8455. The training accuracy is 0.9320. The 5-fold cross-
validation scores for themodel are as follows: 0.9235 0.9239, 0.9242, 0.9248,

Fig. 4 | Feature importance of the PCA components for building function
identification.

Fig. 5 | The urban flood susceptibility map of Guangzhou (resolution: 100 m ×
100 m).

Table 1 | The distinction of urban flood susceptibility

Level Area (km2) Percentage

Very low 4437.6 61.45%

Low 894.79 12.39%

Moderate 659.09 9.13%

High 614.88 8.51%

Very high 615.24 8.52%
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0.9230, with a mean cross-validation accuracy of 0.9239. This suggests that
the model is well-generalized and does not exhibit significant overfitting.
We randomly sampled the identified building functions and compared
them with satellite imagery and Baidu Street View observations. The ana-
lysis revealed a strong alignment between the predicted functions and the
actual building uses (Supplementary Table 3).

Discussion
We propose some measures for high-risk and very high-risk buildings,
incorporating four strategies: avoidance, resistance, resilience, and
reparability12,45,46 (Table 4). Avoidance focuses on reducing exposure by
situating buildings in low-risk zones, elevating structures, or employing
physical barriers. Resistance emphasizes measures to prevent floodwater
from entering buildings, such as installing flood doors and barriers or using
waterproof materials. Resilience aims to mitigate long-term damages by
incorporating features that facilitate quick drying, cleaning, and re-
occupancy while maintaining structural stability. Reparability, as a subset

of resilience, highlights the importance of designing elements that are easy to
repair or replace, such as modular fixtures or sacrificial finishes.

This studymakes significant contributions to the existing literature on
urban flood risk assessment and aligns directly with the goals of Sustainable
Development Goals (SDGs) 11.5 and 13.1, which emphasize reducing the
adverse impacts of natural disasters and enhancing adaptive capacity to
climate-related hazards. By adopting Random Forest (RF) and CatBoost
models for urban flood analysis, the study broadens the application of
machine learning (ML) techniques in building flood risk modeling. It is
considered as a field where applications remain relatively limited21,47,48.

A notable innovation in this study is the development of a novel
approach to defining non-flooded points for the RF model. Specifically,
non-floodedpoints are identified as those beyond the three-quartermark of
the shortest distances between all pairs of flooded points. This criterion
significantly enhances model performance (Table 5). This methodological
improvement addresses key challenges in flood susceptibility modeling and
sets a new standard for similar analyses.

Table 2 | The statistics of building function and function vulnerability

Vulnerability level Vulnerability Building function Count Sum (Count) Percentage Sum (Percentage)

Low 1 Commercial 637,966 694,668 35.64% 38.81%

Industrial 55,491 3.10%

Cultural 1211 0.07%

Moderate 2 Residential 1,077,961 1,077,961 60.22% 60.22%

High 3 Public service 552 17,512 0.03% 0.98%

Healthcare 3057 0.17%

Educational 13,903 0.78%

Fig. 6 | Building function classification and spatial distribution in Guangzhou.
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In termsof building function identification, previous studies have often
relied on urban land-use data or street-view imagery to infer functions49,50.
While Point of Interest (POI) and Area of Interest (AOI) data have been
explored, their full potential remains untapped. Existing research has pri-
marily integrated POI, AOI, and building geometry with morphology to
infer building functions51,52. This study expands the utilization of POI and
AOI data by employing the CatBoost model to infer building functions,
particularly in areas where POI and AOI data are sparse.

Additionally, this study advances the understanding of building vul-
nerability grading in China by drawing inspiration from the United King-
dom. Traditionally, building vulnerability classifications in China have
primarily focused on structural and material performance during
earthquakes53. To address the gap inflood-related vulnerability assessments,

this research adapts and integrates the UK’s National Planning Policy
Framework54, using its highest standards as a reference to assign vulner-
ability values.

The proposed methodology is adaptable to other cities. For the flood
susceptibility model, the method for defining non-flooded points can be
directly applied in cities with flood records. For building function identifi-
cation, the integration of POI andAOI data provides a practical framework,
as many cities have access to similar datasets or can leverage publicly
available resources.

Two points should be cautious in the broader applicability of this
methodology. First, flood recordsmay introduce systematic bias, as they are
typically obtained from official monitoring stations that are often unevenly
distributed. These stations are usually concentrated in urban centers, with

Fig. 7 | Spatial distribution of building function vulnerability levels in Guangzhou.

Fig. 8 | The proportion of buildings of each level of
function vulnerability in each district.
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limited coverage in suburban or rural areas. Future studies could address
this limitation by incorporating additional data sources, such as news
reports or social media. Second, feature selection requires local knowledge,
including specific building usage patterns, which may vary significantly
across different cities.

One limitation of this study lies in the methodology. It includes
technical validation and field-based verification. Field validation
involved randomly sampling building functions and comparing them
with satellite imagery and Baidu Street View. However, the availability of
street view data limited the scope of validation, which may leave some
uncertainty.

Future research could explore several directions to further advance
this study. One promising avenue is to investigate the performance of
alternative models, such as deep learning techniques, in flood suscept-
ibility mapping and building function identification, to evaluate their
potential advantages and limitations compared to traditional machine
learning methods. Additionally, incorporating socioeconomic indica-
tors, such as income levels, housing quality, accessibility to services, and
coping capacity metrics, could enhance the comprehensiveness of
building function vulnerability models. Another critical area for
exploration is the integration of future climate scenarios by including

projections of land use and rainfall patterns, enablingmore dynamic and
time-sensitive flood risk evaluations. Finally, expanding validation
efforts by conducting method validation across multiple cities with
diverse urban and environmental contexts, supplemented with field-
based validation, could improve the robustness and generalizability of
the proposed approach.

To conclude, this paper examines building flood risk through the
lens ofmachine learningmodels and explores how these assessments can
inform effective risk management strategies. It provides a comprehen-
sive evaluation of flood risk in Guangzhou by integrating urban flood-
susceptibility with building function vulnerability. Leveraging machine
learning modelsincluding Random Forest (RF) and CatBoost, the study
combines flood records,hydrological and topographical features, human
activities, building footprints, andAOl andPOl data to deliver a nuanced
analysis of building flood risk.

Key findings from this research offer several important insights for
urban flood risk management: (1) The analysis shows significant spatial
differences in flood susceptibility across Guangzhou. Central districts, with
their high population density and intensive development, exhibit “Very
High” flood susceptibility, while peripheral districts generally show “Very
Low” susceptibility. (2) The study also reveals that most buildings fall into
themoderate function vulnerability category, with less than 2% classified as
highly vulnerable. (3) Based on the flood susceptibility and function vul-
nerability of very high and high-risk buildings, Guangzhou districts are
categorized into three types: Type I (central urban districts) with the highest
flood susceptibility (0.9–1.0), Type II (intermediate urban districts) with a
broader range (0.7–0.9), and Type III (suburban/rural districts) with
moderate susceptibility (0.6–0.8). The distinction among these types lies in
the susceptibility range where moderate to high function vulnerability is
concentrated.

These findings underscore the importance of tailored flood risk
management strategies that address the distinct susceptibility and function

Fig. 9 | The building flood risk map.

Table 3 | The statistical results on building flood risk

Level Count Percentage

Very low 244,554 13.66%

Low 432,457 24.16%

Moderate 545,508 30.47%

High 281,328 15.72%

Very high 286,294 15.99%
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vulnerability of buildings. By providing urban planners and policymakers
with a deeper understanding of the building flood risk, this research equips
them with the tools needed to effectively mitigate water-related hazards,
particularly in the face of challenges intensified by climate change.

Methods
Study area
Guangzhou is the capital of southChina’sGuangdongProvince, P. R. China
(Fig. 13), with a total terrestrial area of about 7434.40 km2 and over 15

Fig. 10 | Proportion of buildings at each flood risk levels across districts in
Guangzhou. Radar charts show the proportion of buildings under five flood risk
levels across 11 administrative districts in Guangzhou: very low risk (a), low risk (b),
moderate risk (c), high risk (d), and very high risk (e). Values on each axis represent

the percentage of buildings at that specific risk level within the total buildings in each
district. Line colors correspond to the five risk levels, ranging from light yellow (very
low) to dark red (very high).
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million population. Guangzhou consists of 11 districts: Tianhe, Yuexiu,
Haizhu, Baiyun, Huangpu, Liwan, Panyu, Huadu, Nansha, Conghua, and
Zengcheng districts. Situated in the subtropical monsoon climate zone,
Guangzhou experiences an average annual precipitation ranging from
1673.0 mm to 2004.6mm. The city’s rainfall is unevenly distributed
throughout the year, with about 80% primarily occurring from April to

September. Furthermore, Guangzhou averages around 150 precipitation
days annually.

Rapidurbanization inGuangzhouhas significantly increasedflood risk
due to changes in land use, strained drainage systems, and high population
density55,56. The expansion of impervious surfaces, such as roads and
buildings, has reduced natural water absorption, leading to greater surface

Fig. 11 | Function Vulnerability and Urban Flood
Susceptibility Violin Plot of High and Very High-
Risk Buildings in Each District.
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runoff during heavy rainfall57. This, combined with the reduction of green
spaces and wetlands, intensifies the city’s vulnerability to flooding58. The
rapid growth has also outpaced the capacity of existing drainage infra-
structure, which is often outdated and insufficient for managing increased
runoff 59. Additionally, the city’s dense population heightens exposure and
complicates emergency response efforts, asmore people are concentrated in
flood-prone areas60. Vulnerable communities, particularly those in informal
or substandard housing, face amplified risks due to inadequate infra-
structure and limited resources61.

Guangzhou is confronting a significant risk of urban flooding62,63.
On 8 September 2023, Guangzhou experienced an extraordinary rain-
storm, remarkable for its intense downpour and broad impact. The
intense rainfall in Guangzhou led to severe waterlogging across various
areas, resulting in the temporary closure of Shiqiao Station on Metro
Line 3 in Panyu District due to deep water accumulation. In response to
the rainstormwarning, several districts in Guangzhou suspended school
classes. According to the city’s flood, drought, and typhoon control
headquarters, a total of 2516 people had been evacuated from hazardous
zones in Guangzhou64.

Research design
Building flood risk is calculated by a function of urban flood susceptibility
andbuilding functionvulnerability65–68. This studyconsists of three steps: (1)
mapping urban flood susceptibility, (2) assessing building function vul-
nerability, and (3) measuring building flood risk (Fig. 14).

Urban flood susceptibility mapping

(1) Ubran Flood Inventory Map Generation: Flood inventory plays a
critical role in understanding flood susceptibility by providing a
comprehensive database of past flood events, including their locations
and causes. Recent studies emphasize that accurate flood inventories
are essential for developing reliable flood susceptibility models, as they
serve as training datasets for machine learning algorithms21,69. The
urbanflood inventory list ofGuangzhou is provided by theGuangzhou
Emergency Management Bureau. The original list contained 488
records, but some were duplicates or no longer relevant due to infra-
structure development, thus leaving 479 records of waterlogging after
the cleanup. Duplicates were removed by geocoding the flooded points
to obtain their geographic coordinates. Points with identical locations
were identified and duplicates were deleted. The original format of the
list is an Excel spreadsheet, which includes fields such as the name of
the waterlogged (inundation) sites, type, and risk level. The location of
the flooded records is performed through geographic coding based on
the names of these waterlogged sites.
Additionally, an equal number of non-flooded sites is selected. We
establish buffer zones around flood points by calculating the nearest
neighbordistancesbetween themand selecting the3/4quartile for the

Fig. 12 | ROC curves for flood susceptibility mapping and building function
identification. a ROC curve showing the classification performance of the flood
susceptibility model on the testing dataset. b ROC curves for each class in the

building function identification model, including commercial, residential, indus-
trial, and educational categories.

Table 4 | The recommended strategies for high-risk and very high-risk buildingsbasedonBowker et al. (2007), Tagget al. (2016),
and Meng et al. (2020)

Strategy Description Key measures

Avoidance Keeping buildings away from flood-prone areas. - Locate buildings in safer zones.
- Elevate structures above flood levels.
- Use bunds or barriers to redirect water.

Resistance Preventing floodwater from entering buildings. - Install flood barriers and doors.
- Use waterproof materials.
- Seal openings to block water.

Resilience Reducing flood damages and recovery time of building function. - Use materials that dry and clean easily.
- Ensure structural stability.
- Design for quick re-occupancy.

Reparability Making buildings’ components easy to repair or replace. - Use replaceable finishes.
- Install modular fixtures.
- Prioritize repair-friendly designs.

Table 5 | Model Performance Comparison

Accuracy AUC

Samples used in this study 0.9132 0.9494

Samples selected randomly 0.8576 0.7697

Model Performance Comparison +6.48% +23.35%
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Fig. 13 | Study area.

Fig. 14 | Step-wise methodological framework of the study.
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buffer’s extent. Non-flooded points are required to not only fall
outside these buffers but also be located in areas of higher elevation.
Figure 15 shows the flood-recorded and non-flooded points in the
study area. Of these sites, 70% are randomly chosen for model
training, while the remaining 30% are allocated for testing the
model70.

(2) Feature selection: This study incorporates 15 features from hydro-
logical, topographical, and anthropogenic perspectives71–73. For
example, higher annual average daily precipitation increases water
input, raising flood risk, while areas closer to rivers are more prone to
flooding due to overflow. Steeper slopes reduce flood susceptibility by
promoting runoff, whereas lower elevations are more vulnerable to
water pooling. Urban land use increases susceptibility through
impervious surfaces, while vegetative land usemitigates it by absorbing
water. Proximity to roads further contributes to flooding by reducing
infiltration and altering water flow. Pearson correlation coefficients
(PCC) are calculated to avoid multicollinearity in the selected
features74. The PCC between two sets of samples Ai (i = 1, 2, 3,…, n)
and Bi(i = 1, 2, 3,…, n) can be represented as Eq. (1):

PCC ¼
Pn

i¼1ðai � aÞPn
i¼1ðbi � bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1ðai � bÞ2Pn
i¼1ðbi � bÞ2

q ð1Þ

where ai and bi are variable values forAi andBi, a
�
and b

�

are the average ofAi
and Bi, respectively. A Pearson coefficient approaching 1 signifies a strong
positive correlation between two features, while a coefficient near 0 suggests
their independence. Previous studies indicated that the absolute value of a
Pearson coefficient of more than 0.8 may contribute to collinearity75–77.

(3) Mapping the Urban Flood Susceptibility based on the Random Forest
(RF): The RF model is an ensemble machine learning method that
combines multiple decision trees to improve prediction accuracy78. It
uses a process called bagging (bootstrap aggregation), where random
subsets of data are used to build each tree. This reduces overfitting and
enhances model robustness. The RFmodel is also capable of handling
complex, non-linear relationships and identifying key factors influen-
cing flood susceptibility, such as topography, land use, and rainfall
intensity.
The RF has been widely applied in flood susceptibility mapping due
to its high accuracy and ability to process large-scale, heterogeneous
data72,79–81. It is particularly effective for large-scale analyses, such as
national or regional assessments23,29,82. Therefore, this study adopts
the RF model to map urban flood susceptibility.
The training data, comprising flood conditioning features, is input
into theRandomForest (RF)model, and its performance is evaluated
using the test data. To optimize the model andmitigate overfitting, a
GridSearchCV approach with 5-fold stratified cross-validation is
employed. The hyperparameters of the Random Forest model were
optimized using grid search to achieve the best performance. The
final configuration included 75 trees (n_estimators), amaximum tree
depth of 10 (max_depth), aminimumof 5 samples required to split a
node (min_samples_split), and at least 3 samples per leaf node
(min_samples_leaf). The max_features parameter was set to sqrt,
ensuring a balance between computational efficiency and model
accuracy. Once the model’s performance meets the required
standards, the study area of Guangzhou is divided into a
100m× 100m grid, with center points extracted alongside their
corresponding flood conditioning features. These data points are
then input into the trained RFmodel to generate probability outputs,
which are subsequently interpolated using the Inverse Distance
Weighting (IDW) method to produce a flood susceptibility map for
the entire study area.

(4) Validation of the Urban Flood Susceptibility Model: The performance
of the RF model is evaluated through the accuracy, the receiver oper-
ating characteristic (ROC) curve, and the area under the ROC curve
(AUC). Accuracy is the ratio of correctly predicted samples to all
samples. True positive (TP) and false positive (FP) denote the count of
actual flood-recorded and non-flooded points, respectively, that are
predicted asfloodedpoints.Truenegative (TN) and false negative (FN)
denote the count of actual flood-recorded and non-flooded points
predicted as non-flooded points.Notably, theTP and theTN represent
correctly predicted samples. We employed the accuracy (as defined in
Eq. (2) to evaluate the predictive performance of the RF model.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð2Þ

The ROC curve and the AUC are regarded as some of the best indi-
cators for model assessment83. The ROC curve plots the model’s ratio of
correctly predicted pixels (True Positive Rate (TPR) known as sensitivity,
Eq. (3)) against the ratio of incorrectly predicted pixels (False Positive Rate
(FPR) known as 1-sensitivity, Eq. (4)).

TPR ¼ TP
TP þ FN

ð3Þ

FPR ¼ 1� TN
FP þ TN

ð4Þ

The rangeof theAUC is between0.5 (poorpredictive ability) and1 (the
highest accuracy and reliability). Values greater than 0.8 typically indicate
very good model performance84.Fig. 15 | Flood inventory map of Guangzhou.
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Building Function Vulnerability Assessment
Building function vulnerability assessment includes identifying building
functions and classifying their vulnerability. This study proposes aCatBoost
model for building function identification using building footprints, Points
of Interest (POI) data, and Areas of Interest (AOI) data. Catboost uses
ordered boosting and permutation-driven techniques tomitigate prediction
shift and overfitting,making it particularly effective for handling categorical
features85. Using CatBoost in building function identification is an
exploratory attempt. The function vulnerability is classified according to the
UK’s National Planning Policy Framework (Supplementary Table 1)54,
which has been recognized as an effective standard by other researchers11.
The detailed processes are listed as follows:
(1) Data Preparation: Building footprints are categorized based on spatial

relationships with AOIs and POIs into labeled and unlabeled datasets.
AOI and POI data are partly validated against satellite imagery and
Baidu Street View (Supplementary Table 2). We reclass the AOIs and
POIs data into seven categories, including residential AOIs and POIs,
industrial AOIs and POIs, educational AOIs and POIs, commercial
POIs, cultural POIs, and public services POIs. It is observed that
commercial POIs constituted the largest number and proportion, but
most are small businesses, making it difficult to determine the primary
function of the buildings. Therefore, POIs are classified into two
categories: those with low importance but high density (commercial
and industrial), and those with high importance but low density
(residential, healthcare, public facilities, education, and cultural)52. If a
building contains only the former type of POIs, its function is deter-
mined by these POIs. Otherwise, the function is determined by the
latter type of POI. Labeled data are presented in Table 6. Due to weak

labels inferred from AOI and POI, unsupervised noise reduction is
applied49. Labeled data is split into training and test datasets in a
7:3 ratio.

(2) Feature Processing: We select twenty-two features across three
categories: urban function structure, building geometry, and
building surroundings (Table 7). The urban function structure is
described using POI kernel density estimation86,87. The building
geometry is referenced by Lin et al. (2021). To describe building
surroundings, we use the nearest distance to each category of POI.
Missing values are handled using the K-nearest neighbors (KNN)
method. After standardization, polynomial processing (degree = 2)
is first used to enhance the feature set by capturing nonlinear
interactions and higher-order relationships. Then PCA is applied to
reduce the feature space to 15 components, preserving over 80% of
the variance while ensuring computational efficiency and reducing
overfitting88.

(3) Resampling: To address the imbalanced sample distribution (Table 6),
Adaptive Synthetic Sampling Method (ADASYN) resampling is used
to balance the training set. ADASYN, proposed by He et al. (2008),
generates synthetic data points for minority classes, improving the
classifier’s performance on imbalanced datasets by focusing more on
difficult-to-classify examples89,90.

(4) Model Training and Evaluation: Due to the low number of buildings
with public, healthcare, and cultural functions, and based on the
assumption that AOIs and POIs can initially identify these, only resi-
dential, commercial, educational, and industrial functions are con-
sidered during model training. The Categorical Boosting (CatBoost)
model, a gradient boosting algorithm, employs ordered boosting to

Table 6 | Labeled data

Function AOI or POI labels The number of
buildings

Public services Fire station, police station, emergency shelter 552

Healthcare Clinics, general hospitals, specialized hospitals, disease prevention institutions, emergency centers,
nucleic acid testing

3057

Commercial and business
facilities

Shopping services, life services, car services, flower points, industrial parks, catering services, companies,
well-known enterprises, entertainment venues, theaters, sports and leisure services, leisure venues, sports
venues, playground areas, stadium areas, tennis court areas, swimming pool areas, sports track, financial
and insurance service

62,360

Culture Cultural centers, archives, convention centers, planetariums, libraries, exhibition halls, museums,
memorials, art museums, science and technology museums, science education and cultural venues, art
center areas

1211

Industry Industrial area, factory, logistics storage 8647

Resident Residential area (AOI and POI), Accommodation services, business residences 399,128

Education School, scientific research institution 10,894

Table 7 | Building function identification features

Categories Features

Urban Function Structure • Residential POI KDE
• Cultural POI KDE
• Educational POI KDE
• Industrial POI KDE

• Healthcare POI KDE
• Commercial POI KDE
• Public service POI KDE

Building Geometry Morphology • Area
• Perimeter
• Regularity
• Height

• Compactness
• Number of nodes
• Aspect ratio orientation
• Radius shape index

Building Surroundings • Distance to the Nearest Residential POI
• Distance to the Nearest Cultural POI
• Distance to the Nearest Educational POI
• Distance to the Nearest Industrial POI
• Distance to the Nearest Healthcare POI
• Distance to the Nearest Commercial POI
• Distance to the Nearest Public Service POI
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minimizeoverfitting and reduce prediction bias, ensuring accurate and
reliable results85. Additionally, CatBoost is computationally efficient
and well-suited for datasets with mixed numerical and categorical
variables. Using CatBoost model in building function identification is
an exploratory attempt.
A balanced training dataset is utilized to train the CatBoostmodel.
To improve robustness and prevent overfitting, key hyperpara-
meters such as iterations (1500), learning rate (0.01), L2

regularization (18), and depth (12) were adjusted. A 5-fold
stratified cross-validation is also used to validate model
performance. Model performance is validated using the test set
with the accuracy of each function.

(5) Function Classification and vulnerability assessment: The trained
Catboost model is used to predict the functions of unlabeled
building footprint data. We referenced the UK’s National Planning
Policy Framework (NPPF) (Supplementary Table 1), which clas-
sifies flood vulnerability based on use and facility. This classification
is based partly on the need for some functions to be maintained
during flooding such as hospitals and police stations. Then we
assigned vulnerability values of 3 to “highly vulnerable” functions, 2
to “more vulnerable” functions, and 1 to “less vulnerable” functions
(Table 8). The building function vulnerability results are aggregated
by districts for urban management, urban planning, and policy-
making.

Building Flood Risk Measuring
In this study, we draw upon the risk matrix to reinterpret risk as the like-
lihood of a disaster occurring and the potential impact it may have91. The
risk matrix is a tool extensively used in natural disaster risk assessment and
project riskmanagement92. TheEq. (5) shows the functionof the riskmatrix.

Table 8 | Building function vulnerability

Function Vulnerability level Vulnerability

Public service Highly Vulnerable 3

Healthcare Highly Vulnerable 3

Comercial Less Vulnerable 1

Cultural Less Vulnerable 1

Industrial Less Vulnerable 1

Residential More Vulnerability 2

Educational Highly Vulnerable 3

Table 9 | Urban flood conditioning features

Features Description Data Processing

Hydrological features SPI The SPI is defined as the erosive power of flowing water based on
the assumption that discharge is directly proportional to the specific
catchment area96.

TheSPI is calculatedwithinSAGAGIS, utilizingadigital elevation
model (DEM) of the study area.

AP The AP is used to describe the spatial distribution of the average
value of daily precipitation.

The AP is derived from the Chinese 30-meter resolution annual
mean precipitation dataset (1991-2020) of the Fine Resolution
Mountainous Environmental Mapping Program (FRMM).

DRI The DRI is an effective parameter for flood susceptibility and has
been adopted in existing studies97.

The DRI is calculated on the ArcGIS 10.8 using the Euclidean
distance.

HSGs TheHSGs influencewater infiltration98, a fundamental component of
the U.S. Department of Agriculture (USDA) curve-number (CN)
approach for estimating rainfall-runoff99.

The HSGs are collected from the Global Hydrologic Soil
Groups99 and resampled at 30-m resolution on the ArcGIS 10.8
platform.

Topographical
features

EV Regions with lower elevations are more vulnerable to damage100. The EV is extracted from the digital elevationmodel (DEM) that is
downloaded from the Geospatial Data Cloud. (http://www.
gscloud.cn).

SL Slope influences water flow and discharge, with steeper gradients
leading to faster water movement and reduced infiltration rates101.

The SL is extracted using surface analysis.

TWI The TWI, derived from the Digital Elevation Model (DEM), integrates
terrain slope, flow direction, and accumulation to accurately depict
the physical characteristics of areas prone to flood inundation102.

The TWI is calculated within SAGA GIS, utilizing a digital
elevation model (DEM) of the study area.

CI Positive values of the CI indicate interfluvial surfaces, whereas
negative values signify areas of hydrographic convergence103.

The CI is calculated within SAGA GIS, utilizing a digital elevation
model (DEM) of the study area.

PLC The PLC is perpendicular to the direction of the maximum slope104. The PLC is calculated within SAGA GIS, utilizing a digital
elevation model (DEM) of the study area.

PRC The PRC is the curvature along a line formed in the downslope
direction by the intersection of an imaginary vertical plane with the
ground surface104.

The PRC is calculated within SAGA GIS, utilizing a digital
elevation model (DEM) of the study area.

Anthropogenic
features

DRO The DRO is the Euclidean distance to the nearest road. The road dataset is obtained from the OpenStreetMap (https://
www.openstreetmap.org/).

DCI The DCI is the Euclidean distance from culverts and interchanges. The culvert and interchange datasets are POI data obtained from
the Baidu Map (https://map.baidu.com/).

LULC The LULC represents another primary factor that significantly
contributes to the occurrence and severity of flooding105–107.
Different types of land use and cover have a considerable impact,
both directly and indirectly, on hydrological elements like infiltration,
evapotranspiration, and runoff generation108,109.

The LULC is obtained from the ESRI with 10-m resolution and
resampled to 30-m resolution in the ArcGIS 10.8. There are 8
types of LULC in the study area.

NDVI The maximum NDVI value for each pixel is obtained for each year
from 2000 to 2020 through a series of data preprocessing and
smoothing techniques.

The dataset has a spatial resolution of 30m and a temporal
resolution of annually110.

NDBI The NDBI can be used to extract impervious surfaces from urban
areas111.

The NDBI is an average value for 2022 using Landsat 8 data on
the GEE platform
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This research attempts to incorporate the urban flood susceptibility
model and building function vulnerability into the risk matrix, thereby
extending its practical applications. During the assessment process, “urban
flood susceptibility” denotes the likelihood of the flood hazard29,72,93,94, while
“function vulnerability” of buildings signifies the impact of flood11,54.

Building flood risk is calculated using Eq. (6). We extract the urban
flood susceptibility of each building and multiply it by the function vul-
nerability. This methodological approach enables a nuanced assessment of
risk by integrating both the location-specific susceptibility to flooding and
the inherent vulnerability determined by the building functions. The
building flood risk results are summarized by districts to support urban
management, urban planning, and policy-making.

Risk ¼ Likelihood × Impact ð5Þ

Risk ¼ Urban Flood Susceptibility × Function Vulnerability ð6Þ

Urban flood conditioning features
This study selected 15 features from hydrological, topographical, and
anthropogenic perspectives to input into the RF model71–73. The

hydrological features include the stream power index (SPI), annual average
daily precipitation (AP), distance from rivers (DRI), and hydrological soil
groups (HSGs). Topographical factors include elevation (EV), slope (SL),
topographic wetness index (TWI), convergence index (CI), plan curvature
(PLC), and profile curvature (PRC). The anthropogenic factors included in
the analysis are distance from roads (DRO), distance from culverts and
interchanges (DCI), land use and land cover (LULC), the normalized dif-
ference vegetation index (NDVI), and the normalized difference built-up
index (NDBI). A detaileddescription of urbanflood conditioning features is
shown in Table 9 below and Supplementary Figs. 1, 2, and 3.

Building function identification features
The building footprint dataset is adopted from Shi et al. (2024)., which is
identified based on Google Earth imagery, global urban boundaries, and
local climate zones, using a Boundary-enhanced network95. The average
recall and precision rates were 84.52% and 81.06%, respectively. Samples of
buildings inGuangzhou are shown in Fig. 16. The total number of buildings
in Guangzhou is 1,790,141 after data cleaning.

The building function identification features are listed in Table 10. The
urban function structure features contain the kernel density estimation
(KDE) of residential POI, cultural POI, educational POI, industrial POI,

Fig. 16 | Samples of building footprints in central and peripheral areas of Guangzhou. Satellite image of a central urban area in Guangzhou (a) and extracted building
footprints corresponding to the same central area (b). Satellite image of peripheral area in Guangzhou (c) and extracted building footprints to the same peripheral area (d).
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healthcare POI, commercial POI, and public service POI. The building
geometry contains area, perimeter, regularity, height, compactness, number
of nodes, aspect ratio orientation, and radius shape index of buildings. The
building surroundings include the distance from buildings to the nearest
residential POI, cultural POI, educational POI, industrial POI, healthcare
POI, commercial POI, and public service POI. AOI and POI data are
obtained from the Baidu Map and are validated by comparing satellite
imagery andBaidu Street View (SupplementaryTable 2). All procedures are
operated on ArcGIS 10.8 or Python programming.

Data availability
This paper includes the digital elevation model (DEM) data, hydro-
logical soil groups data, annual average daily precipitation data, land use
and land cover, building footprint data, building height data, POI data,
and AOI data. The DEM data are downloaded from the Geospatial Data
Cloud. (http://www.gscloud.cn). The hydrological soil groups data are
collected from the Global Hydrologic Soil Groups (https://daac.ornl.
gov/SOILS/guides/Global_Hydrologic_Soil_Group.html). The annual
average daily precipitation data are derived from the Chinese 30-meter
resolution annual mean precipitation dataset (1991-2020) of the Fine
Resolution Mountainous Environmental Mapping Program (FRMM).
The land use and land cover data are collected from Sentinel-2 10 m
Land Use/Land Cover Time Series. The building footprint data are
downloaded at https://doi.org/10.5281/zenodo.8174931. The building
height data are downloaded at https://zenodo.org/records/7827315. The
POI and AOI data are collected from Baidu Maps (https://map.baidu.
com/).

Code availability
The code that supports the findings of this research is available from the
corresponding author upon request.
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