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Refractoriness toinitial chemotherapy and relapse after remission are
the main obstacles to curing T cell acute lymphoblastic leukemia (T-ALL).
While tumor heterogeneity has beenimplicated in treatment failure, the

cellular and genetic factors contributing to resistance and relapse remain
unknown. Here we linked tumor subpopulations with clinical outcome,
created an atlas of healthy pediatric hematopoiesis and applied single-cell
multiomic analysis to a diverse cohort of 40 T-ALL cases. We identified a
bone marrow progenitor (BMP)-like leukemia subpopulation associated
with treatment failure and poor overall survival. The single-cell-derived
molecular signature of BMP-like blasts predicted poor outcome across
multiple subtypes of T-ALL and revealed that NOTCHI mutations additively
drive T-ALL blasts away from the BMP-like state. Through insilico and in vitro
drugscreenings, we identified a therapeutic vulnerability of BMP-like blasts
to apoptosis-inducing agents including venetoclax. Collectively, our study
establishes multiomic signatures for rapid risk stratification and targeted
treatment of high-risk T-ALL.

Acute lymphoblastic leukemia (ALL) is the most common pediatric
cancer and leading cause of mortality’. Outcomesin B cell ALL (B-ALL)
have improved drastically because of optimization of chemotherapy?,
development of targeted therapies®” and genetically guided risk strat-
ification®. In contrast, while outcomes have improved in T cell ALL
(T-ALL), most persons who relapse are considered with low or favorable
risk at diagnosis and few targeted therapies have successfully translated
into the clinic’. Outcomes for persons with relapsed T-ALL are dismal
as there are no effective salvage options. Accordingly, T-ALL is a dis-
ease where the goal is to use the most effective therapy at diagnosis.
Thereis an urgent need to identify biologic risk factors to inform the
development of targeted therapeutics and enable early identification
of high-risk persons who need alternative treatment strategies'.
Systematic T-ALL classification used by the World Health Organi-
zation" and International Consensus Classification relies on immu-
nophenotype to characterize the maturation stage of T-ALL blasts and

hasnot reproducibly been associated with clinicalimportance. Recent
T-ALLgenomicinitiatives have refined the transcriptomic classification
of T-ALL, providing a unifying framework to link genetic alterations
with outcome®. Among the emerging biomarkers for high-risk disease
are the high prevalence of tumor subclones that could contribute to
relapse™ ™ and clonal selection'®" that occurs with treatment failure.
Here, we used single-cell multiomics to map the tumor landscape
of >595,000 T-ALL blasts to the full hierarchy of pediatric hemat-
opoiesis. We identify and characterize achemotherapy-resistant and
steroid-resistant bone marrow progenitor-like (BMP-like) tumor popu-
lation shared between high-risk persons across the immunopheno-
typicspectrum of T-ALL. We used single-cell multiomics, large-cohort
bulk genomics and primary patient-derived xenograft (PDX) models
to establish multiomic signatures for rapid risk assessment and test
the sensitivities of BMP-like blasts to currently available targeted
therapeutics.
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Fig.1| Arrest states of T-ALL subtypes in reference to human hematopoiesis.
a, Selection of n = 25 participants with ETP-ALL, n = 5 participants with near-
ETP-ALL and n =10 participants with non-ETP-ALL from the COG AALLO434
cohort (n=1,411) based on response to induction therapy (day 29 MRD). b, UMAP
representation of bulk RNA-seq data from n=1,335 diagnostic T-ALL samples
from COG AALL0434. Each point represents the bulk RNA-seq transcriptome

for one participant. Participants selected for single-cell study are indicated by
circular points. All participants with ETP are colored red. ¢, UMAP representation
of CITE-seq (n =271,603 cells) and scATAC-seq datasets (n = 332,663 cells;
because of the size of the peak x cell matrix, 60,000 randomly downsampled
cellsare plotted). d, UMAP representation of healthy human hematopoiesis
development reference trajectories, based on scRNA-seq (left; n = 49,623 cells)
and scATAC-seq (right; n = 23,618 cells) data. The key stages of T cell development
implicated are labeled. a/B, alpha-beta; y§, gamma-delta. e, Arrest states of
leukemic cells from 40 participants with T-ALL based on projection to healthy

Myeloid

Pseudotime —— T

Non-ETP (n =10)
Near-ETP (n = 5)
ETP (n =25)
T/M MPAL (n =10)

AML (n =10) |

Myeloid «———— Pseudotime

scRNA-seq (left) and scATAC-seq (right) reference. The D value from a two-sample
Kolmogorov-Smirnov testis indicated to the side of brackets (*P < 2.2 x107¢).
Ten participants with T/M MPAL and ten participants with AML sequenced using
identical assays are included as comparator groups (n = 60: ETP-ALL, 25; near-
ETP-ALL, 5; non-ETP-ALL, 10; T/M MPAL, 10; AML, 10).f, Left, proportion of ETP
blasts in four key T cell developmental stages, as compared to other participants
with T-ALL. Right: proportion of ETP blasts in three key myeloid developmental
stages, as compared to participants with T/M MPAL and AML. P values are based
on atwo-sided Mann-Whitney test. Results based on scRNA-seq projection are
shown. The BMP stage encapsulates multipotent progenitors: HSPC, LMPP,
CLPor ETP. The o/ stage encapsulates all cells that have moved past T cell
commitment: DP, o/, o/f (mature) or naive T. The box includes the median,
hinges mark the 25th and 75th percentiles and whiskers extend 1.5 times the
interquartilerange (n = 60: ETP-ALL, 25; near-ETP-ALL, 5; non-ETP-ALL, 10; T/M
MPAL, 10; AML, 10). Mono, monocyte; NK, natural killer.

Results

Multiomic developmental atlases define T-ALL cellular arrest
We studied 25 participants with early T cell precursor (ETP)-ALL, 5 par-
ticipantswith near-ETP-ALL and 10 participants withnon-ETP-ALL with

varied clinical response to treatment with AALLO434 (NCT00408005),
aninternational phase 3 randomized Children’s Oncology Group (COG)
trial thatreported the best published outcomes for childrenand young
adults with T-ALL" (Fig. 1a,b). We selected participants who quickly
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wentinto minimal residual disease (MRD)-negative remission and were
cured (n=16), participants who had intrinsic chemotherapy resist-
ance (refractory, enriched for cases with induction failure; n =10) and
participants who relapsed (n =14) (Supplementary Tables 1 and 2).
We had nine genetic subtypes represented, with the most common
being the ‘ETP-like’ transcriptional subtype® (n = 24), followed by T cell
leukemiahomeobox3 (n=5) and T-ALL protein 1 o3-like (n = 3). We per-
formed cellularindexing of transcriptomes and epitopes by sequencing
(CITE-seq) and single-cell assay for transposase-accessible chromatin
sequencing (scATAC-seq) onlive cells sorted from cryopreserved diag-
nosticbone marrow aspirate (n =32) or peripheral blood mononuclear
cells (PBMCs; n = 8), capturing over 600,000 high-quality cells across
bothmodalities (Fig. 1c,d, Extended Data Fig.1a-jand Supplementary
Tables 3 and 4). To robustly phenotype our single-cell dataset within the
context of normal hematopoietic development (Fig. 1e,f), we assem-
bled a multiomic reference map of healthy pediatric hematopoiesis,
using normal thymus and bone marrow tissues collected from children
(Fig.2a-h and Supplementary Tables 5 and 6).

We mapped T-ALL blasts to the hierarchy of human hematopoi-
etic development, overcoming the limitations of using references
restricted by bone marrow'®, thymus'® or murine thymocyte signa-
tures®. To assess the integrity of our reference mapping method, we
additionally projected single-cell RNA sequencing (scRNA-seq) and
scATAC-seq data from ten acute myeloid leukemia (AML) and ten T-
myeloid mixed-phenotype acute leukemia (T/M MPAL) samples onto
our reference, finding that AML blasts projected to the monocytic
lineage and T/M MPAL blasts projected to both monocytic and T cell
lineages, as expected (Fig. 1e). Notably, all subtypes of leukemia showed
aspectrum of developmental arrest states with notable overlap at the
subpopulation level. Arrest in a multipotent progenitor-like (hemat-
opoietic stem and progenitor cell (HSPC) or lymphomyeloid primed
progenitor (LMPP)) state represented a shared cell state in ETP-ALL,
T/MMPAL and AML. Pro-T cell-like arrested blasts were shared between
T/MMPAL and all three subtypes of T-ALL, while pre-T cell-like arrested
blasts were shared between near-ETP-ALL and non-ETP-ALL.

A primary hypothesis for ETP-ALL treatment resistance has
been that ETP-ALL retains myeloid populations that confer resist-
ance to ALL-directed therapy®>*. We found the median frequency of
myeloid-projectingblasts (granulocyte macrophage progenitor (GMP),
dendritic cell (DC) progenitor, plasmacytoid DC, conventional DC or
monocyte) to be 0.167% in participants with ETP-ALL, in contrast to
16% and 82.5% in participants with T/M MPAL and AML, respectively
(Fig. 1f). GMP-like and monocytic-like populations comprised <1%
of blasts in 18/25 participants with ETP-ALL and were not detected in
5/25 participants, strongly supporting a lymphoid progenitor origin
of ETP-ALL blasts and use of ALL-directed therapy.

We hypothesized that the developmental arrest spectrum of
near-ETP-ALL would be similar to that of ETP-ALL. Therefore, we
enriched our cohort with near-ETP cases from participants who
relapsed (5/5 participants). The developmental arrest spectrum of
near-ETP-ALL was closer to non-ETP-ALL, an unexpected finding given
that near-ETP-ALL is defined by the ETP immunophenotype with the
exception of high (>75%) CD5 expression'2. To assess whether the
divergence of ETP and near-ETP developmental arrest spectra could
explain the diverging clinical responses of near-ETP and ETP cases
observed within AALLO434 (Extended Data Fig. 2a), we performed
differential expression (DE) and differential chromatin accessibility
(DA) analyses (Extended Data Fig. 2b,c).

Near-ETP blasts had downregulation of stem and myeloid markers
(SPINK2, CIQTNF4 and HLA-DRA) and upregulation of T cell receptor
(TCR)-related machinery (LAT, CD3E, CD28, LCK and PTCRA) as com-
pared to ETP-ALL, in line with commitment to the T cell lineage***.
Near-ETP blasts also had increased expression and motif accessibility
of TCF7and LEFI, two transcription factors (TFs) central to T cell line-
age commitment in healthy thymocytes*. Within healthy thymocytes,

we observed the expressionand accessibility of TCF7and LEFI to peak
at the pre-T cell stage (Extended Data Fig. 2d). To ask whether TCF7
and LEFI have an analogous T cell lineage-specific function in T-ALL
blasts, we computationally inferred the regulators and targets of TCF7
and LEF1in ETP-ALL, near-ETP-ALL and non-ETP-ALL by constructing
subtype-specific transcriptional regulatory networks (Extended Data
Fig. 2e-g). Our analysis predicted the repression of TCF7 and LEF1
expression by stem-related TFs*? (MEF2C, IRF1and LYLI) in ETP-ALL
and activation of TCF7 and LEFI by core TFs of T cell commitment?
(BCL11B, SIX6 and TCF7L2) in near-ETP-ALL and non-ETP-ALL. Our
analysis also predicted the direct regulation of CDS expression and
TCR-related genes (LAT, DNTT, MAL and CD3E) by TCF7 and LEF1 in
near-ETPblasts, connecting TCF7and LEF1 regulationto the CD5-bright
phenotype observed within diagnostic flow cytometry. Elevated
expression of our predicted TCF7 and LEFI regulon was observed in
bulk RNA-seq data of n =110 participants with ETP and n = 168 partici-
pants withnear-ETP (Extended Data Fig. 2h). Participants withETP and
near-ETP with higher expression of the TCF7 and LEF1 signature had
more favorable outcomes within AALLO434 (Extended Data Fig. 2i—
k), with the TCF7 and LEF1 signature having prognostic significance
independent of MRD and central nervous system (CNS) status in par-
ticipants with ETP-ALL (92.7% versus 79.3% 5-year overall survival (OS),
P=0.024; Extended DataFig. 2j). Taken together, our results highlight
functionally significant transcriptional regulatory circuits that underlie
minute immunophenotypical differences.

BMP-like blasts are highly enriched inrefractory ETP-ALL
Highrates of treatment resistance, rather than eventual relapse, con-
tribute to poor outcome in ETP-ALL*, Within AALL0434, participants
with ETP-ALL were 7.1-fold less likely to achieve remission (<5% bone
marrow blasts by morphology) after the first month of chemother-
apy (day 29 end of induction (EOI)) and >2-fold more likely to have
flow-detectable MRD compared to participants without ETP.

Weenriched our single-cell (SC) cohort for treatment-refractory
ETP cases toidentify tumor cell states associated with initial treatment
resistance. We first compared theinitial developmental arrest state of
ten participants with high-EOI-MRD (>20%) ETP to ten participants with
EOI-MRD-negative (0.1%) ETP (Fig. 3a,b) and asked whether response
to chemotherapy was correlated with the fraction of actively cycling
tumor cells. Although we observed asmallenrichment of cycling cells
inMRD-negative participants (20% versus 16%; Fig. 3c), we observed all
treatment-refractory participants to have significant proportions of
cycling cells, prompting us to investigate whether treatment response
couldbe explained by differencesin cell arrest state. Within scRNA-seq
and scATAC-seq, we observed that participants with high-EOI-MRD
ETP had an enrichment of blasts at the HSPC, LMPP, common lym-
phoid progenitor (CLP) or ETP developmental stages (Fig. 3d). Multi-
lineage potency is retained?*°in these states; we termed this cell state
‘BMP-like’. In contrast, participants with MRD-negative ETP had an
enrichment of blasts in the pro-T cell and pre-T cell stages. These states
representspecification to the T cell lineage®~* we henceforth refer to
them as ‘T-specified’. We observed the proportion of tumor blasts in
BMP-like and T-specified developmental stages to associate with day 29
MRD (Fig.3d,e), event-free survival (EFS; Fig. 3f) and OS (Fig. 3f-h) and
these populations wereinversely correlated (Extended Data Fig. 3a-e)
insingle-cell-sequenced participants with ETP-ALL.

To test whether the molecular signatures of BMP-like and
T-specified blasts could be used to stratify other participants with
ETP within AALLO434, we performed DE and DA analyses to generate
cell-type-specific molecular signatures (Supplementary Tables 7-9).
We found that BMP-like blasts from non-responding participants with
ETP had a high surface protein expression of myeloid and stem cell
markers, including CD33,CD123, HLA-DR and CD34, and alow expres-
sion of T cell lineage surface protein markers, including CD3, CD4,
CD2 and CD10 (Fig. 3i). The top DE genes (DEGs) for BMP-like blasts

Nature Cancer | Volume 6 | January 2025 | 102-122

104


http://www.nature.com/natcancer

Article https://doi.org/10.1038/s43018-024-00863-5

a Sample composition b Healthy donor scRNA-seq ¢ Healthy donor scATAC-seq
1]
49,623 cells Pediatric BM hymic B
Pedlkiiie ® Pediatric thymus % f
] BM H
078 (n=5) Pediatric
BM
(n=5)
0.50 4 .
Tgommitment 1y ic oG
0.25 4
2 o~
% %
01 ‘ ‘ S Thymic B‘ Pediatric BM 3 T specification
ScRNA-seq SCATAC-seq L, umar1 ® Pediatric thymus L, umar1 23,618 cells
d - e f
Cell type composition Healthy donor scRNA-seq Healthy donor scATAC-seq
1 :
0.75
0.50
0.25 4 ~
o
<
=
o =]
L. umapt P

T T
scRNA-seq scATAC-seq

g h ChromVAR-Z
Marker gene expression Core TF motif accessibility _0-2 o 52
I GATA1
SPIN
! | NFE2
GH) | CEBPA
LYL1
RBPJ
‘ ‘ ‘ LEF1
‘ ‘ TCF7
\ >
‘ LA S% TBX2
: f <>Q GDsA LMO2
+ <> <> <> <> < <o <0< | CD3E TCF3
e i
——— - —ar—— | TCF4
T N = m —— (0 ID3
T W == \ | == [ |IRDC
& | | | TRGC1 ID4
. & | | TRGC2
L A > 4 <o IRAC TCF7L1
‘ S TRBC1
e e s IR | TCF7L2
| s | | | | | | | {
: TRGV/DJ ‘ m RORA
‘ T e —— /Y | | I |
| o Pam—— A ‘ TBX10
Ll o o | 4 & | | |
. a1 ! ‘ . | MKi67 | I I N I
— a a o w
SEBEZIL558: %5 3EEE3E 555 %%
2 3 & a 2 e =z 2 T S & o T B
] 5 = 9 = [}
> = =
O w

cells) and scATAC-seq (n = 23,618 cells) developmental reference trajectories.
Atotal of 26 distinct cell populations defined by clustering and marker gene

Fig. 2| Multiomic developmental atlases to define cellular arrest state of
leukemic blasts. a, Sample composition of scRNA-seq (n = 49,623 cells) and

ScATAC-seq (n = 23,618 cells) reference maps. b,c, UMAP representation of
developmental reference trajectories, based on scRNA-seq (b; n = 49,623 cells)
and scATAC-seq (c; n = 23,618 cells) data. The key stages of T cell development
implicated in T-ALL and low-frequency thymic populations are labeled. d, Cell
type composition of sScCRNA-seq (n = 49,623 cells) and scATAC-seq (n = 23,618
cells) reference maps. e,f, UMAP representation of scRNA-seq (n = 49,623

expression are labeled. g, Stem, T and S-phase marker gene expression (SCRNA-
seq, log-normalized counts) within developing T cell populations (n = 49,623
cells). h, Stem, T cell lineage and effector TF motif accessibility (sScATAC-seq
and chromVAR-2) within developing T cell populations. Cells were randomly
downsampled to n =100 cells per group.
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Fig.3| Treatmentresistance in ETP-ALL is associated with aBMP-like
population. a, Selection of ten high-MRD and ten MRD-negative (control)
participants fromn =123 participants with ETP-ALL diagnosed within COG
AALLO434.b, OS of n =10 high-MRD versus n =10 MRD-negative participants
profiled using single-cell genomics. The Pvalue for the log-likelihood statistic
of'a Cox proportional hazard test with day 29 MRD as a covariate is shown.

¢, Proportion of non-cycling (G1: MRD-negative, n = 23,913 cells; high-MRD,
n=25,727 cells), cycling (S: MRD-negative, n = 2,862 cells; high-MRD, n = 2,274
cells) and dividing (G2M: MRD-negative, n = 6,125 cells; high-MRD, n = 5,499
cells) cellsin n =10 high-MRD versus n =10 MRD-negative participants. The chi-
squared test statistic and Pvalue were computed by comparing the proportion of
cellsin the Gl versus non-G1 phase in each group (n =3,500 cells per participant,
33,500 cells per group). d,e, Arrest states of leukemic cells from n =10 high-MRD
and n =10 MRD-negative participants with ETP-ALL based on projection to the
healthy scRNA-seq (left) and scATAC-seq (right) reference trajectory: proportion
ranges from 0 to 0.3 (d) and from 0 to 0.5 (e). The D values from a two-sample
Kolmogorov-Smirnov (K-S) test are indicated by the brackets (*P<2.2 x107;
n=25participants with ETP-ALL: n = 6 induction failure, n =4 highrisk,n=7
intermediate risk and n =3 low risk). f, Proportion of ETP blasts in BMP-like

and T-specified (T-spec) developmental stages in n = 25 single-cell-sequenced
participants with ETP-ALL. The Pvalues from two-sided ¢-tests are shown above
the brackets. Alive indicates participants (n = 16/25) who were alive at last known
follow-up (mean = 2,091 days). No event indicates participants (n = 13/25) who

had no event at last known follow-up (mean = 2,108 days). g, Proportions of BMP-
like blasts in n =25 single-cell-sequenced ETP-ALL blasts were stratified into high
(n=11participants) and low (n = 14 participants) using k-means clustering.

h, Stratification of n = 25 single-cell-sequenced participants with ETP-ALL by
BMP-like proportion (high: >30%, n =11; low: <30%, n = 14) determined through
k-means clustering (k =2).i, DE surface markers between BMP-like blasts

from non-responding participants and T-specified blasts from responding
participants. The input matrix to DE analysis was a matrix of G1-phase ETP-ALL
blasts with an equal number of cells per participant (n = 1,711 cells per participant
and n=42,775 cellsintotal). j, DEGs between BMP-like blasts from non-
responding participants and T-specified blasts from responding participants.
The input matrix to DE analysis was a matrix of G1-phase ETP-ALL blasts with an
equal number of cells per participant (n =1,711 cells per participant and n = 42,775
cellsintotal). kI, Normalized gene (k) and surface marker (I) expression for DE
BMP-like genes across cell subpopulations in T-ALL, AML, MPAL and healthy
donors (HD). Cells were randomly downsampled to n =200 in each comparison
group. m, Stratification of n =113 participants with ETP from AALL0434 using
119 DEGs between BMP-like and T-specified blasts obtained in d. The prognostic
value of the BMP-like signature (BMP-DE-sig) in multivariate analysis (with day
29 MRD, CNS status, WBC count and age at diagnosis) is shown below the Cox
proportional hazard log-likelihood P value with day 29 MRD as a covariate. Left:
stratification with signature alone. Right: stratification with signature and EOI
MRD status.
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included stem cell®**** (CIQTNF4, CD44,LGALS1and HOPX), B cell line-
age (IGLL1,IGKC and IGHM) and myeloid (S100A4 and SPINK2) lineage
markers (Fig. 3j). Although relatively enriched in BMP-like blasts, the
myeloid lineage genes and surface markers were expressed at lower
levels than myeloid blasts and healthy myeloid cells (Fig. 3k-1). The
top DE TFsin BMP-like blasts included TFs associated with self-renewal
(MEF2C,HOXA3-HOXA6, HOXA9-HOXA11, MEIS1, HHEX and SPI1)**>¢
and recovery from genotoxicstress” (BCL11A) (Extended DataFig. 3f).
Several of the BMP-like genes involved in self-renewal (MEF2C, HOXA9
and FLII) or T cell developmental block®** (SPII) also had increased
motif accessibility (Extended Data Fig. 3g,h). In contrast, the top
DEGs for T-specified blasts included T cell differentiation proteins
(MAL), TCR components (LAT, CD3E, LCK and TRGC2) and thymic hon-
ing molecules (CD99). The top DE TFs in T-specified blasts included
NOTCH targets*’ (HES4 and HES1) and core T cell commitment TFs*>**
(BCL11B, TCF7 and RUNX1). Interestingly, the top T-specified DEG by
fold change was PRSS2, atrypsin genelying adjacent to the TCR locus
and becomes highly expressed as the TCRf locus prepares for rear-
rangement*. We also assessed how the analogous populations dif-
fer between responding and non-responding participants through
DEG and DE TF motif analyses (Extended Data Fig. 4a-d) and gene
set enrichment analysis (GSEA) (Extended Data Fig. 5a-e), revealing
that BMP-like non-responding blasts exhibited a similar differential
phenotype compared toboth T-specified responding and T-specified
non-responding blasts.

Previous single-cell studies have also suggested that a portion
of thymic seeding progenitors (TSPs) are more stem-like than oth-
ers, retaining similar markers of multipotency seen in BMP-like ETP
blasts®***2, We transcriptomically matched BMP-like ETP-ALL blasts to
the most stem-like subset of TSPs (Extended Data Fig. 6a—c), revealing
two putative mechanisms of treatment resistance. We found corticos-
teroid receptor (VR3CI) expressionto be directly correlated with T cell
differentiation state and NR3CI expression highly predictive of EOI
MRD (Extended DataFig. 6d,e). BMP-like blasts had a significantly lower
expression of NR3CI, rendering them highly resistant to prednisolone
(>80-fold increase in half-maximal inhibitory concentration (ICs,))
invitro (Extended DataFig. 6f). We also predicted that BMP-like blasts
would have high self-renewal capacity, much like TSPs*’. We observed
the upregulation of leukemic stem-cell-related transcriptional pro-
gramsin BMP-like blasts, associated with >100-fold resistance in vitro
to T-ALLinduction agents (Extended Data Fig. 6g,h).

Next, we sought to understand the transcriptional regulation of
the BMP-like and T-specified states. We examined the TF motifs that
were enrichedinregions correlated with promoter accessibility of the
BMP-like and T-specified DEGs (Supplementary Table 10). Motifs for
TFsinvolved inthe maintenance of progenitors (SP/1 and GABPA) were

enriched in the BMP-like state and TFs involved in T cell specification
(TCFL2and LEFI) were enriched in the T-specified state (Extended Data
Fig. 7a). We constructed transcriptional regulatory networks using
SCENIC+ (ref. 44), which nominated MEF2C as the top activator of the
BMP-like state. We found that TCF7L2 and BCL11B were the most specific
activators of the T-specified state but also served repressive rolesin the
BMP-like state, suggesting reciprocal regulation by these TFs (Extended
DataFig.7b,c). Transcriptional activation of these regulons in the bulk
RNA-seq cohort demonstrated that they are associated with OS across
subtypes (Extended Data Fig. 7d-f).

Lastly, we applied the BMP-like DEG signature to stratify n=110
bulk-sequenced participants with AALLO434 ETP-ALL. Our 119-gene
BMP-like signature was predictive of OS (66.4% versus 94.3% 5-year
0S, P=5x10"%) and EFS (68.2% versus 94.3% 5-year EFS, P=2x107°)
independent of EOIMRD and CNS status (Fig. 3m, left). Our BMP-like
DEG signature provided robust stratification when MRD status was
considered asabinary variable (Fig. 3m, right), identifying a subset of
EOI-MRD-negative participants with inferior survival (high BMP-like
and MRD-negative, 75.0% 5-year OS) and a group of EOI-MRD-positive
participants with favorable survival outcomes (low BMP-like and
MRD-positive, 94.9% 5-year OS).

Distinct mutations underlie BMP-like and T-specified states
We next hypothesized that BMP-like and T-specified ETP blasts
would harbor distinct mutational spectra. We leveraged the inter-
section of single-cell derived phenotypes with structural variant and
single-nucleotide variant (SNV) calls (Supplementary Table 11) to iden-
tify associated drivers of these cell states (Fig. 4a,b and Extended Data
Fig.8a-c). BMP-like leukemias harbored fusion products known to drive
high HOXA cluster expression, including MLLT10, KMT2A, NUP214 and
direct HOXA::TCR fusions. T-specified leukemias had ZFP36L 2 fusions
(involvedin cell-cycle control during T cell B selection), TLX1 and TLX3.
Notably, all participants with ETP who died from disease on AALL0434
had BMP-like associated fusions (Fig. 4b). On the SNV level, BMP-like
high participants had recurrent mutations in TF and signaling path-
ways (thatis,JAK3, NRAS, WT1, ETV6 and SATB1) while T-specified high
participants had mutations in T cell lineage regulators (that s, IL7R,
NOTCHI1 and RUNXI). Top BMP-like associated SNVs were associated
withinferior outcome, while top T-specified SNVs showed the opposite
trend (Fig. 4c-e and Extended Data Fig. 8d,e).

Inlinewithitsessential rolein T cell lineage commitment, the most
recurrently altered gene associated with either cell state was NOTCH].
Within our single-cell cohort, we observed that NOTCHI-mutant par-
ticipants (n = 6) had divergent arrest spectracompared to participants
withwild-type (WT) NOTCHI (n =19) (Fig. 4f), witha notable depletion
of BMP-like blasts (Fig. 4g). We found that T-specified blasts had DE

Fig. 4| Divergent mutational spectra associated with T-specified and BMP-like
state. a, Recurrently mutated genes (left) and fusion drivers (right) among single-
cell-sequenced participants with ETP-ALL versus tumor BMP-like and T-specified
proportions among 25 participants with ETP-ALL. b, Recurrent driver fusions
(n=16, recurrentin >2 samples; left) and recurrently mutated genes (n = 26,
recurrentin>5samples; right) among 113 bulk-sequenced participants with ETP-
ALL"and associated BMP-like and T-specified signature scores. ¢, Top recurrently
mutated genes associated with BMP-like and T-specified cell statesinn =110
ETP-ALL samples from AALLO434. Significance was assessed using a two-

sided Wilcoxon rank-sum test. d,e, OS (d) and single-cell signature scores

(e) among n =110 bulk-sequenced participants with ETP-ALL grouped by mutation
status within BMP-like (ETV6, NRAS, HLA-Cand SATIB; mutant (mut), n=39; WT,
n=71)and T-specified (VOTCHI,IL7R, RUNXI and SUZ12; mut, n = 60; WT, n = 50)
associated genes. The Pvalue for the log-likelihood statistic of a Cox proportional
hazard test with day 29 MRD as a covariate is shown at the bottom left of the
Kaplan-Meier curves. The box includes the median, hinges mark the 25th and 75th
percentiles and whiskers extend 1.5 times the interquartile range. f, Arrest states of
leukemic cells from NOTCHI-WT (n =19) and NOTCHI-activated (n = 6) leukemias

based on scRNA-seq and scATAC-seq developmental trajectories. The D value
from a two-sample Kolmogorov-Smirnov test is indicated to the side of brackets
(*P<2.2x107%). g, Proportion of leukemic cells in BMP-like and T cell lineage
(pro-T cell to af) cell states in NOTCHI-WT and NOTCHI-mut in single-cell-profiled
participants (n =19 NOTCHI-WT and n = 6 NOTCHI-mut). Significance was assessed
using a two-sided Wilcoxon rank-sum test. h, T-specified signature score among
110 bulk-sequenced participants with ETP-ALL from AALLO434. Participants are
divided into three groups by NOTCHI mutation status. Pvalues from a two-sided
Mann-Whitney test are shown. The box includes the median, hinges mark the
25thand 75th percentiles and whiskers extend 1.5x the interquartile range (n = 69
NOTCHI-WT, n =23 NOTCHI-mut (single) and n = 18 NOTCHI-mut (two or more)).
i, Summed VAF of NOTCHI mutations in participants with AALLO434 ETP with O
(WT, n=69),1(n=23)and two or more NOTCHI (n =18) mutations. Pvalues froma
two-sided Mann-Whitney test are indicated. The box includes the median, hinges
mark the 25th and 75th percentiles and whiskers extend 1.5x the interquartile
range.j, OS of n =110 participants with AALLO434 ETP by NOTCH mutation status.
The Pvalue for the log-likelihood statistic of a Cox proportional hazard test with
day 29 MRD as a covariate is shown to the bottom left.
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Fig. 5| Subclonal NOTCHI mutations additively contribute to differentiation
toward the T-specified state. a, Identification of n =7 subclonal NOTCH1
mutationsinn =3 MRD-negative participants with BMP-like associated fusion
drivers. b, Left: experimental workflow for detection of NOTCHI-mut leukemic
blastsin scRNA-seq libraries through GoT. cb, cell bar code; umi, unique
molecularidentifier. c, Summary statistics fromn = 9,314 genotyped cells from
sevenindependent GoT experiments. Pvalues froma chi-square test are shown
(**P<2.2 x107). Right: expression of NOTCHI-mut UMIs amongst ETP blast and
non-ETP blast populations in scRNA-seq data. Pvalues from a two-sided Mann-
Whitney test are shown (**P < 2.2 x10). The median of both populations and
90th percentile of UMI reads in non-blast populations are indicated within each
violinplot. frac, fraction. d, GoT detection of 7/7 mut transcripts determined
from bulk WES and WGS (n = 7,754 cells; n= 5,625 NOTCHI-mut: PAVLKA, n = 3,352;
PAWGWD, n=2,273). e, Fraction of BMP-like and T-specified cells within NOTCHI-
mut cells (n = 5,625 cells: PAVLKA, n = 3,352; PAWGWD, n =2,273). f, Detection of

n=1971cells harboring two unique NOTCHI mutations within leukemic blasts
from PAVLKA (n =1,649) and PAWGWD (n =322). g, Association of BMP-like and
T-specified signature scores with NOTCHI mutation dosage in single cells. Cells
arebinarized into zero (WT; PAVKLA, n =134; PAWGWD, n =2,365), one (PAVKLA,
n=1,545;PAWGWD, n=1,739) and two (PAVKLA, n=1,649; PAWGWD, n = 322)
mutations. Pvalues from a two-sided Mann-Whitney test are shown. h, Association
of NOTCHI-mut transcript expression and BMP-like and T-specified signatures
(n=7,754 genotyped single cells from PAWGWD and PAVLKA are plotted). The
Pearson correlation coefficient and Pvalue for Pearson’s product moment are
indicated to the top right. i, Transcriptome similarity of GSI-treated DND-41 T-ALL
cells (n =3 per condition) with T cell developmental stages identified in sScRNA-seq
data.j, Upregulation of BMP-like transcriptomic signature in GSI-treated DND-41
(GSE173872, n =3 per condition) and THP-6 (near-ETP; GSE138659, n =3 per
condition) T-ALL cell lines. Cell lines were scored using the 119 BMP-like signatures
established in Fig. 2. Pvalues from a two-sided ¢-test are shown.
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NOTCH activation pathways compared to BMP-like blasts (Extended
DataFig. 8f) and NOTCH1 activation represented a universal marker of
treatment sensitivity within the larger bulk-sequenced cohort. Of 110
bulk-sequenced participants with ETP-ALL, 41 harbored NOTCHI muta-
tions, with 18 having two or more mutations (range: 2-5). Participants
with two or more NOTCHI mutations had higher T-specified signa-
ture scores (Fig. 4h), aligning with an elevated NOTCHI variant allele
frequency (VAF; >50% versus <50%) (Fig. 4i). Remarkably, all 18 par-
ticipants with two or more NOTCHI mutations in the bulk-sequenced
cohortwerealive atlast known follow-up, outperforming participants
with single NOTCHI mutations and WT NOTCHI (Fig. 4j).

Interestingly, in EOI-MRD-negative participants with BMP-like
associated drivers (KMT2A and MLLT10 fusions), two of three harbored
tumors with multiple activating NOTCHI mutations, suggesting that
pan-tumor NOTCH]I activation can drive differentiation away from
the BMP-like state (Fig. 5a). To study NOTCHI-mutant subclones at
the single-cell level, we performed genotyping of transcriptomes
(GoT) ontwo participants harboring a total of seven unique activating
NOTCHI mutations (Fig. 5b). We successfully detected 7/7 NOTCH1
mutations in scRNA-seq libraries, corroborating bulk-derived variant
calls (Fig. 5¢,d). We found that NOTCHI-mutant cells were predomi-
nantly in the T-specified state and identified hundreds of leukemic
blasts carrying two distinct NOTCHI mutations, likely resulting from
selection for NOTCHI mutation in separate alleles (Fig. 5e,f). We
found a direct connection between NOTCHI mutation dosage and the
T-specified cell state, whereby blasts with two unique mutations had
the highest expression of T-specified genes and lowest expression of
BMP-like genes (Fig. 5g,h). Lastly, we analyzed the RNA-seq data of
DND-41and THP-6 cell lines treated with NOTCH pathway y-secretase
inhibitors***¢ (GSIs), finding that NOTCH pathway inhibition induced
exposure-dependent transcriptomic shifts toward the BMP-like cell
state (Fig.5i,j). Taken together, these data offer high-resolution insight
into how NOTCHI mutations alter T-ALL developmental arrest and
cement NOTCHI mutation status as a critical biomarker for response
to conventional therapy.

BMP-like genetic signatures risk-stratify non-ETP-ALL

Relapsed and refractory T-ALL is nearly universally fatal. Given that
BMP-like blasts are highly resistant to conventional T-ALL therapy,
we wondered whether an analogous, less differentiated subpopu-
lation could be responsible for treatment resistance and relapse
in non-ETP-ALL. Analysis of bulk RNA-seq data from the AALLO434
non-ETP cohort supported this hypothesis, with DE between 355
MRD-positive and 714 MRD-negative non-ETP-ALL cases revealing
gross differences in differentiation state (Supplementary Table 12).
Within this analysis, MRD-negative participants overexpressed mark-
ers of the a/f3 stage (CD1B, CDIE, MAL, CD8A, PTCRA, RAGI and RAG2),
while MRD-positive participants expressed immature forms of the TCR

(TRGCI and TRGC2) and stem-related TFs (HHEX and LYL1). We used
single-cell multiomics data to determine whether these differences
were mediated by cell state or cell proportion differences.

We stratified our ten participants without ETP into two groups:
six EOI-MRD-negative participants with complete response (CR) and
four EOI-MRD-positive participants (EOl MRD > 0.1%). We observed
that non-CR participants had an enrichment of cell states before T cell
commitment (pro-T cell, CLP, LMPP, megakaryocyte-erythroid pro-
genitor (MEP) and HSPC), while CR participants had anenrichment of
cells in postcommitment states (CD4"CD8" double-positive (DP) or
o/P) (Fig. 6a,b). Because precommitted blasts represent a continuum
of cell states from BMP-like to pro-T cell-like, we compared the dis-
tribution of precommittment blasts in CR participants and non-CR
participants. We found that MRD-positive participants harbored a
strong enrichment of BMP-like blasts, which were nearly absentin CR
participants (Fig. 6¢). DE analysis generated signatures for non-ETP
precommitted and BMP-like blasts (Supplementary Tables13 and 14),
whichbothstratified participants without AALLO434 ETPindependent
of MRD, with the BMP-like signature having slightly better stratifica-
tion (Fig. 6d).

We next intersected the molecular signature of BMP-like blasts
obtained from participants with ETP-ALL and non-ETP-ALL, revealing
a shared BMP-like gene set (‘(BMP-17") composed of 17 marker genes
typically expressed in stem, myeloid and B cell progenitors (Fig. 6e,f
and Supplementary Table 15). We applied BMP-17 to five different clini-
cal scenarios for risk stratification, observing robust risk stratification
inall instances (Fig. 6g,h). BMP-17 powered risk stratification within
the smaller, partially sequenced AALL1231 cohort and was prognostic
independent of EOI MRD and CNS status within the fully sequenced
AALLO434 cohort, including participants stratified by ETP status. To
further test whether BMP-like subpopulations were enriched at relapse
time points, we performed RNA-seq on 27 relapsed T-ALL cases within
AALLO434.Weidentified a consistent enrichment of BMP-like gene signa-
tures and decrease in T-specified signatures withinrelapse cases, further
supporting the use of BMP-like signatures for risk stratification (Fig. 6i,j).

We next determined the surface immunophenotype of BMP-like
blasts using CITE-seq data, revealing a nine-marker phenotype
(‘BMP-surface-9’) that reflected similar lineage aberrancy to BMP-17
(Fig.7a-cand Supplementary Table 16). We found that RNA expression
of BMP-surface-9 genes robustly stratified AALLO434 and AALL1231
T-ALL cohorts (Fig. 7d-h) and further validated BMP-surface-9 in
AALLO434 diagnostic flow cytometry cases (n=99), finding a robust
correlation of clinically used surface markers with the BMP-17 gene
signature (Fig. 7i,j).

Because non-pediatric T-ALL is enriched for both
treatment-refractory cases and ETP phenotype, we next applied BMP-
17 to young adult (age >18) cases on AALLO434. This analysis isolated a
subset of high-BMP cases (Extended DataFig. 9a-c) with high rates of EOI

Fig. 6| A consensus 17-gene BMP-like signature predicts OS across all
subtypes of T-ALL. a, Arrest states of leukemic cells from CR (n = 6) and MRD-
positive (n =4) participants with non-ETP-ALL based on projection to

healthy scRNA-seq (left) and scATAC-seq (right) reference trajectory.

b, Proportion of non-ETP blasts in precommitment (pre-commit, all cells before
the pre-T cell stage) and postcommitment (post-commit, after the pre-T cell
stage) developmental arrest state. P values from a two-sided Mann-Whitney
testareindicated (n = 68,801 cells; total cells: CR, 52,971; MRD-positive,

15,830; precomitted blasts: CR, 7,152; MRD-positive, 11,047). ¢, Arrest states of
precommitted non-ETP blastsin CR (n = 6) and MRD-positive (n = 4) participants.
BMP-like encapsulates all cells that possess multipotent potential (HSPC, LMPP,
CLPorETP).d, Kaplan-Meier plot showing OS of participants with non-ETP-ALL
in AALLO434 when binarized using signatures (sig) derived from precommitted
non-ETP blasts and BMP-like non-ETP blasts. The Pvalue for the log-likelihood
statistic of a Cox proportional hazard test with day 29 MRD as a covariate is shown
to the bottom left. e, Overlap of ETP BMP-like and non-ETP BMP-like DEGs to

create consensus signature for risk stratification in AALLO434 (fully sequenced)
and AALL1231 (partially sequenced). BMP-like DEGs were filtered for mean log,
fold change (FC) > 0.9 between ETP and non-ETP comparisons. f, Expression
score of BMP-17 signature score and BMP-17 marker genes within bone marrow
and thymus scRNA-seq reference (n = 49,623 cells). Multipotent BMP populations
with high BMP-17 expression are circled. g,h, Kaplan-Meier plot showing OS

of bulk RNA-seq participants with T-ALLin AALLO434 (n = 1,335 participants)
and AALL1231 (n =75 participants) binarized using the BMP-17 signature. The
prognostic value of the BMP-17 signature in multivariate analysis (with day

29 MRD, CNS status, WBC count and age at diagnosis) is shown below the Cox
proportional hazard log-likelihood Pvalue with day 29 MRD as covariate.

ij, Change in BMP-like and T-specified signature scores in AALLO434 diagnosis
and relapse sample pairs (n = 27: near-ETP, 4; non-ETP, 23). Pvalues from a two-
sided paired ¢-test are shown. The box includes the median, hinges mark the 25th
and 75th percentiles and whiskers extend 1.5x the interquartile range.
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Fig. 7| Clinical utility of the BMP-like surfaceimmunophenotype in risk
stratifying participants with T-ALL. a, Overlap of ETP BMP-like and non-ETP
BMP-like DE surface markers to create consensus surface marker signature

forrisk stratificationin AALLO434 (fully sequenced) and AALL1231 (partially
sequenced). Positive surface markers were filtered for log,FC > 0.5 and adjusted
Pvalue < 0.001. Negative surface markers were filtered for log,FC < -0.5and
adjusted Pvalue <0.001. b, Aggregate signature score of BMP-surface-9 signature
(AUC of positive markers — AUC of negative markers) calculated using AUCell
inscRNA-seq reference (n = 49,623 cells). The T cell developmental trajectory
isindicated with an arrow. The progenitor populations are circled. c, RNA
expression of BMP-surface-9 marker genes within scRNA-seq reference of normal
hematopoiesis (n = 49,623 cells). Positive marker genes are shown in the top row;
negative marker genes are shown in the bottom row. Left: the AUC of positive and
negative surface marker genes within healthy hematopoiesis. d-h, Kaplan-Meier
plot showing the OS of bulk RNA-seq participants with T-ALL in AALLO434 and

AALL1231. Participants in each analysis were binarized using RNA-seq-derived
expression of BMP-surface-9 signature genes. Participants are grouped by
subtype, with non-subtyped participants (n = 194) grouped with participants
without ETP. The prognostic value of the BMP-surface-9 signature in multivariate
analysis (with day 29 MRD, CNS status, WBC count and age at diagnosis) isshown
below the Cox proportional hazard log-likelihood Pvalue with day 29 MRD as a
covariate. i, Pearson correlation of percentage expression of T, pan, stem and
myeloid flow cytometric markers among n = 99 participants without ETP. Pvalues
froma correlation test are shown. j, Average percentage expression of stem or
myeloid (CD117,CD34, HLA-DR, CD13 and CD33) and T (CD4, CDIA, CD3, CDS, CD8
and CD2) in BMP-high versus BMP-low non-ETP cases. BMP-high and BMP-low
were defined using bulk RNA-seq and matched with flow cytometric values by
unique sequence index. Pvalues from a two-sided Mann-Whitney test are shown.
Theboxincludes the median, hinges mark the 25th and 75th percentiles and
whiskers extend 1.5x the interquartile range (n = 56 BMP high; n = 43 BMP low).

MRD and induction failure (Extended Data Fig.9d,e) and reduced OSand
EFS (Extended Data Fig. 9f). Lastly, we sought to determine whether we
could make these signatures more parsimonious using machinelearning
regression, narrowing the BMP-17, BMP-surface-9 and BMP-119 signatures

to 6,3and 20 genes, respectively, while maintaining orimproving prog-
nostic stratification (Extended Data Fig. 9g-i). Together, our results
supportatreatment paradigm for T-ALL involving early genetic screening
for the chemotherapy-refractory BMP-like phenotype.
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BMP-like blasts are uniquely sensitive to BCL-2 inhibition

The universal existence of BMP-like populations across
treatment-refractory T-ALL cases prompted us to develop a pipeline
for the discovery of BMP-like directed targeted therapy. To support
the modeling of BMP-like therapy response, we first expanded blasts
from 22 single-cell-sequenced participants in NOD scid gamma (NSG)
mice (Fig. 8a). scRNA-seq on engrafted blasts from 16 participants
indicated strongretention of specific features (Fig. 8b), with BMP-high
and BMP-low participants maintaining their respective phenotypes
after engraftment (Fig. 8c-f).

We performed computational screening for targets specific
to BMP-like blasts (Fig. 8g). We queried 552 BMP-like genes against
three drug target databases (TTD, DrugIDB and OpenTargets), one
transcriptomic-based compound screening database (LINCS1000)
and one cancer gene vulnerability database (DepMap). The consensus
results nominated four druggable surface proteins (CD44, LGALS]I,
ITGA4 and CD74), three homeostatic enzymes (S100A4, BCL-2 and
Hsp90), two signal transduction molecules (Syk and Btk) and one TF
(BCL-11A) (Extended Data Fig.10a-d and Supplementary Table 17).

To test these computational predictions, we first performed
in vitro drug screening using an established panel of 40 leukemia
active drugs (Fig. 8h and Supplementary Table 18). PDX-expanded
blasts from five of the 16 participants were screened using a stromal cell
coculture system and dose-response curves were generated for each
compound (Fig. 8i). 0f 40 compounds, nine were active inall five PDX
modelsand eight wereactive in atleast one PDX model (Extended Data
Fig. 10e,f). These compounds had different activity across BMP-high
participants (n = 3) and BMP-low participants (n =2) (Fig. 8i and Sup-
plementary Table19). After adding an additional five PDX models (n =5
BMP-highand n = 5BMP-low), we confirmed that BMP-high participants
hadincreased sensitivity to venetoclax and navitoclax, while BMP-low
participants were more sensitive to conventional cytotoxics (predni-
solone, mercaptopurine and daunorubicin) (Fig. 8j). These associa-
tions were observed using bulk transcriptomic signatures across an
integrated cohort" (Fig. 8k and Extended Data Fig. 10g). Although
BTK returned as afour-database hit, comparable ibrutinib sensitivity
was seenin BMP-like and T-specified blasts, likely resulting from DE of
Tec kinases*® between immature and mature T cells (Extended Data
Fig.10h).

The strong in vitro activity of BCL-2 inhibitors against BMP-like
blasts prompted us to initiate in vivo efficacy studies in BMP-high
(PATTDP, n = 6) and BMP-low (PAUNDK, n = 9) PDX models (Extended
DataFig.10i-m).Inthe peripheral blood, venetoclax treatment resulted
in the halting of disease progression in BMP-low models compared
to control (Extended Data Fig. 10j). However, after the conclusion
of the study, BMP-low PDX models still harbored notable residual
disease within the bone marrow (>38% blasts) and spleen (>4% blasts)
(Extended Data Fig. 10k). In contrast, venetoclax treatment resulted

in the robust clearance of disease in BMP-high PDX (Extended Data
Fig. 10k-1), with a reduction in blasts beyond our limit of detection
(<0.01%) in the majority of PATTDP PDX models of the bone marrow
and spleen (Extended Data Fig.10m and Supplementary Table 21). Our
results support further clinical testing of BCL-2 inhibitorsin refractory
BMP-like T-ALL.

Discussion
Our study reports acomprehensive mapping of T-ALL to healthy human
hematopoiesis. We report the surprising discovery that T cell leukemias
differing drastically by bulkimmunophenotype are linked at the sub-
population level. Our integrated analysis identifies a shared BMP-like
population tightly associated with treatment failure in ETP-ALL,
near-ETP-ALL and non-ETP-ALL. This subpopulation canrepresent <5%
of blasts at diagnosis, illustrating the limitations of current bulk-level
tumor classification schemes. The cell of origin of ETP-ALL remains
unknown and itis widely hypothesized that the transformation occurs
inaT cell progenitor that maintains itsimmature cell state*’. However,
experimental work in mice demonstrated that dedifferentiation of
T cell-committed blasts can also lead to murine ETP-ALL*™. Interestingly,
BMP-like blasts are also found in myeloid and mixed-phenotype leuke-
mias, raising the possibility of one common cell of origin, which could
beinferred through linage-tracing approaches. Supporting evidence
indicatingashared progenitor cell of originincludes an enrichment of
TF and signaling gene mutations within BMP-like T-ALL blasts (similar
tomyeloid leukemias), non-T cell lineage marker expression and shared
drug sensitivity profiles with myeloid leukemia stem cells. The unique
opportunity to intersect our single-cell data with large-cohort bulk
whole-exome sequencing (WES) and whole-genome sequencing (WGS)
data allowed us to the associate BMP-like phenotype and genotype.
Within AALLO434, the NOTCH pathway was mutated in >70% of cases.
Most NOTCHI-activating mutations (indels, SNVs and stop, frameshift
and splice variants) were associated with superior 5-year OS and EFS;
however, intronic VOTCHI SNVs and intragenic deletions were associ-
ated with worse outcomes. Our dataisolate transcriptomic signatures
from leukemic blasts carrying two co-occurring NOTCHI mutations,
revealing a direct connection between NOTCHI mutation dosage and
T cell lineage differentiation and refining our understanding of the
functional transcriptomic changes that occur with NOTCH mutation.
Although our study was heavily focused on pediatric T-ALL, our
findings are perhaps even more relevantin the adult setting, where the
ETP phenotype represents up to 52% of cases and 5-year survival rates
are <50%. Detection of high-risk cases within young adults treated on
AALLO434 using BMP-like signatures supports the hypothesis that
BMP-like blast-mediated treatment failure extends beyond pediatric
T-ALL cases. Multiple studies of pediatric® (ALL-BFM 2000) and adult>
(LALA-94 and GRAALL-2003) trials found that NOTCH pathway activa-
tion was associated with favorable outcomes, further supporting a

Fig. 8 | Nomination and preclinical validation of targeted therapy against
BMP-like blasts. a, Total engrafted PDX by subtype, ETP-ALL PDX by MRD status
and BMP-like proportion. Pvalues from a two-sided proportion test are shown
(n=22PDXmodels:ETP, 9; near-ETP, 5, non-ETP, 6). b, UMAP representation of
n=16 primary participant samples and n = 16 corresponding PDX models profiled
using scRNA-seq (n =131,168 cells: primary, 93,458; PDX, 37,710). PDX engrafted
blasts are connected to their primary sample by arrows. ¢, Proportion of BMP-
projected blasts (HSPC, LMPP or CLP) in n =16 participant-PDX pairs. Left:
samples are ordered by the proportion of BMP-projected blasts in the primary
sample. Participants with detectable blasts (>1%) are considered BMP-positive,
while participants with >25% blasts are considered BMP high. USI, unique study
identifier. d, Proportion of T-specified projected blasts (pro-T cell and pre-T

cell) ineach participant-PDX pair (n =16). e, Difference between BMP-like and
T-specified signatures scored using AUCell on bulk RNA-seq samples fromn =16
participants. f, OS and EFS swimmer plot of n =16 participants with paired PDX
models. Events are labeled. Relapse is indicated by R. g, Computational screening

approach used toidentify targetable genes within BMP-like blasts. A total of 552
BMP-like blast-specific DEGs (FDR < 0.05) were overlapped with drug target and
dependency databases and ranked on the basis of the number of database hits
and DE scores. The top ten targets by aggregate score are highlighted in red.

h, A panel of 40 drugs was tested on PDX engrafted blasts from n = 5 BMP-high
and n=5BMP-low participants (n =10 participants: ETP, 4; near-ETP, 2; non-ETP, 4).
i, Representative dose-response curves for n = 4 nominated therapeutics that
showed differential activity in BMP-high (n = 3) versus BMP-low (n = 2) leukemias.
Jj, Relative activity of drugs active in BMP-high versus BMP-low leukemias (n =5
each). Mean values are shown. k, Correlations between drug sensitivity
(-log,ICs,) and the scRNA-seq derived BMP-like percentage (top) and the BMP-
like signature score computed using 119 DEGs on bulk RNA-seq data (bottom).
Bottom: the bulk RNA-seq correlations include the data from this study (n =10)
and data from Lee et al.”’ (venetoclax, n = 28; nelarabine, n = 25; prednisolone,
n=107; mercaptopurine, n =101). Spearman’s correlations and significance
areshown.
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common mechanism of treatment resistance mediated by NOTCHI-WT
BMP-like subpopulations. Lastly, our single-cell multiomic reference
maps of human hematopoiesis present a valuable resource to further
delineate the impact of developmental heterogeneity in human leu-
kemia by enabling a higher-resolution dissection of rare phenotypes
beyond what is possible through the deconvolution of bulk transcrip-
tomic data. Use of these reference maps within five subtypes of acute

leukemia underlined aBMP-like arrest state shared among lymphoid,
myeloid and mixed-phenotype leukemic disease, highlighting an
opportunity for further study. For instance, these reference maps
and gene signatures could be used to study tumor evolution in the
context of relapsed tumors and serial samples. Likewise, additional
profilingisneeded toidentify the characteristics of blast statesamong
therecently established transcriptionally defined T-ALL subtypes such
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as the broader category of ETP-like leukemia® in relation to the ETP,
near-ETP and non-ETP immunophenotypic classification.
Collectively, our study identifies a rare but clinically important
BMP-like subpopulation, which represents a promising therapeu-
tic target for relapsed and refractory persons with T-ALL. Single-cell
approaches on a carefully selected cohort were uniquely powered to
isolate the BMP-like gene signature for risk stratification and therapeu-
tic targeting, illustrating how high-resolution single-cell analyses are
needed to supplement high-throughput bulk genomic approaches for
understanding clinically relevant tumor biology. Further studies are
needed to demonstrate the clinical utility of the prognostic gene sig-
natures across a range of populations and mutational subtypes. Lastly,
future mechanistic studies are expected to clarify the actions of the drugs
identified tounderstand their specificity and the subsequent alteration
of leukemic phenotypes to demonstrate their translational applicability.

Methods

AALLO0434 participant identification and clinical annotation
COGstudies AALL0434 (NCT00408005) and AALL1231 (NCT02112916)
were approved by the National Cancer Institute Cancer Evaluation
and Therapeutic Program, the US Food and Drug Administration, the
Pediatric Central Institutional Review Board (IRB) and local IRBs at all
participating centers. Written informed consent was obtained from
study participants and, when appropriate, their legal guardians, in
accordance with the Declaration of Helsinki. All participant data were
deidentified and writteninformed consent was obtained to publish the
indirectidentifiersin the present manuscript. Furtherinformationon
research designisavailableinthe Nature Portfolio Reporting Summary
linked to this article.

Secondary genomic studies were approved by the Children’s Hos-
pital of Philadelphia (CHOP) IRB. In total, 40 cases from AALL0434
(Supplementary Table 1) and eight healthy thymus and bone marrow
controls (Supplementary Tables 5 and 6) were selected for single-cell
study. The healthy thymus and bone marrow used for this work were
residual tissues after collection for clinical care. Leukemia samples were
bone marrow or blood samples collected and banked for COG trials.
Within AALLO434, ETP status was centrally assessed in diagnosticbone
marrow or peripheral blood samples using 8-9-color multiparameter
flow cytometry®. ETP was defined as having lymphoblasts that were
CD8 CDl1a (<5% positive), weakly expressed CD5 (either <75% positive
or median intensity more than one log less than mature T cells) and
expressed one or more myeloid or stem cell markers (>25% positive)
including CD13, CD33, CD34, CD117 and HLA-DR (ref. 13). Subjects
meeting the ETPimmunophenotypic criteriabut with stronger expres-
sion of CD5 were classified as near-ETP. Subjects with neither ETP nor
near-ETP were defined as non-ETP. MRD was assessed using 8-9-color
flow cytometry and was performed using established methods at a
COG flow cytometry reference laboratory (University of Washington
or Johns Hopkins University).

Processing of T-ALL diagnosis samples

Peripheral blood or bone marrow aspirate samples were thawed at
37°C, treated with 1:10 (v/v) 1 mg mI™ DNase I (Sigma-Aldrich, D4513)
for90 sat37 °C, resuspended in10 ml of Iscove’s modified Dulbecco’s
medium (IMDM) + 2% FBS and centrifuged (160g for 5 min). Samples
wereretreated with DNaseland resuspendedin fluorescence-activated
cell sorting (FACS) buffer (Ca*-free and Mg**-free PBS + 1% BSA). Cell
number and viability were recorded using a Countess Il cell counter
(Invitrogen). More than 1 million live cells were aliquoted for tail-vein
injection into NSG mice, with the remaining stained with DAPI (Invit-
rogen, D1306) and subjected to FACS sorting (FACSAria Fusion, BD).

scRNA-seq and CITE-seq library preparation
FACS-sorted DAPI-negative live cells were centrifuged and resuspended
in cell staining buffer (BioLegend, 420201) at 45 pl per million cells.

Cellswereblocked withHuman TruStain FcX (BioLegend, 422301) at5 pl
per million cells (4 °C, 15 min). After blocking, cells were stained witha
TotalSeq-A antibody cocktail (30 min, 4 °C). Cells were washed three
times using cell staining buffer (BioLegend, 420201) and resuspended
in PBS + 0.04% BSA. Cells were counted using a Countess Il cell counter.
Atotal of 17,000 cells per sample were then loaded onto 10x Genomics
Chromium controller and processed with the Chromium NEXT GEM
single-cell 3’ reagent kit (version 3.1). GEX libraries were constructed
using the 10x Genomics library preparation kit following the instruc-
tions. Antibody-derived tag (ADT) libraries were constructed using
the KAPA HiFi HotStart ReadyMix kit (Kapa Biosystems, KK2601). The
following programwas used for ADT library PCR: 98 °C for 2 min, 14-15
cycles of 98 °C for 20 s, 60 °C for 30 s and 72 °C for 20 s, followed by
72°Cfor5minandaholdat4 °C. Library quality was checked using the
Agilent high-sensitivity DNA kit (Agilent, 5067-4626) and Bioanalyzer
2100. Libraries were quantified using the dsDNA high-sensitivity assay
kit (Invitrogen, Q33231) on a Qubit fluorometer and quantified using
the qPCR-based KAPA quantification kit (Kapa Biosystems, KK4844).
Libraries were sequenced onanIllumina NovaSeq 6000 with 28:8:0:87
paired-end format.

SCATAC-seq library preparation

DAPI-negative live cells were centrifuged at 300g (5 min at 4 °C),
mixed in 45 pl of lysis buffer and incubated (3 min on ice). Next, 50 pl
of prechilled wash buffer was added without mixing and centrifuged
immediately at 300g (5 min at 4 °C). Then, 95 pl of supernatant was
discarded, 45 pl of diluted nucleibuffer (10x Genomics) was added and
the sample was centrifuged (300g; 5 min at 4 °C). The nuclear pellet
wasthenresuspendedin7 pl of prechilled diluted nuclei buffer and the
nuclear concentration was determined using a Countess Il cell counter.
Atotal of 7,000-20,000 nuclei were used for the transposition reac-
tioninbulk, loaded onto the 10x Genomics Chromium controller and
processed with the Chromium NEXT GEM scATAC reagent kit (version
1.1). Library quality was checked using the Agilent high-sensitivity DNA
kit and Bioanalyzer 2100. Libraries were quantified using the dsDNA
high-sensitivity assay kit on a Qubit fluorometer and quantified using
the qPCR-based KAPA quantificationkit. Libraries were sequenced on
anIlluminaNovaSeq 6000 with 49:8:16:49 paired-end format.

Expansion and profiling of T-ALL blasts in PDX

NSG mice (RRID:IMSR_JSX:005557) were used for all experiments. For
the development of PDX models, we injected ~10° blasts from viably
frozen participant samples (bone marrow or blood) per mouse to
develop primagrafts (Supplemental Table 22). PDX-expanded blasts
were isolated from the spleen or bone marrow. Frozen samples were
thawed (37 °C), resuspended inIMDM + 2% FBS and treated with DNase
I twice. Cells were washed twice with RPMI medium, resuspended in
flow buffer, stained with DAPI and anti-human CD45 antibody (BD
Pharmingen, 555485) and subjected to FACS sorting (FACSAria Fusion,
BD). DAPI-negative hCD45" sorted cells were stained with 10x Genomics
3’ CellPlex multiplexing solution, washed three times and immediately
processed using the10x Genomics Chromium controller and the Chro-
mium NEXT GEM single-cell 3’ reagent kit (version 3.1). The 3’ GEX librar-
ies were constructed using the 10x Genomics library preparation kit.
CellPlexlibraries were constructed using the 10x Genomics 3’ CellPlex
kit. Library quality was checked using the Agilent high-sensitivity DNA
kit and Bioanalyzer 2100. Libraries were quantified using the dsDNA
high-sensitivity assay kit on a Qubit fluorometer and quantified using
the qPCR-based KAPA quantificationkit. Libraries were sequenced on
anIllumina NovaSeq 6000 with 28:8:0:87 paired-end format.

CD34" progenitor isolation from infant or pediatric thymi

Pediatric thymi were obtained and used according to and with the
approval of the CHOPIRB. Thymus tissue was mechanically disrupted
and treated with liberase (0.2 mg ml™, 30 min at 37 °C; Roche) with
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intermittentshaking, as previously described”. Thymocytes were resus-
pended into flow buffer, sorted into DAPI-negative lineage-negative
CD34"CD1A" fractions and subjected to scRNA-seq and scATAC-seq.

Projection onto healthy reference trajectory
Participant-derived cells were projected onto the healthy reference
trajectory using the MapQuery functionin Seurat 4.0.5. For scRNA-seq
data, participant and healthy control data were coembedded into
alow-dimensional space using the default anchor-based canonical
correlation analysis (CCA) method in Seurat 4.0.5 (30 dimensions,
2,000 anchor features) and cell type label transfer was performed
on a sample-by-sample basis using the TransferData function. For
scATAC-seq data, peaks from participant and healthy reference data
were merged using the mergePeaks module from scATAC-pro* and
peak x cell matrices with merged peaks were reconstructed for each
participant with the scATAC-pro reConstMtx module. This allowed
for participant and healthy control data to be coembedded into a
low-dimensional space analogous to the scRNA-seq data.

AALLO434 ETP-ALL stratification using BMP-119 signature
BMP-like and T-specified DEGs were stringently filtered using cutoffs
of false discovery rate (FDR) < 0.001 and average log, fold change
(log,FC) > 0.5, leaving 66 BMP-like DEGs and 53 T-specified DEGs. The
z-score-based signature scoring was performed on 110 bulk-sequenced
participants with ETP-ALL with BMP-like DEGs as positive features and
T-specified DEGs as negative features. For each participant, the mean
T-specified feature z-score was subtracted from the mean BMP-like
feature z-score, with ascore of >0 being interpreted as more BMP-like
than T-specified. This cutoff was selected to compare participants on
the basis of a relative enrichment of either phenotype. Participants
were binarized by BMP-like signature score (BMP-like > T-specified
versus T-specified > BMP-like) and OS and EFS were compared using
the Cox proportional hazard model with day 29 MRD and CNS sta-
tus taken as covariates using the survfit function from survival 3.2-
13 (‘survfit(Surv(time.survival, status.survival) ~ high.BMP + D29.
MRD + D29.CNS.status’).

Integration of single-cell signatures with mutation calls

Bulk RNA-seq data for n =110 ETP samples with corresponding WES
and WGS mutation calls were scored using 66 BMP-like DEGs and 53
T-specified DEGs using AUCell 1.12.0. For 1,490 mutant genes in 110
ETP samples, the number of samples carrying mutations was quanti-
fied and the mean BMP-like area under the curve (AUC) and T-specified
AUCwere calculated. Mutant genes observed in =5 samples with mean
VAF > 0.05 were plotted for visualization. Classification of genes was
derived from a previous bulk genomics study on ETP-ALL. For fusion
drivers, the mean BMP-like AUC, the mean T-specified AUC, the per-
centage of participants with positive EOIMRD, the percentage of par-
ticipants that died during the trial and the number of unique fusion
partners were calculated.

Identification of a consensus BMP-like gene signature

BMP-like DEGs from participants with ETP-ALL (n = 56 BMP-like versus
T-specified) and participants with non-ETP-ALL (n = 445 BMP-like ver-
sus postcommitment) were overlapped and the average log,FC was
calculated. Atotal of 17 genes with average log,FC > 0.9 were retained
asaconsensus BMP-17 signature. We performed AUC-based signature
scoring using AUCell 1.12.0 (with the top 25% of expressed genes) on
bulk RNA-seq diagnostic T-ALL samples from two independent COG
trials using BMP-17 DEGs. We then binarized participants on the basis
of AUCell signature score and used the Cox proportional hazard model
with EOI MRD and CNS status taken as covariates using the survfit
function fromsurvival 3.2-13 (‘survfit(Surv(time.OS, status.OS) - BMP-
17 + high.BMP-17 + D29.MRD + CNS.status). In each case, the top half of
participants was compared to the bottom half of participants.

Insilico drug screening against BMP-like blasts

Drug-target datafrom two independent drug target databases (TTD**
and DrugIDB*) and a third database (OpenTargets®®) that focuses
on next-generation targets were overlapped with BMP-like DEGs
(log,FC>0.2; adjusted P < 0.01). Targetable gene products were given
ascore of 1 for each database in which a resulting hit was obtained.
Tosearchfor drugs that could specifically modify the BMP-like state,
we inputted top BMP-like DEGs and TFs (n = 56) and top T-specified
DEGs and TFs (n = 62) into the LINCS1000 (ref. 57) database under
default parameters. Perturbation results were filtered in R to filter
compound-mediated perturbations for compounds with defined
targets, statistical significance (log;,FDR > 1), effect size (normal-
ized connectivity score > 0.8), specificity to BMP-like state (raw con-
nectivity score > 0) and activity in two or more leukemia cell lines.
Non-compound perturbations were filtered for statistical significance
(log,,FDR >1) and effect size (normalized connectivity score > 0.8)
and further separated into gene overexpression and gene knock-
down (including short hairpin RNA knockdown, clustered regularly
interspaced short palindromic repeats knockout and ligand-based
perturbation) classes. BMP-like DEGs targeted by top compound
perturbations and/or genes with overexpression or knockdown were
given a score of 1. Lastly, we identified BMP-like DEGs that showed
increased dependency in leukemia cell lines (n =59) compared to
non-leukemia and non-lymphoma cell lines (n =1,052) in the cancer
dependency map®® (DepMap) portal. Genes with negative dependency
scoresinleukemia cell lines (mean dependency score < -0.1), depend-
ency FC > 2 and >25% expression in BMP-like blasts were assigned a
score of 1. Next, BMP-like DEGs with log,FC > 1were assigned a score
ofland genes withlog,FC between 0.5 and 1were assigned ascore of
0.5. Beyond high expression change, we prioritized BMP-like DEGs
with high percentage expression in BMP-like blasts; genes with >80%
expression were assigned a value of 1, whereas genes with 50-80%
expression were assigned a value of 0.5. Finally, we ranked genes
with high statistical significance (adjusted P<1x107°° was given a
score of 1; adjusted P <1x 107° was given a score of 0.5). The sum of
DE evidence (ranging from O to 3) and database evidence (ranging
from O to 5) was taken to rank BMP-like DEGs for follow-up experi-
mental studies.

In vitro drug screening with leukemia active drug panel

Human leukemiablasts were collected from mouse spleen and enriched
usinganimmunomagneticisolationkit (StemCell Technologies, 19849)
andscreened with a panel of 40 leukemia active drugs (Supplementary
Table 18) using a previously described imaging-based assay with a
stromal cell coculture system®.

Nomination of BMP-like specific drugs from drug screening
PDX-expanded blasts from five participants were screened in a stro-
mal coculture system and dose-response curves were generated
for each compound with the primary readout being cell viability
(as a percentage of control). We defined ETP active drugs as com-
pounds with IC;,<1,000 nM and categorized each compound as
not active (active in 0/4 participants with ETP), partially active
(activein1-3 participants with ETP) or active (active in4/4 participants
with ETP). We then compared IC;, values for ETP active compounds
and used three comparisons to nominate drugs that were differen-
tially active in high-BMP participants: BMP-high and MRD-positive
(n=3) versus BMP-low and MRD-negative (n=2: one ETP and one
non-ETP); BMP-high and MRD-positive (n =2) versus BMP-low (n=1);
BMP-high and MRD-positive (n = 3) versus BMP-low (n =1). Drugs with
differential activity in BMP-high participantsin all three comparisons
were nominated as BMP-specific drugs. The sensitivity of these
drugs was confirmed using PDX-expanded blasts from five addi-
tional participants, for a total of five BMP-high models and five BMP-
low models.
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scRNA-seq and CITE-seq data processing

Demultiplexing and alignment of RNA and ADT sequences were per-
formed with CellRanger 3.1.0. Low-quality cellsand red blood cells were
thenfiltered by retaining only cells with between 300 and 2,500 genes
in the scRNA-seq data, greater than 1,500 RNA counts, less than 10%
mitochondrial RNA and fewer than three unique molecularidentifiers
(UMIs) mapping to hemoglobin B. To remove cell doublets in sScRNA-seq
data, DoubletFinder 2.0.3 was run with 5% of the expected rate of dou-
blets. Participant cell x gene and cell x ADT count matrices were indi-
vidually saved and subsequently concatenated using Seurat 4.0.5
for downstream analyses. For some analyses as specified, cell x gene
and cell x ADT matrices for each participant were subset for G1 cells
(representing the phenotype most resistant to conventional therapy)
and were downsampled to match the lowest value in the cohort. After
log-normalization, the FindVariableFeatures function in Seurat 4.0.5
was used toidentify the top 5,000 features with greater than expected
variance. Variable features with expression in >1% of cells were kept
as the input to principal component analysis (PCA), with subsequent
visualization being performed using uniform manifold approximation
and projection (UMAP) of the top 50 principal components (PCs), 30
neighborsand two PCs. For visualization, we used the IntegrateLayers
functioninSeurat 5.0.3 with the RPCAlntegration method and default
parameters.

SCATAC-seq data processing

Demultiplexing of scATAC-seq reads was performed with Cell
Ranger-ATAC1.1.0 (alignment to hg38) and peak calling was performed
with BWA and MACS2 using the scATAC-pro pipeline®® with default
parameters. Low-quality cells were filtered for those cells with <3,000
(low quality) and >50,000 unique fragments (doublets), <40% reads
in peaks (fraction of reads in peaks < 0.4) and >20% reads mapping to
mitochondria. To construct acommon peak set, the top100,000 peaks
(definedby MACS2 MapQ score) were selected for downstreammerging,
alongside 1,500 randomly selected cell barcodes from each participant.
We defined two sample sets for merging peaks: one with 25 participants
with ETP-ALL and one with 40 participants with T-ALL. For each sample
set, peaks were merged with the scATAC-pro mergePeaks module and
peak x cellmatrices withmerged peaks and downsampled cell barcodes
were reconstructed with the scATAC-pro reConstMtx module.

Bulk RNA-seq analysis and visualization

Sequencing read adaptors were removed using Trim Galore 0.4.4
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/)
with parameters ‘-q 20 --phred 33 --paired’. Reads were aligned to the
humangenome GRCh38 using STAR. The resulting gene counts for each
sample were estimated by RSEM, and combined as gene count matrix.
RSEM expected counts were processed and filtered. First, samples
were required to exhibit expression of over one count per million in
>5samples. Second, batch correction was performed using the svaR
package 3.46 function ComBat_seq. Batches were defined on the basis
oflibrary type as stranded or unstranded and on the basis of cohort as
TARGET or X01sequenced samples. Third, the DESeq2 R package 1.38.3
vst function was used for data normalization. Limma 3.46.0 was used
for DE analysis. For visualization, the raw counts were transformed into
transcripts per million and visualized using UMAP with the top ten PCs
and k=30 neighbors.

Construction of healthy reference trajectory

Construction of the healthy reference trajectory began with
sample-by-sample cell annotation followed by consensus cluster-
ing and annotation. Annotations from previously published bone
marrow samples were kept®°. Cell x gene matrices from each thymus
sample were log-normalized and subjected to dimensionality reduc-
tion. Cells were clustered at multiple resolutions (k=1, 2 and 3) and
clusters were given preliminary labels on the basis of marker gene

expression. Cell x gene matrices from all thymus donors (n=3) were
then concatenated, log-normalized and subjected to dimensionality
reduction. Cells were reclustered at high resolutions (k= 3) and clusters
wererelabeled onthe basis of marker gene expressionand prior labels.

scRNA-seq

Cell x gene matrices from healthy thymus donors were then concat-
enated with cell x gene matrices from healthy bone marrow donors
(n=35),log-normalized and subjected to dimensionality reduction
using the top 25PCs. The FindVariableFeatures functionin Seurat was
used toidentify top 2,000 variable genes. These 2,000 genes were then
filtered intwo iterations on the basis of the Gini coefficient®. Briefly, a
shared nearest neighbor graph was constructed using 50 and 20 PCs;
cells were clustered at k= 0.1 resolution and the Gini coefficient was
calculated for each variable gene. Genes with alow Gini coefficient (bot-
tom10% percentile) and cluster level expression < 10% were removed in
eachiteration. The134 cell-cycle-related genes previously described"”
were removed. The remaining 931 variable features were used as input
to PCA and UMAP dimension reductions (25 PCs). Trajectory analysis
was performed using Slingshot 1.8.0 with HSPC as the start cluster
and effector T, mature Band monocyte as the end clusters for T, Band
myeloid trajectories, respectively. Principal curves were selected for
Tcelland myeloid cell trajectories and values were scaled toamaximum
oflineach curve.Pseudotime values of shared cell states that occurred
in both myeloid and T cell development (multipotent progenitors:
HSPC and LMPP) were then averaged. Pseudotime values were scaled
for myeloid development (O to —1) and T cell development (0 to 1).
Statistical comparisons in the overall arrest state were made using
atwo-sample Kolmogorov-Smirnov test, as previously described®.

SCATAC-seq

Gene-activity matrices for scATAC-seq were constructed by sum-
ming counts within the gene body and 2 kb upstream, as previously
described®. Integration of scATAC-seq samples was performed using
gene-activity matrices and Seurat4.0.5 using the default anchor-based
CCA method with 30 dimensions, 2,000 anchor features and
k.filter =100. To learnlabels for scATAC-seq data from scRNA-seq data,
transfer anchors were computed using CCA with scRNA-seq as the refer-
enceand celltypelabel transfer was performed on a sample-by-sample
basis using the TransferData function. Cell x peak matrices from all
thymus donors were then concatenated. Cells were reclustered at high
resolution (k = 3) and clusters were reannotated according to consen-
sus labels. Dimensionality reduction was performed using UMAP of
the top ten PCs of the concatenated scATAC-seq data and trajectory
analysis was performed as described above.

Level1annotation of CITE-seq data

Todistinguish malignant blasts from non-malignant cells, we first used
acluster-based statistic, Shannon entropy, to identify clusters of cells
at multiple clustering resolutions (k=1, 2 and 3) to identify four cell
populations that had contribution from every participant. The Shannon
entropy statistic was calculated using the formula — 3 p(x) x log p(x),
where p(x) is the frequency of cells arising from any one participantin
any one cluster, ranging from O to 1. Second, we concatenated and
clustered participant-derived single-cell data with healthy bone mar-
row and thymus controls. Third, we calculated a similarity score to
healthy controls across all participant-derived cells. Participant data
and healthy control data were coembedded into a low-dimensional
space using the default anchor-based CCA method in Seurat4.0.5 (30
dimensions and 2,000 anchor features) and a k=30 mutual nearest
neighbor score was assigned for each cell using the TransferData func-
tion. Copy number profiles were analyzed using InferCNV 1.6.0 on a
randomly downsampled (1:10) subset of participant data. We then
compared blast percentages calculated in scRNA-seq to pathology
reports of blast percentage obtained from diagnostic aspirate (mean
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absolute deviation = 8.9%; non-significant difference according to
paired two-tailed t-test).

Level1annotation of single-nucleus (sn)ATAC-seq data

Firstly, annotated scRNA-seqdata were used as areference to annotate
participant scATAC-seq data onapaired, sample-by-sample basis. For
each participant, gene-activity matrices for scCATAC-seq were con-
structed by summing counts withinthe gene body and 2 kb upstream,
as previously described®. Integration of scATAC-seq samples with
scRNA-seq datawas performed using gene-activity matrices and Seurat
4.2.0 using the default anchor-based CCA method with 30 dimensions,
2,000 anchor features and k.filter =100 using the TransferData func-
tion on a sample-by-sample basis. Then, participant data and healthy
control data were coembedded into a low-dimensional space using
the defaultanchor-based CCA methodinSeurat4.0.5 (30 dimensions,
2,000 anchor features and k.filter =100) and a k=30 mutual nearest
neighbor score was assigned using the TransferData function to assess
their similarity. Lastly, blast percentages calculated in scATAC-seq were
compared toblast percentages calculated in scRNA-seq, showing high
concordance (median deviation = 1.2%; non-significant difference
according to paired two-tailed ¢-test).

Differential activity analyses

For TF motif enrichment analysis, cell x deviation score matrices were
generated using the addGCBias, matchMotifs, getBackgroundPeaks
and computeDeviations functionsinchromVAR1.12.0 withhg38 as the
reference genome. Differential activity analysis was performed using
the Wilcoxon rank-sumtest with Benjamini-Hochberg multiple-testing
correction with downsampling. For each motifin any particular com-
parison, we calculated the A median chromVAR deviation score, A mean
chromVAR deviation score, adjusted P value, percentage expression
of corresponding TF in paired scRNA-seq data and the ratio of median
and mean chromVAR deviation score. DA TF motifs were defined by A
median chromVAR deviation score > 0.0025, FDR < 0.001, >20% cell
expression of corresponding TF and aratio of median and mean chrom-
VAR deviation score between 0.7 and 1.3, unless otherwise specified.

Subtype-specific transcriptional regulatory analysis

Aswe previously described®, for each cellin the scRNA-seq dataset, an
scRNA-seq and scATAC-seq ‘metacell’ was defined by pooling counts
for each gene or peak from the 30 nearest neighbors in the PC space
by cosine distance. Metacell counts were log-normalized and scaled.
Foragene of interest, weranalinear regression model using metacell
gene expression as the dependent variable and putative enhancer
peaks within 500 kb of the transcription start site as regressors.
Bonferroni-adjusted P values < 0.01 with a positive coefficient were
considered significant. Top induced targets of TCF7 and LEFI were
defined by high-confidence EP regression (regression coefficient > 0.3)
andlog,FC > 0.5 for z-scoring on bulk RNA-seq data.

Promoter-enhancer coaccessibility networks (CCANSs)
Cicero®*, which identifies coaccessible pairs of DNA elements, was
implemented in Signac® through the make_cicero_cds function fol-
lowed by the run_cicero function with the following parameters: sam-
ple_num =100, window =500,000. These links were aggregated into
cis-coaccessible networks using the generate_ccans function with
default parameters. The BMP-like and T-specified CCANs were isolated
by identifying links to regions within 2,000 bp of the transcription
startsites for the 66 and 53 DEGs for each state, respectively. Any peaks
that overlapped regions within that coaccessibility group were then
subset as potential regulators. This yielded 660 peaks in the BMP-like
CCANand 1,011 peaksinthe T-specified CCAN. Those peaks were then
used as input to HOMER with parameters ‘-size 200 -mask’ to identify
motifs enriched in coaccessible regions. Motifs with a g value < 0.05
were considered significant.

Transcriptional regulatory analysis of developmental states
An integrated enhancer-driven transcriptional regulatory analysis
was conducted using SCENIC+ 1.0al (ref. 44) following the standard
vignettes with minor modifications. BMP-like and T-specified states
from the scRNA-seq data and scATAC-seq data were extracted and
35 topics were empirically selected. The SCENIC+ pipeline was then
run in non-multiome mode, using five cells per metacell. The search
space was defined as 0-500 kb. Regulons were filtered with the fol-
lowing parameters: rho_threshold = 0.03, min_regions_per_gene =0
and min_target_genes = 10. All other parameters were maintained
as the defaults. Region-based and gene-based specificity scores for
the BMP-like and T-specified states were calculated using the regu-
lon_specificity_scores function.

AUCell pathway analysis and GSEA

Pathway analysis was conducted using two methods. First, path-
way enrichment scores for gene signatures were defined from our
single-cell analysis, including the gene sets defined through our tran-
scriptional regulatory analyses or downloaded from the Molecular
Signatures Database®, and were determined using AUCell 1.12.0 with
the top 5% of genes. Additional gene sets for NOTCH activation were
previously published®*®. GSEA was conducted to compare DE pathways
between blast populations. A full gene list was constructed using the
FindMarkers function in Seurat 5.0.3 with the following parameters:
min.pct = 0.001, logfc.threshold = 0, only.pos = FALSE, max.cells.per.
ident =1,500. This gene list was sorted by log,FC to use as input to
preranked GSEA using the fgsea package®’.

Cell-cycle analyses in single-cell-sequenced participants with
ETP-ALL

Cell-cycle signature scoring and phase classification was performed
on ten high-MRD and ten MRD-negative participants with ETP using
the CellCycleScoring functionin Seurat 4.0.5 with default parameters.
A total of 43 S-phase and 54 G2M-phase signature genes’® were pro-
vided as input. Cells were then randomly downsampled so that each
participant would be represented by an equal cell number (3,350 per
participant and 33,500 per group).

BMP-like DE analyses

BMP-like and T-specified DEGs were computed using the FindMarkers
function in Seurat 4.0.5 with the following parameters: assay = RNA,
logfc.threshold = 0, ident.1=T-specified-R (T-specified blasts from ten
MRD-negative participants), ident.2 = BMP-like-NR (BMP-like blasts
from 15 MRD-positive participants) and max.cells.per.ident =1,500.
The input matrix to DE analysis was amatrix of G1-phase ETP-ALL blasts
with an equal number of cells per participant (1,711 per participant
and 42,775 cells total). To identify DE TFs and DE surface markers, the
same process was repeated with using genes encoding human TFs”""”*
(feature = TFs) and a change of assay to normalized ADT count matrix
(assay = ADT).

Intersection of DE TF and DA motifs

DE TFs from scRNA-seq data, defined by average log,FC > 0.15 and
FDR <0.001, were intersected with DA TF motifs from scATAC-seq
data. DA TF motifs were defined by 4 median chromVAR deviation
score >0.0025, FDR < 0.001, >20% cell expression of corresponding
TF and aratio of median and mean chromVAR deviation score between
0.7and 1.3.

Identification of NOTCHI mutations in scCRNA-seq

Samples were demultiplexed into FASTQ files using bcl2fastq. FASTQ
fileswere then processed using IronThrone 2.1with the default param-
eters and inputs for 10x version 3.1 scRNA-seq data. Specifically, for
eachvariant, IronThrone was runin circularization mode (--run = circ)
with UMl length 12 (--umilen12) and cell barcodes from each sample’s
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CellRanger output (--whitelist sample.specific.barcodes.tsv), following
the configuration set within IronThrone 2.1 documentation (https://
github.com/dan-landau/IronThrone-GoT).

Identification of BMP-like blasts in participants without ETP
Precommitted blasts in ten participants without ETP (six
EOI-MRD-negative participants, 7,152 precommitted blasts; four
EOI-MRD-positive participants, 11,047 precommitted blasts) were sub-
setted (total of 52,971 blasts and 15,830 blasts, respectively) and mean
proportions for corresponding cell fractions (BMP-like, MEP-like and
pro-T cell-like) were quantified in each participant. The mean propor-
tion of each cell type for participants of each group was plotted, with
the proportion of BMP-like blasts in MRD-negative versus MRD-positive
participants being compared using the prop.test function.

Single-cell signature-based stratification of non-ETP cases
Precommitment and postcommitment DEGs were computed as
described above. The input matrix to DE analysis was a matrix of
Gl-phase non-ETP-ALL blasts with a maximum of n=1,500 cells
per participant (34,384 cells in total). DEGs located on the X and Y
chromosomes were filtered out to retain the core biology of both
cell fractions. A z-score-based signature scoring was performed on
1,051 bulk-sequenced diagnostic participants with non-ETP-ALL with
BMP-like DEGs as positive features and T-specified DEGs as negative
features. Human TFs were previously curated””. Survival was analyzed
using Cox proportional hazards as described above.

Identification of a BMP-like surface marker signature

DE ADTs from ETP-ALL BMP-like blasts and non-ETP BMP-like blasts
were overlapped and the average log,FC was calculated. Nine genes with
llog,FC| > 0.5 (five with positive expression and four with negative expres-
sion) were retained as aconsensus BMP-surface-9 signature. Gene signa-
ture scoring and survival analysis were conducted as described above.

LASSO (least absolute shrinkage and selection operator)
optimization of prognostic gene signatures

Refined gene sets were found using LASSO penalized regression. The
Cox proportional hazards model was used with gene z-scores as fea-
tures (glmnet and survival R packages). The model was adjusted for
participant age, white blood cell (WBC) count at diagnosis, CNS status
and treatment protocol, by including these as covariates on which no
penalty was applied. The penalty was only applied to the gene features
but the range of the predicted coefficients was bounded such that
genes enriched in the BMP signature were given positive coefficients
(increased hazard) and genes enriched in the T-specified signature
were given negative coefficients (decreased hazard). The models were
fittotheentire AALLO434 RNA-seq dataset and ETP status was used to
stratify the survival allowing for different baseline hazards, followed
by100-fold cross-validation to determine the penalty parameter with
the lowest root-mean-squared error.

Identification of BMP-like signature expression patterns

To contextualize BMP-17 and BMP-surface-9 marker genes within nor-
mal hematopoiesis, we performed AUC-based signature scoring of
healthy donor scRNA-seq reference maps using AUCell with the top
10% of expressed genes considered for computational efficiency (auc-
MaxRank = 0.1). BMP-surface-9 marker genes were divided into positive
DEGs (n =4) and negative DEGs (n=5) and AUCs were calculated for
each gene set. Overall enrichment (that is, the aggregate AUC) of the
BMP-surface-9 signature was calculated by taking the differencein AUC
between positive and negative surface markers.

Integration of AALLO434 and Lee et al.’s bulk RNA-seq data
In vitro drug sensitivity data were integrated from the current study
(tenPDX models) with previously published drug screening data*. To

generate a consensus BMP-like signature across data, we first converted
the AALLO434 bulk transcriptomic data to fragments per kilobase of
transcript per million mapped reads format using the convertCounts
function in the DGEobj.utils package. A BMP-like gene signature was
scored using the 119 BMP-like and T-specified DEGs with a robust
z-score. The negative features (T-specified DEGs) were subtracted
from the positive features (BMP-like DEGs).

Statistics and reproducibility

No statistical method was used to predetermine sample size. All data
meeting the quality control threshold wereincluded. Theinvestigators
were not blinded to allocation during genomic profiling and assess-
ment of participant data. No data points were excluded from analy-
ses related to single-cell and bulk genomics. No animal models were
excluded from PDX-related analyses. Randomization and blinding were
used for all in vitro and in vivo experiments. Statistical comparisons
were made using atwo-sided Wilcoxon rank-sum test unless otherwise
specifiedinthe figure legend. As the Wilcoxon test is non-parametric,
we did not formally test for normality of the data. The chi-squared
test was used to compare cell type proportions. The Cox proportional
hazards model was used for the assessment of survival outcomes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All primary sample and PDX sequencing data generated for this study
are available through dbGaP under accession number phs003432
as part of the Childhood Cancer Data Initiative. This includes raw
sequencing data of all primary participants with T-ALL (CITE-seq and
SCATAC-seq), healthy thymus (CITE-seq and scATAC-seq) and T-ALLPDX
models (CITE-seq), along with the corresponding count matrices and
Seurat objects. Healthy bone marrow samplesincluded in the analysis
were previously published®®. AML and MPAL samples included for
comparative analysis canbe accessed at https://scpca.alexslemonade.
org/projects/SCPCP000003#samples. All other datasupporting the
findings of this study are available from the corresponding author on
reasonable request. Requests will be processed within 30 days. Source
data are provided with this paper.

Code availability

Allcode generated for processing of the CITE-seq and scATAC-seq data,
as well as for all key analyses in this, work are available from GitHub
(https://github.com/tanlabcode/SC_TALL). Any other code involvedin
conductingthe analysis and generating the figures will be made avail-
able uponreasonable request to the corresponding author.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Single cell multiomics to identify high-risk cell states
in T-ALL. (a) size (left) and cell type composition for scRNA-seq and scATAC-seq
dataset from n =40 T-ALL cases and n = 8 healthy thymus/BM controls. COG:
Children’s Oncology Group. (b) Quality of scRNA-seq dataset after filtering
(n=328,820 cells; COG patients: n = 271,603 cells; Healthy Control: n = 49,623
cells). (c) Quality of scATAC-seq dataset after filtering (COG patients: n = 333,490
cells; Healthy Control: n = 23,618 cells. (d) UMAP representation of scRNA-seq
dataset (n = 328,820 cells) colored by patient ID, sample type, ETP status, and
cell type annotation. (e) Shannon Entropy (1=equal contribution from each
sample; 0 = contribution from only 1sample) of cell clustersatk=1.2,k =2, and

k =3 clustering resolutions. (f) Clustering of T-ALL patient-derived datawithn=8

healthy bone marrow/thymus controls (n = 328,820 cells). Left: colored by cell
type annotation; right: colored by Shannon entropy. (g) k = 30 nearest neighbor
similarity score to known healthy controls. Patient derived cells (n =271,603)
were mapped to known healthy controls using the RPCA method in Seurat 4.0.
The average similarity score to 30 nearest healthy control neighbors in principal
component space is shown for each cell. (h) Marker gene expression of annotated
celltypes. (i) inferCNV results for annotated patient derived cells within SCRNA-
seq data. Cells are ordered with hierarchical clustering within each category.

(j) RPCA-integrated UMAP of scRNA-seq dataset (n = 271,603 cells) colored by
annotation (left) and patient ID (right).
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Extended Data Fig. 2| See next page for caption.

OveraII Surival (Days)

Nature Cancer


http://www.nature.com/natcancer

Article

https://doi.org/10.1038/s43018-024-00863-5

Extended Data Fig. 2| TCF7/LEF1 activation underlies CD5 expression in
Near-ETP T-ALL and contributes to positive outcome in ETP-ALL Patients.

(a) Overall survival of ETP, Near-ETP and Non-ETP patients from Children’s
Oncology Group AALL0434 cohort (n =1411). (b) Differentially expressed surface
markers, genes, and transcription factors in single-cell sequenced ETP (n = 25) and
Near-ETP (n = 5) patients. (c) Intersection of differentially expressed transcription
factors and differentially accessible motifs in single-cell sequenced ETP (n = 25)
and Near-ETP (n =5) patients. (d) Expression of TCF7 and LEF1 and accessibility

of TCF7 and LEF1 motifs in healthy T-cell development references. n = 1200 cells;
n =100 randomly downsampled cells per group. (e-g) Subset of transcriptional
regulatory network constructed using integrated scRNA and scATAC data

from (e) ETP-ALL (n=25), (f) Near-ETP ALL (n=5), and (g) Non-ETP ALL (n =10)
patients. Transcription factors are represented as squares, gene targets as ovals.
In (e), color is proportional to expression fold change in comparison to Near-ETP
and Non-ETP blasts. In (f-g), color is proportional to expression fold change in

comparison to ETP blasts blue is downregulated, red upregulated. In (e), edges
with>100 edge score are shown, with edge score representing the sum of
-log(p-value) of all predicted EP interactions. In (f-g), Edges contacting TCF7 and
LEFIwithregression coefficient > 0.3 are shown. Predicted regulators of TCF7and
LEFI are highlighted. (h) Signature score of top 28 target genes of the TCF7/LEF1
regulon and top 11 predicted TF regulators of TCF7/LEF1/CDS5in bulk-sequenced
ETP (n=110) and Near-ETP (n =168) T-ALL patients from COG AALLO434 trial. The
box includes the median, hinges mark the 25th and 75th percentiles, and whiskers
extend 1.5 times the interquartile range. (i-k) Kaplan-Meier plot showing overall
survival of bulk-RNA-sequenced ETP-ALL (n =110) and Near-ETP (n = 168) patients
in AALLO434 binarized using the TCF7-LEF1 targets and activator signature.
Prognostic value of the TCF7/LEF1signature in multivariate analysis (with Day

29 MRD, CNS status, WBC count, and age at diagnosis) is shown below the Cox-
proportional hazard log-likelihood p-value with Day 29 MRD as covariate.
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Extended Data Fig. 3| Sample-specific developmental arrest state

of > 500,000 T-ALL blasts from CITE-seq/scATAC-seq data and clinical
response correlates. (a-b) Arrest state of T-ALL blasts over T and myeloid
development based on projection to a healthy reference using (a) scCRNA-

seq data and (b) scATAC-seq data. BMP-like proportion is shown on the left.
ETP-ALL patients with D29 residual disease are highlighted in red and those
with >10% BMP-like are boxed; patients with induction failure (D29 M3 bone
marrow morphology) are marked with an asterisk. n = 40 patients: 25 ETP-ALL,
5Near-ETP,10 Non-ETP. (c-d) Fraction of key cell states in (c) scRNA-seq data
and (d) scATAC-seq data of T-ALL blasts from 40 AALLO434 patients. Rows
areinthe same order as panel a. BMP-like (HSPC/LMPP/CLP/ETP projected),
T-specified (Pro-T/Pre-T), T-committed (DP to Naive T). n = 40 patients: 25 ETP-
ALL, 5Near-ETP,10 Non-ETP. (e) Left: MRD (range, 0-100) and day 29 marrow
status. Right: Overall survival (OS)/event free survival (EFS) swimmer plot of 40
AALLO434 T-ALL patient cohort; Syear timepoint is marked at the top. Events

arelabeled: induction failure is indicated by an asterisk; relapse isindicated by R;
second malignant neoplasm s indicated by “SMN”. n = 40 patients: 25ETP-ALL,
5Near-ETP, 10 Non-ETP. (f-h) Differentially expressed transcription factors

(), differentially accessible transcription factor motifs, and intersection of
differentially expressed transcription factors and differentially accessible

motifs between BMP-like blasts from non-responding patients (n =15) and
T-specified blasts from responding patients (n = 10). Differentially expressed
transcription factors were defined by Log2FC > 0.15, adjusted p-value < 0.01;
differentially accessible motifs were defined by Amedian chromVAR deviation
>0.005, adjusted p-value < 0.01. The input matrix to differential expressionwas a
matrix of G1-phase ETP-ALL blasts with equal number of cells per patient (n =1,711
per patientand 42,775 cells total). Differential expression was performed using
n=1500 randomly downsampled cells per cluster. Differential accessibility was
performed using n =1500 randomly downsampled cells per cluster.

Nature Cancer


http://www.nature.com/natcancer

Article

https://doi.org/10.1038/s43018-024-00863-5

a Surface Markers DE Genes DE TFs DA Motifs
«CD45 o @ T-Specified: Non-Responder @ T-Specified: Non-Responder oETVE @ T-Specified: Non-Responder o/ CF7L24
@T-Specified: Non-Responder S100A4 ©T-Specified: Responder ®T-Specified: Responder ©T-Specified: Responder MO2
® T-Specified: Responder
. .prgssw L9 90 TCF4 A5
o, 100 LESALS1 XIST o BQLHA .ZEB1
e IGLL1 . TCF12
CDKN1C ENOT x
IFITM2 CAF’G PEN1 L . LYL1 XBP1
\ L — BAZIA & HEST NFE2L2
JCHA4NIGFBP71' B i A TCFL2., MEFA  MEF2C NFIC JMxp
. CREBS, OLIG1 HES4 s KLF3 4 TCF?
2 . N .. CDKN2C 3, ITGAT | 471 o] i Y MYB‘%?? BCL\B < SATB! © SR ESTL e oo B.J
o
cD123 FIZ7 o8, 8p 78 BHLHE40 o KFg  KMT2A%. NR3CT MEF2D NP1 S22 e Tn CBFB
HSH2De &% . TRPS1 o T RUNXI-ENO]
on7® o Mo ONTT o cce . o o es ™ PHF19 \r RUNX1 | 30 MGA ~RUNX3
_| *cp%% _ “1"( U8 Pl iN2 L HMGN3AU}§ BPTF o gBEF\ELm = |6 RREBTy egea fiare REX7
G G s g =
5 . = G N ? . g caTRy p SUFE2 AN B| T HMBOX! SOXA o B4 SATFG
T T o SRR T
T—> L» et T—» Rril L» ZKSCANT®  THAP1 “¥NFATS
Log2FC -1 0 i Log2FC -1 0 i 2 Log2FC  -04 00 04 AchromVAR-Z 0.0 001 002
b «CD7 ®BMP-like: Non-Responder ©C1QTNF4 ®BMP-like: Non-Responder .H'OXA9 @®BMP-like: Non-Responder o HOXAY ®BMP-like: Non-Responder NFEZL2
®BMP-like: Responder ®BMP-like: Responder HOXA10 ®BMP-like: Responder ®BMP-like: Responder K
o2 e  lowt seL1tA GRS
] S5 : -
100 < e QKl SAT4 —_— . CREM
PROX1 GArD) . oA CEBPB
2 RPL37A CRYBG1 BrezNEA” 10 TCF7L2 5 o
COMMD3 BMI1 zrAs1 HLA DRBS . HOXAB , HOW ETV3 g ENOT o PG
XIST CD7. OXAS SPELK3 NSTE X
D\TA HOXA1 L./DD‘” FLI . SREBF1% ATF3
50 CD38 conr, 100 ScTsw i ® TPLEK Hoxad, LB ELF1e HO§A6 ELK4 “MAX
. TRDC RANiES / PELu mA DRA MYCN ¢ MEIST KL JUN. NR4AT o ° Q2
HEA-DR : Foo 0] awrss— . /{RG MrpstezeB2 D7 | 3 GATA3 ERG AHRe S xgpt
CD45 | cpizs Foe® & NR2G I ——
) > o 00 0 TRPS1—2 e - o JF12 XBP1 SOX4  HMGA1NR2G MAFG
s co3 3| ‘ e Co74 = CEEKG- o SHoXA, ’ g RUNX2 Ve® *‘\C
= ° ICA ° o = Z
g . uniz CD.2.2 g . g ﬂ z‘. T 8| CUXt—gge cs> 3‘\TF36TEZT5MALX‘P
o ° ! L
' CD5 o° T_, : -~ T—» RURE1 WEEIRSTATS
T—» Log2FC 0 1 2 Log2FC -1 0 1 2 T—» Log2FC [} 7 AchromVAR-Z 0.0 002
C " e "
co7e  @T-Specified: Responder TROc » @ T-Specified: Responder e ©T-Specified: Responder ®T-Specified: Responder «SPI1
@®BMP-like: Responder ®BMP-like: Responder @®BMP-like: Responder ®BMP-like: Responder
HLA-DPB1, NEAT1
cose 150 HLA-DQB1HLA-DRB %0 JUND
100 A . 200
HLA-DR CD3E QKI LMO2 BCL11B
. CHisL2® CD3DLysT, \HLA- DMACD74 Howe REL . 4
cD123 VAL®, LCK bl B TCF7L2  TCF12 NRGT oo
- 100 s o 60 Ll me  Fostd, zeB2 | FipNXSTCFsl M6 Eeprc
o SELENOW. -t '/ £ LHX9  RUNX] o TCF4 NFE2L2"
D10 5 G099 OXMO' HOXATJUNB  NRYAL TCF7  ® RuNX2 SREBF2 o "
501 © cD2 PRSS2 EVL3, N, ZNF706 100 LYL1 o RTR4
i 4 e % 7 \)gsw KLF SPI paX2/RFXT MEF2A
4 cos . O34 50 Ny 30 - AHRSSHIF1A CTCF—g) MEF2C, SWEF2D
® e 4 ATA 3 % ARID2 ELF28 NRUAT
= cos | . =l LD o @R ¢ = CTCFL\’,&&, "é}:' . | caTar < SREBF1 CREM
§ CD22 ‘g; :’ k | § e g0 ° § HoYao ‘ﬁ
k- CD56 e . 2 CD79A—€R N X IBORA®® SPEN £ Se®® ENO1
co4 S _—— BCL11B @ SEoxk2 S
T—» Log2FC -1 0 1 2 L» Log2FC -2 -1 0 1 2 T—+ Log2FC -1 0 1 T—»AchmmVAFz-z o,bo 0.02 0.04
d
® T-Specified: Non-Responder HLA-DR ® TRPe ® T-Specified: Non-Responder 100] @T-Specified: Non-Responder « RUNX @ T-Specified: Non-Responder *>"''
@®BMP-like: Responder 200{ .o  ®BMP-like: Responder HLA-DRBS @®BMP-like: Responder L] ®BMP-like: Responder
xist S NEAT] JCHZ = NEte
75 C03g HLA-DaBT" | *NEa B fND BOL11B
SELENOW
E V co3p DNAJBE o114 o, 200
- o GAPDH 75]  HOXA10
1501 5100a4 1GLL! LA-DFEtPLER ELFT ETVG yarr  CEBP
cD2 GO SYNGIIY L sapsD ¢ cols ETS1 ETV6 HiF1A ,OLIG! A cerps
50 o STMNT ® \ GNA15 GATA3® /MLXIP NR4A1 NRZC1 ATF4 °
co7 coi17 HPGDY et './SATWLA Fi TRPS\ « BOLTIA il creE, o ‘usr2
4
100 CHLZ k,k_Pszng s |y p, CXL8 MB-Xe o eI 0 H9XA9 ETS2 MXit
A (
CDs6 ‘& o HE84 Wa 1 .- ’\,RFB - oo 0 R wrt Cic NRAAT
% cD10 . sl P2z . - 25 TioP2— POUZFW\ ID2 ATF6B
. cD123 £ . cxxcs/‘ S5 ZNF331 GATA3 ) CREM
. | 1SG15% Samw * . TCF7/. * - RUN><3’ . HHEX S\ MLXIP
G cos , CD3t G PR G g s
S ° s . E e | =3 > cuxt”® & .A MAFG
T cD14 ¥ e} g vsxsﬁ ’ FOS g Xxxm
) LYL/SMARCET
T-» Log2FC 0 2 T-» Log2FC -1 0 1 2 T_, Log2FC -0.5 00 05 10 15 T—»AchromVAR-z 0 0.02 0.04

Extended Data Fig. 4 | Transcriptional and epigenetic characteristics of BMP-
like and T-specified cell states between responders and non-responders.
(a-d) Differentially expressed surface markers, genes, and transcription factors
aswell as differentially accessible transcription factor motifs in (a) T-specified
blasts between responding (n =10) and non-responding (n = 15) patients

(b) BMP-like blasts between responding and non-responding patients,
(c) BMP-like and T-specified blasts from responding patients, (d) BMP-like blasts
from responding patients and T-specified blasts from non-responding patients.

Differential expression was performed using n =1500 randomly downsampled
cells per cluster.
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Extended Data Fig. 5| Pathway analysis of BMP-like and T-specified blasts
from responding and non-responding patients. (a-e) Gene Set Enrichment
Analysis (GSEA) was performed based on differential gene expression of BMP-like
and T-specified blasts from responding (n =10) and non-responding (n =15)

patients. Left, pathway enrichment is shown for the Hallmark gene sets combined

with the BMP-17 genes and differentially expressed genes (DEGs) from BMP-like
and T-specified blasts (as shown in Fig. 2). Right, Enrichment plots are shown for
the BMP-17 genes, BMP-like DEGs, and T-specified DEGs. FDR, false discovery
rate; NES, normalized enrichment score.
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Extended DataFig. 6 | Non-Malignant counterparts to BMP-like blasts and
associated resistance to frontline ALL therapy. (a) Healthy reference trajectory
with BMP-like ETP and T-specified ETP highlighted. Thymus, bone marrow,

and subset of BM progenitors (HSPC/LMPP) are colored in different shades of
gray (n=49,623 cells). (b) Average Z-score of BMP-like and T-specified-like gene
signatures derived from non-responding and responding ETP-ALL patients were
computed for BMP-like ETP, T-specifying ETP, and Pro-T cells. N =13 BMP-like ETP,
101 T-specified ETP, 5,141 Pro-T. (c) Expression of BMP-like and T-specified TFs

and marker genes across multipotent BM progenitors, BMP-like ETP, T-specifying
ETP, and Pro-T cells. HOXA cluster denotes sum of expression across HOXA cluster
genes and MEIS1, the HOX co-factor. (d) Expression of NR3CI during thymic entry,
T-specification, and T-commitment. P-value was calculated based on a two-sided

Daunorubicin (uM)

Vincristine (uM)
Mann Whitney test on log normalized data. *** p < 0.001. (e) Expression of NR3C1
in BMP-like ETP blasts from non-responding patients and T-specified ETP blasts
from responding patients. P-value was calculated based on a two-sided Mann
Whitney test on log normalized data. (b, e) The box includes the median, hinges
mark the 25th and 75th percentiles, and whiskers extend 1.5 times the interquartile
range.n=15MRD +,10 MRD-. (f) Response of n =3 High BMP and n =1MRD
Negative ETP patient to prednisolone. High MRD patients both had >30% BMP-like
blasts; MRD Negative patient and Non-ETP Patients had > 50% T-specified blast.
(g) AUCell signature score for n =48 LSC-related genes (Ng et al.)” in T-specified
and BMP-like ETP blasts. (h) Response of n =3 High BMP-like andn =1MRD
Negative ETP patient to daunorubicin and vincristine. High MRD patients all
had >30% BMP-like blasts; MRD Negative patient had > 50% T-specified blasts.
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Extended Data Fig. 7 | See next page for caption.
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Extended DataFig. 7| Transcriptional regulation of BMP-like and T-specified
blast states. (a) Top significantly enriched motifs in the BMP-like and
T-specified co-accessibility networks involving the promoter regions of the

n =119 differentially-expressed genes shown in Fig. 3. (b) Regulon specificity
scores based on gene expression (left) and chromatin accessibility (right). The
top 10 regulons arelisted, and the number of genes or regions contained in
theregulonis indicated in parentheses. (c) Representative scATAC-seq signal
tracks highlighting regulatory regions that are differentially accessible between
BMP-like and T-specified populations. The number of region coaccessibility links
were reduced and the range of the normalized signal track was truncated to 500

for visualization purposes. Links are colored by Cicero coaccessibility score.

(d-f) Regulon gene signatures for (d) MEF2C(+), (e) BCL11B(+), and (f) TCF7L2(+)
were scored between T-specified and BMP-like populations using AUCell (left),
and Kaplan-Meir plots showing overall survival of bulk-RNA-sequenced T-ALL
patientsin AALLO434 and AALL1232 stratified by upper and lower third using the
regulon signatures (right). The regression coefficient of the regulon signatures in
multivariate analysis (with Day 29 MRD, CNS status, WBC, and age at diagnosis) is
shown below the Cox proportional-hazards log-likelihood p-value controlling for
D29 MRD. Non-subtyped samples were not included in this analysis.

Nature Cancer


http://www.nature.com/natcancer

Article

https://doi.org/10.1038/s43018-024-00863-5

a Recurrent SNVs - BMP-like > 25% (o]
— ke > 950
Recurrent SNVs - T-spec > 50% Ja{ VBT LSV Ay peray Fusions - BMP-like > 25%
del1592 AMT01P (0.34) - - - - m MLLT10:PICALM
NOTCHI it Q240915 (04) 157806l (04) - vi5TeE 2fs$0 ; wril A2 oliTs  GITTR B LT I0-PIOA.
041 Q2409P(038) L2472fs (0.11) 041  s461_P2462delinsX (0.42) 0.57 0.31 0.3 m NUP214::SET
R105X | M389K  Y391D  QifeH HOXA13:TRA
PABPC1q 14T  MHAT (036) ETV6! ‘030 015 015 013 = MLLT10:DDX3X
02  R475Q(0.31)
: g V36M V36M w NUP98::CEP295
SUZ124 Nesss L2 HLA-C1' o4 “ 0.03 m Other
Uz124 Y117-M118 n=11
036 delinsX (0.24) SATB1 ng%el 5%"59' Egi‘iK
A7V R3611 PAVLKA (.99) 312 PAVINC (.82 Fusions - T-spec > 50%
CYP2A134 W e PASKMG (.92) 2 PATTDP | 7
2 PAUHWY (.85) —— PAVYVY (.7 mMLLT10:PICALM
V10401 P860Q PAWGWD (83)  pagPC1 033 024 1 PAURXZ (.58 = KMT2A:AFDN
KNDC1+ oes B0 PAVLII (.81) - - o :’AUFAM 54 | ZFP36L2:TCR
45 0. PASZKM (.75) PHEG]  REX _ | ZFPL2-SFPQ
T PATIPB (.71) 0.32 = NUP98:TNRC18
SETD24 PAVJCH (.58) E40D  Ki5fs DAURIX 3) ETV6:ARNT
034 032 PAVSEI (5) RPL22{ 036 006 3AVWF (37)  Other
0 2 4 6 8 0 1 3 n=9
# Mutations # Mutations
' 0S (days)| * 1 OS(ay)| © [ a5 |, ,
., , IL7R Mutant (8) NOTCH1 Mutant (41)
9 ETV6 WT (99) 9 . 9 ] 9
6 6 * 6
8 8 8
5 5 IL7R WT(102) 5
! EVT6 Mutant (11) 7 HLALC Mutan (1) \ g g NOTCH1 WT (69)
4 ’ 4
E &p=15e-3 HLAC| 6P =4e-4 IL7R
9 1000 2000 3000 4000 : T000 002000 3 6Lp=8e-4 OS (days)| ,| - NoTCH1] gLP=7e-4 OS (days)
W Mt WT Mt WT Mut G 1000 2000 3000 400 WT  Mut 0 1000 2000 3000 4000
5 2840y | 4 0S (days)| °| 23, 1 08 [days) 002 1 5363 ]
RUNX1 Mutant (14) SUZ12 WT (97,
7 B SATB1 WT (102) 7 o NRAS Mutant (18) o 7 . \ (97)

) ] ' b |

% 6 o 5 § 6

S ’ NRAS WT (62) ® 5 ¢ SUZ12 Mut (13

B 5 B o RUNX1 WT (96) ut (13)

£ ! SATBT M ! < ! !

= utant (8) S 4

L oo 4 1 -

SAT1B| 6p =9e- R NRAS| ¢lp=2.4e-3 P RUNX1 =1.7e- OS (d =2e-"

o 6p=17e-3 (days) SUz12| ¢lp=2e-3 0S (days)
WI Mt 100020003000 4000 WT Mt o o a0 a0 om0 I T R R BT T S
Mutation Status Mutation Status

Wang et al. GO BP GO MF Hallmark KEGG Reactome Reactome Wikipathways Wikipathways ~ Wilkens et al. NOTCH1
f NOTCH Targets +Regulation of NOTCH NOTCH Binding NOTCH Signaling ~ NOTCH Signaling NOTCH Signaling NOTCH?1 Signalin NOTCH Signalin NOTCH Pathway Agonism in CD4* CAR-T
p<2.22¢-16 0.00017 p<2.22-16 p<2.22-16 p< 2 22e—16 p <2.22e-16 p<222-16 p<2.22e-16 p<2.22e-16 p<2.22-16
T 1 I 1 T 1
88g 48g 259 32 245g 74g 479 63g 429

NOTCH?1 Signature Score (AUC)

I—» Leukemia subpopulation: .T-specified .BMP-Iike

Extended Data Fig. 8 | Integration of bulk-derived mutation calls with single-
cell-derived tumor phenotype. (a) Recurrently mutated genes seen in low-risk
T-specified >50% patients. (b) Recurrently mutated genes seen in high-risk
BMP-like > 25% patients. (c) Driver fusion profile of high BMP-like patients (high
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(e). The p-value for two-sided t-test is shown above each boxplot; the p-value for
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Extended Data Fig. 9 | Clinical utility of the BMP-like-17 in risk stratifying
non-pediatric and relapsed T-ALL patients. (a) Selection of n = 81 young adult
(age at diagnosis >=18 years) T-ALL cases from bulk-sequenced AALL0434
cohort (n=1335). (b) Identification of BMP-17-high cluster within AALLO434
young adult cases via Leiden clustering. n = 81 patients; n = 32 BMP-high, n =49
BMP-low. (c) Clinical outcome comparison strategy between BMP-17-High and
BMP-17-Low cases. n = 81 patients; n = 32 BMP-high, n =49 BMP-low. (d) BMP-17
signature scorein cluster O (BMP-high) vs clusters 1-2 (BMP-low) cases. n = 81
patients; n = 32 BMP-high, n = 49 BMP-low. (e) enrichment of EOI MRD positive
and induction failure cases within BMP-High cases. n = 81 patients; n = 32 BMP-
high, n =49 BMP-low. (f) Overall (left) and event free (right) survival outcomes in
BMP-High and BMP-Low cases. Cox-proportional hazard log-likelihood p-value is
shown in the bottom left. n = 81 patients; n = 32 BMP-high, n = 49 BMP-low.

(g-i) LASSO regression model was used to narrow the (g) BMP-17 signature,

(h) BMP-surface-9 signature, and (i) BMP-119 DEG signature to the genes that were
most predictive of overall survival when stratified by ETP subtype. Kaplan-Meier
plots show overall survival of bulk-RNA-sequenced T-ALL patients in AALLO434
(n=1335) and AALL1231 (n = 75) binarized using the optimized signatures. The
BMP-Optimized-6 and BMP-Optimized-3 signatures were calculated using AUCell
and binarized at the 50th percentile, asin Fig. 6g, h to be directly comparable.
The BMP-Optimized-20 signature was computed using a z-score to positively or
negatively weight genes and binarized at a z-score=0, thus directly comparable to
Fig.3m. The prognostic value of the signatures in multivariate analysis (with Day
29 MRD, CNS status, age at diagnosis, and WBC count) are shown below the Cox-
proportional hazard log-likelihood p-value with Day 29 MRD as the covariate.
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Extended Data Fig. 10 | Computational and invitro drug screening results
against BMP-like blasts. (a) Top predicted drugs from LINCS1000 (n =10).
BMP-like DEGs (High Risk) and T-specified DEGs (Low Risk) were inputted

into LINCS1000. Drug treated leukemia cell lines were filtered for statistical
significance (FDR < 0.1) and connectivity score (NCS > 0.8). Drugs are ranked by
number of leukemia cell lines with favorable transcriptomic shift after treatment
(downregulation of BMP-like DEG, upregulation of T-specified DEG). Each drug is
colored by the mean -log(FDR). (b) Top leukemia specific targets (n = 6) predicted
from DepMap screening. Dependency scores in leukemic (n =59) and non-
leukemic cell lines (n =1,052) were calculated for all BMP-like DEGs and ranked by
fold change in dependency (mean dependency in leukemia/ mean dependency
in non-leukemia cell lines). The top druggable (with score 1+ from other drug
databases) targets are shown. (c) Top druggable targets (n = 6) from TTD/
DrugIDB drug database screening. Targets are ranked by percentage expression
and selected based on Log2FC > 1. An example of drug is listed below the

target. (d) Top 10 targets by aggregate database (1-5) and DE (1-3) score.

(e) Drugs active in n = 4/4 ETP patients tested with mean IC50. Drugs with marked
asterisk had IC50 below lowest tested dose in1sample.n =40 drugs,n=9ETP-
active. (f) Drugs activein some, but not all ETP patients. High MRD patients are
coloredinred.n=40drugs, n =8 partially active. (g) Correlations between drug
sensitivity (-log2 of the IC50 concentration) and the scRNA-seq derived BMP-

like percentage (top) and the BMP-like signature score computed using n =119
differentially expressed genes on bulk RNA-sequenced data (bottom).

The bulk RNA-seq correlations (bottom) include the data from this study (n =10)
and databy Lee et al. Total number of data points for each drugis indicated

inthe figure. Spearman’s correlations and significance are shown.

(h) Gene expression of ibrutinib targets across ETP subtypes, BMP-like/
T-specified blast phenotypes, and stages of healthy T cell development. Dot size
indicates percent of cells with gene expression detected, and color indicates
normalized average expression. (n =328,820 cells; T-ALL patients: n =271,603
cells; Healthy Control: n = 49,623 cells). (i) Representative flow gating for
quantification of hCD7 + hCD45+ leukemic blasts during venetoclax or control
treatment. (j) peripheral blast percentage (left) and log2 fold change (right) of
peripheral blast % over study period for PAUNDK (BMP-low, n = 8:n =4 control,
n=4venetoclax) PDX model during control or venetoclax treatment. P-value
from two-sided t-testis shown. (k) Bone Marrow (BM, top) and spleen (bottom)
leukemic burdenin High-BMP (left, n = 6::n = 3 control, n =3 venetoclax) and
low-BMP (right, n = 8: n =4 control, n = 4 venetoclax) PDX models after 1 month of
venetoclax or vehicle (ctrl) treatment. P-value from two-sided t-test is shown. The
box includes the median, hinges mark the 25th and 75th percentiles, and whiskers
extend 1.5 times the interquartile range. (1) Peripheral blast percentage (left)

and log2 fold change (right) of peripheral blast % over study period for PATTDP
(BMP-high, n=6:n =3 control, n =3 venetoclax) PDX model during control or
venetoclax treatment. P-value from two-sided t-test is shown. (m) Fold-reduction
ofleukemic burdenin BM and spleen with venetoclax treatment in BMP-high
(n=6)and BMP-low (n = 8) PDX models.
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Software and code

Policy information about availability of computer code

Data collection  No software was used

Data analysis Publicly available tools were used for data analysis, statistics and visualization, with specific tools and versions described in the supplementary
information methods section, and listed below. GRIN2 Tools and libraries were sourced from: https://raw.githubusercontent.com/stjude/
TALL-example/main/GRIN2.0.ALEX library.09.29.2022.R.

Software:
R(v.4.2.2)

R packages:
survminer (v0.4.9)
sva (v3.46)
DESeq2 (v1.38.3)
uwot (v0.1.14)
igraph (v1.3.5)
scran (v1.26.2)
edgeR (v3.4)
limma (v3.54.1)
biomaRt (v104)
DNDscv (github: im3sanger/dndscv)
glmnet (v.4.1.6)
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cmprsk (v2.2-11)
tidycmprsk (v0.2.0)
ranger (v.0.14.1)
survival (v. 3.2-3.13)
rpart (v4.1.16)
intsurv (v0.2.2)
Seurat (v4.0.53)

Sequence analysis:
BWA-MEM (v0.7.12)
Trim Galore (v0.4.4)
SAMtools (v1.10)
deepTools (v3.4.0)
STAR v(2.7.11)
RSEM v(1.3.0)
Mutect2(v4.1.2.0)
SomaticSniper(v1.0.5.0)
VarScan2(v2.4.3)
MUuSE(v1.0rc)
Strelka2(v2.9.10).
Annovar (v1.0)
CONSERTING (v1.0)
Delly (v0.8.2)
Manta (v1.5.0)
GRIDSS (v2.5.0)
LUMPY(v0.3.0)
SURVIVOR (v1.0.7)
SVtyper (v0.7.1)
Arriba (v2.4.0)
Fusioncather (v1.0)
Pizzly (v1.0)

SQUID (v1.0)
STAR-fusion (v1.2)

Other:

IGV (v2.14)
Minimap2 (v1.0)
MIiXCR (v3.0.13)
Cis-X (v1.0)
Gistic2 (v1.0)
MAPS (v2.0)
Juicer (v1.0)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All primary sample and PDX sequencing data generated for this study are available through dbGaP at the accession number: phs003432, as part of the Childhood
Cancer Data Initiative. This includes raw sequencing data of all primary T-ALL patients (CITE-seq and scATAC-seq), healthy thymus (CITE-seq and scATAC-seq), and T-
ALL PDX models (CITE-seq), along with the corresponding count matrices and Seurat objects. Healthy bone marrow samples included in the analysis are available as
previously published. AML and MPAL samples included for comparative analysis were previously reported can be accessed at https://scpca.alexslemonade.org/
projects/SCPCP000003#samples. All other source data supporting the findings of this study are provided with this paper.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender All patients in the cohort were male or female according to biological sex, and no information on gender identity was
collected.

Six of the 16 PDX were derived from female patients with T-ALL. 10 of the PDX were derived from male patients.

Reporting on race, ethnicity, or
Racial breakdown (self-reported) of the patients whose samples were in PDX single cell profiling: 4 Black/African American, 1
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other socially relevant Asian, 1 not reported, and 10 White. 12 of the 16 patients whose samples were used for single cell analysis of PDX were <16
groupings years of age at diagnosis.

Blasts from harvested spleens from 10 PDX cases underwent ex vivo drug profiling. These cases were selected by having
sufficient cells for ex vivo drug profiling, which requires ~50 million leukemic blasts. These 10 PDX included samples from 1
female patient, 1 Black patient, and 1 Asian patient. 7 of the 10 patients whose samples were sent for ex vivo drug profiling
were <16 years of age.

All other details about the racial characteristics of our cohort are reported in the supplemental materials.

Population characteristics AALLO434 (NCT04408005) is a Children’s Oncology Group (COG) phase 3 international clinical trial for patients with newly
diagnosed T-cell acute lymphoblastic leukemia (T-ALL) and lymphoblastic lymphoma (T-LL) aged 1-30 years.

Recruitment Subjects were enrolled from 01/22/07 until 07/25/14 at 214 centers in the United States, Canada, Australia, New Zealand,
and Switzerland. All subjects with T-ALL were required to enroll on a companion classification study that was used for sample
banking and risk stratification, AALLO3B1 (NCT00482352) from 1/22/07 until 08/08/10 or AALLO8B1 (NCT01142427) from
08/09/10 until 07/25/14.

>
Q
—
(e
(D
1®)
(@)
=
S
c
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<

Ethics oversight AALLO434, AALLO3B1, and AALLO8B1 were approved by the Pediatric Central Institutional Review Board (IRB), local IRBs at all
participating centers, and NCI Cancer Evaluation and Therapeutic Program (CTEP). Written informed consent/assent was
obtained from all study participants and/or their legally authorized representative in accordance with the Declaration of
Helsinki. Genomic studies performed for this work were approved by COG, CTEP, and the local IRBs at the Children’s Hospital
of Philadelphia and St Jude Children’s Research Hospital. Samples were decoded and assigned a unique study identifier (USI).
Samples were banked at the COG biorepository at Nationwide Children’s Hospital in Chicago, IL.

NIH limits on maximum blood/marrow collection for research were followed and there were no deviations: no more than
5cc/kg may be drawn for research purposes in a single day and no more than 9.5cc/kg may be drawn for research purposes
over any 8-week period.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Power calculations were based on anticipated sample size of 1287 patients based on available materials and estimation of usable data. The
objective was to have sufficient statistical power to identify genomic alterations (Frequency >5%, adjusting for End of induction MRD), that
have a significant impact on EFS.

Data exclusions 1309 subjects had successful complete sequencing defined as WGS (whole genome sequencing), WES (whole exome sequencing), and WTS
(whole transcriptome sequencing) of tumor and WGS of normal matched control. An additional 53 subjects had successful WTS sequencing
without either WGS/WES of tumor or normal matched control and were included in transcriptome only analyses. A comparison of important
clinical and demographic features as well as outcomes between the eligible and evaluable T-ALL patients and the sequenced cohort are
provided in supplemental Table 2, demonstrating the sequenced cohort was representative of the overall trial cohort.

Replication No replication could be performed given that a single sample was collected from each patient, but large sample size (N=1309) ensured
statistical robustness.

Randomization  Randomization was not applicable because this is retrospective study for clinical and genomic analyses. Therefore, patients were already
determined to have particular disease subtypes and/or treatments and could not be randomized into groups solely for the purpose of this
study.

Blinding Blinding was not applicable because this is retrospective study for clinical and genomic analyses. Therefore, patient metadata was already

available and known by researchers a priori in order to select appropriate samples for our cohort design. All sequencing and sample
preparations were blinded and randomized.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
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Materials & experimental systems Methods
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Antibodies

Antibodies used CD1a HI149 300133 GATCGTGTTGTGTTA
CD2 TS1/8 309229 TACGATTTGTCAGGG
CD3 UCHT1 300475 CTCATTGTAACTCCT
CD4 RPA-T4 300563 TGTTCCCGCTCAACT
CD5 UCHT2 300635 CATTAACGGGATGCC
CD7 CD7-6B7 343123 TGGATTCCCGGACTT
CD8 RPA-T8 301067 GCTGCGCTTTCCATT
CD10 HI10a 312231 CAGCCATTCATTAGG
CD14 63D3 367131 CAATCAGACCTATGA
CD19 HIB19 302259 CTGGGCAATTACTCG
CD22 S-HCL-1 363514 GGGTTGTTGTCTTTG
CD33 P67.6 366629 TAACTCAGGGCCTAT
CD34 581 343537 GCAGAAATCTCCCTT
CD38 HB7 356635 CCTATTCCGATTCCG
CD45 HI30 304064 TGCAATTACCCGGAT
CD56 QA17A16 392421 TTCGCCGCATTGAGT
CD94 DX22 305521 CTTTCCGGTCCTACA
CD117 104D2 313241 AGACTAATAGCTGAC
CD123 6H6 306037 CTTCACTCTGTCAGG
HLA-DR L243 307659 AATAGCGAGCAAGTA
CD15 W6D3 323046 TCACCAGTACCTAGT
CD66b 6/40c 392905 AGCTGTAAGTTTCGG

anti-CD7 BiolLegend 343106 PE

anti-CD38 eBioscience 12-0388-42 PE
anti-hCD45 BD Biosciences 561864 APC
anti-CD34 Biolegend 561 343607 B273991 APC
anti-CD1A Biolegend HI1149 300105 B263720 PE

anti-CD235A Biolegend HI264 349103 B277415 FITC
anti-CD56 Biolegend 5.1H11 362545 B263356 FITC
anti-CD4 Biolegend RPA-T4 300505 B283934 FITC
anti-CD16 Biolegend 3G8 302005 B309216 FITC
anti-CD8A Biolegend RPA-T8 301005 B275512 FITC
anti-CD19 Biolegend HIB19 302205 B265558 FITC
anti-CD3 Biolegend HIT3a 300306 B274310 FITC

All antibodies were used at the concentrations recommended by the respective manufacturer
Validation All antibodies are validated for detecting human and mouse proteins by the manufacturer, confirmed for each specific application

using cells of known origin and differentiation state, and compared to isotype controls and cells that are known to express or lack the
antigen. Each manufacturer above provides further validation information on their respective websites.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals NOD.Cg-Prkdcscid 12rgtm1W;jl/SzJ (NSG, global reference ID RRID:IMSR_JSX:005557) mice were used for all experiments.

For all experiments, mice were maintained at three to four mice per cage under humidity and temperature-controlled conditions
with a light/dark cycle that is set at 12-hours. Animals were maintained under microisolator tops in a HEPA-filtered rack. Animals
were fed autoclaved Purina mouse chow and water ad libitum. Handling was performed with universal sterile precautions and
experienced personnel will perform all procedures. Mice were sacrificed, and tissues harvested, consistent with the recommendation
of the Panel of Euthanasia of the American Veterinary Medical Association. Animal sacrifice is performed by administration of
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isoflurane or CO2 sedation followed by cervical dislocation. This methodology is consistent with the recommendations of the Panel
on Euthanasia of the American Veterinary Medical Association. Please refer to the “AALLO434 patient identification and clinical
annotation” section of methods for details on patient enrollment and IRB approval for the work.

For the mouse colony, 1 male and 1-2 females were maintained in each cage. Mice were bred from approximately 8 weeks of age
until 12 months of age, depending on health of the animals. For the development of patient derived xenograft (PDX) models, we
injected ~106 blasts from viably frozen patient samples (bone marrow or blood) per mouse to develop primagrafts. We injected 1-5
mice for each patient sample. Mice for each sample for injection were housed in a single cage. Ages of the mice were 2 to 6.5 months
at injection.

Wild animals Provide details on animals observed in or captured in the field, report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Male and female mice were used for PDX generation, but as male and female mice cannot be housed together and with limited cell
numbers, each patient sample was injected either into a cage of male mice or a cage of female mice. The use of male or female mice
was randomly selected for each patient sample. PDX were successfully made from 24 unique patients.

For the in vivo PDX experiments, male mice from 2 PDX were used (6 mice for sample PATTDP and 9 mice for sample PAUNDK).

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Mice were purchased from the Jackson Laboratory to establish a breeding colony at the Children’s Hospital of Philadelphia (CHOP)
and mouse bred in the colony were used for experiments. All animals were housed in the laboratory animal facility (LAF) vivarium in
the Colket Translational Research Building (CTRB) at CHOP. The LAF is accredited by the American Association for Accreditation of
Laboratory Animal Care (AAALAC), registered with the USDA and complies with the Public Health Service Policy on Humane care and
Use of Laboratory Animals (Section: A3442-01). Additionally, the LAFs activities involving animals comply with the Guide for the Care
and use of Laboratory Animals. Animal work in our laboratory was reviewed and approved by our Institutional Animal Care and
Utilization Committee (21-000232, most recent re-approval 5/07/2024).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  No study protocol was provided for the current study because this is retrospective study for clinical and genomic analyses of the
AALLO434 clinical trial cohort (NCTO0408005).

Study protocol No study protocol was provided for the current study because this is retrospective study for clinical and genomic analyses of the
AALLO434 clinical trial cohort (NCTO0408005).

Data collection Randomization was not applicable because this is retrospective study for clinical and genomic analyses. No intervention was
performed.
Qutcomes No pre-determined primary and secondary outcomes because this is retrospective study for clinical and genomic analyses.

Flow Cytometry

Plots

Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

|Z| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Pediatric thymus tissue was mechanically disrupted and treated with liberase (0.2mg/mL Roche; 30 min at 37°C) with
intermittent shaking, as previously described24. Thymocytes were resuspended into flow buffer, sorted into DAPI-Lin-CD34
+CD1A- fractions and subject to scRNA-seq and scATAC-seq.

PDX expanded blasts were harvested from spleen or bone marrow. Frozen samples were thawed (37°C) and resuspended in
IMDM + 2% FBS and treated with DNase | twice. Cells were gently washed 2x with RPMI, resuspended in flow buffer, stained
with DAPI and anti-human CD45 antibody (BD Pharmingen, Cat #: 555485) and subject to FACS sorting (FACSAria Fusion, BD).
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Instrument Flow cytometry was carried out by the Flow Cytometry Core at the Children's Hospital of Philadelphia. FACS sorting was
conducted on the FACSAria Fusion, BD

Software FlowJo was used for flow analysis

Cell population abundance The purity of populations sorted for single-cell sequencing was confirmed and further purified in silico through computational
analysis.

Gating strategy For in vivo experiments, gates were set using CD38-FITC/CD45-APC FMO controls or CD7-PE/CD45-APC FMO controls. The

percentage of hCD38+CD45+ blasts or hCD45+CD7+ blasts amongst all live singlets were plotted

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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