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Decoding pan-cancer treatment outcomes 
using multimodal real-world data and 
explainable artificial intelligence
 

Despite advances in precision oncology, clinical decision-making still relies 
on limited variables and expert knowledge. To address this limitation, 
we combined multimodal real-world data and explainable artificial 
intelligence (xAI) to introduce AI-derived (AID) markers for clinical decision 
support. We used xAI to decode the outcome of 15,726 patients across 
38 solid cancer entities based on 350 markers, including clinical records, 
image-derived body compositions, and mutational tumor profiles. xAI 
determined the prognostic contribution of each clinical marker at the 
patient level and identified 114 key markers that accounted for 90% of the 
neural network’s decision process. Moreover, xAI enabled us to uncover 
1,373 prognostic interactions between markers. Our approach was validated 
in an independent cohort of 3,288 patients with lung cancer from a US 
nationwide electronic health record-derived database. These results show 
the potential of xAI to transform the assessment of clinical variables and 
enable personalized, data-driven cancer care.

Despite the vast amount of multimodal clinical data currently avail-
able for each patient in modern healthcare, the promise of person-
alized medicine has yet to be realized. Single-marker studies do not 
provide sufficient insight into the complex interplay of patient- and 
tumor-specific variables that determine a patient’s prognosis1. As a 
result, many of the proposed tools are not used in clinical practice or 
do not consider the patient’s entire clinical data reflecting the unique 
disease context2,3. A promising strategy to overcome this limitation is to 
integrate clinical data from multiple sources, such as medical history, 
laboratory test results, imaging data and omics analyses1,4. Advances 
in machine learning and the increasing availability of digitally acces-
sible data made it possible to model complex relationships between 
prognostic markers on a large scale1,5–9. Together with recent methods 
for understanding the decision-making of such models, referred to 
as explainable artificial intelligence (xAI), this makes it possible to 
assess individual patient prognosis and unravel the contribution of 
each variable10–15.

In this study, we leveraged these advances by proposing an 
approach for decoding prognostic hallmarks based on large-scale 

real-world data (RWD). We modeled patient outcomes using a deep 
neural network and applied the xAI method layer-wise relevance propa-
gation (LRP) to disentangle how each piece of clinical information 
contributed to an individual patient’s prognosis5,12. Our dataset com-
prises multimodal data from 15,726 patients across 38 cancer entities 
undergoing systemic treatment. The data include clinical examina-
tion, laboratory tests, clinical records, computed tomography (CT) 
imaging-derived body composition and genetic data.

Until now, many existing clinical predictors have been cancer- 
entity specific and not designed to incorporate cross-cancer asso-
ciations. However, available data suggest that similarities between 
patients extend beyond the histological tumor type, leading to an 
increasing number of trials that include patients with different cancer 
entities16–21.

Training our deep-learning approach on a pan-cancer dataset ena-
bled the neural network to learn prognostic relationships that extend 
across cancer entities. This facilitates the development of a compre-
hensive model that reveals clinically relevant biomarker signatures 
without prior knowledge. As a result, our approach can aid clinicians 
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After training on a large and granular real-world pan-cancer data-
set, both neural networks for predicting OS and TTNT were able to 
stratify patients from the test sets into distinct cross-cancer risk groups 
(Fig. 2b).

We compared the performance of the pan-cancer models against 
common prognostic scores (Fig. 3a–h). Reporting the average C-index, 
the xAI model outperformed UICC Staging (OS: 0.75 versus 0.56,  
P < 0.001; TTNT: 0.70 versus 0.54, P < 0.001), the Eastern Cooperative 
Oncology Group Performance Status (ECOG PS; OS: 0.81 versus 0.67, 
P < 0.001, TTNT: 0.72 versus 0.62, P = 0.001), the Charlson Comorbid-
ity Index (CCI, OS: 0.75 versus 0.63, P < 0.001, TTNT: 0.69 versus 0.61, 
P < 0.001) and the modified Glasgow prognostic score (mGPS, OS: 0.76 
versus 0.59, P < 0.001, TTNT: 0.70 versus 0.56, P < 0.001).

For clinical deployment, a small set of variables would facilitate 
the application of models. Therefore, we compared the xAI model to 
a simplified Cox model fitted on ten automatically selected variables 
(Fig. 3i,j). The pan-cancer xAI model outperformed the simplified 
model when fitted on the complete training dataset (average C-index: 
0.75 versus 0.69, P < 0.001) and when fitted on the respective cancer 
type (average C-index: 0.75 versus 0.59, P < 0.001).

xAI reveals complex prognostic relationships between 
markers
After developing reliable outcome prediction models, we applied xAI 
to unravel how clinical information of individual patients influences 
the neural networks in assessing prognosis. We chose to explain the 
pan-cancer models since they outperformed cancer-specific models 
overall. We selected the xAI method layer-wise relevance propagation 
(LRP) because it allows for the computation of robust explanations at 
low computational cost for individual patients12. LRP computed for 
each patient the risk contribution (RC) of every clinical variable, such 
as laboratory markers or comorbidities, to the predicted favorable or 
unfavorable outcome. This results in AI-derived (AID) markers with 
two dimensions, the original marker value and its LRP-assigned RC. 
A positive RC indicates a contribution to an adverse outcome and a 
negative RC indicates a contribution to a favorable outcome.

By analyzing the AID markers across all patients, it was possi-
ble to investigate how the neural network evaluated the relationship 
between the marker and its contribution to the patient’s risk (Fig. 4a). 
For example, increasing age and elevated levels of C-reactive protein 
(CRP) strongly contributed to predicting an unfavorable prognosis. In 
contrast, high fT3, high PD-L1 TPS and higher CT-derived abdominal 
muscle volume contributed to predicting a favorable prognosis.

We validated the results for a subset of markers using external data 
from 3,288 patients with non-small cell lung cancer (NSCLC) provided 
by Flatiron Health. Upon applying our approach to the external data-
set, we found a strong correlation between the linearized slopes of 
RCs on the internal and external datasets (Pearson’s r = 0.9, P < 0.001; 
Extended Data Fig. 3a). Thus, xAI predicted a comparable impact of 
markers on patient risk in both datasets. To confirm if the fundamental 
results of LRP matched conventional models, we examined the simpli-
fied linearized effect predicted by xAI against a standard Cox propor-
tional hazards model. Our analysis revealed that the relationships 
computed on the internal and external datasets strongly correlated 
to the hazard ratios of each marker (subset of markers measured in 
both datasets: internal dataset: Pearson’s r = 0.93, P < 0.001, exter-
nal dataset: Pearson’s r = 0.97, P < 0.001, Extended Data Fig. 3b,c; all 
markers in internal dataset: Pearson’s r = 0.85, P < 0.001, Extended  
Data Fig. 3d).

Notably, the RC of a marker varied widely even when different 
patients had the same marker value. By utilizing LRP, it becomes 
possible to explain some of the variance in RC by marker interac-
tions (Fig. 4b). We observed how the RC of CRP varied depending 
on the values of additional ‘secondary’ variables. Out of 8,294 exam-
ined marker pairs, 1,373 (16.6%) showed significant interactions 

in prioritizing critical patient-specific information and optimizing 
therapeutic strategies. This approach paves the way for transparent 
xAI-guided decision-making compliant with legal requirements22. We 
confirmed the reproducibility and validity of this xAI approach on an 
external real-world dataset comprising 3,288 patients with lung cancer 
from a US nationwide, electronic health record-derived deidentified 
database.

The growing abundance and accessibility of RWD is increasingly 
revealing its potential for clinical application. In this study, we move 
further and demonstrate the ability of xAI to decode patient outcomes 
and provide tailored treatment guidance based on multimodal RWD.

Results
Cohort definition
We retrospectively evaluated data from 150,079 patients with cancer 
with available medical records treated at the West German Cancer 
Center of the University Hospital Essen, one of Germany’s largest 
academic comprehensive cancer centers. Of these, 15,726 patients 
(44.3% female) who received systemic cancer treatment between 
April 2007 and July 2022 (median: November 2016) were included in 
the final analysis (Extended Data Fig. 1). The most frequent cancer 
entities were lung cancer (n = 4,320), sarcoma (n = 1,578) and breast 
cancer (n = 1,223; for details, see Supplemental Table 1). Censoring 
was performed on 7,349 patients (46.7%) to calculate overall survival 
(OS) and on 5,638 patients (35.9%) to calculate time to next treat-
ment (TTNT). Metastatic status (M status) was available in a struc-
tured format at baseline for 7,965 patients. Of those, 5,606 patients 
were treated for metastatic disease (M1), and 2,359 patients received 
systemic therapy for localized or locally advanced cancers (M0). In 
5,395 patients, body composition was automatically assessed from 
abdominal CT images taken before treatment initiation23,24. In total, we 
included 350 variables in our analysis, consisting of different modalities 
and both patient- and tumor-specific variables, providing a detailed 
patient characterization before the first systemic treatment at our  
institute (Fig. 1).

Development of pan-cancer models for outcome prediction
Two neural networks were trained to predict OS or TTNT for each 
patient based on their medical profile at the time of first in-house sys-
temic treatment. We demonstrated the reliability of the neural networks 
by performing a five-fold cross-validation for OS and TTNT prediction, 
respectively. For each fold, 80% of the data were used for training the 
neural network, 10% for hyperparameter tuning and 10% for testing. 
Calibration results are shown in Extended Data Fig. 2.

The survival model achieved an average concordance index 
(C-index) on the pan-cancer dataset of 0.762 (range across folds: 
0.758–0.764) for OS prediction and 0.711 (range: 0.702–0.718) for 
TTNT prediction of patients across all cancer entities (Fig. 2a). When 
the model performance was tested independently for each cancer 
entity with at least 20 patients in each fold’s test set, the predictive per-
formance varied. For OS, the highest C-index was achieved for ocular 
cancers (0.804, range: 0.771–0.860), whereas the highest C-index of 
TTNT was achieved for rectal cancers (0.756, range: 0.644–0.800).

Training models on the pan-cancer dataset, as opposed to exclu-
sively training on single cancer entities, significantly improved model 
performance for both OS (mean C-index of patients within individual 
cancer entities: 0.75 versus 0.72, P < 0.001) and TTNT (mean C-index of 
patients within individual cancer entities: 0.70 versus 0.68, P < 0.001). 
Only in melanoma patients, the mean results (mean C-index for OS: 
0.74 versus 0.75, mean C-index for TTNT: 0.69 versus 0.7, P > 0.05) 
were better when the training was performed on the melanoma cohort 
compared to training on the pan-cancer cohort. The advantage of the 
pan-cancer model over the single-entity models suggests that it used 
prognostic information shared by the overall cohort to provide robust 
predictions.

http://www.nature.com/natcancer
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according to a mixed-effects model. For example, high CRP levels 
were assigned a high RC, particularly when platelet counts were low (Δ 
RC slopes: ×0.07, P < 0.001). CRP had less influence on the predicted 
risk when the platelet count was high. Although the prognostic sig-
nificance of elevated CRP levels and platelet counts is known, the 
exact interaction has not yet been described25. The impact of blood 
urea nitrogen (BUN) on the RC of CRP was less pronounced (Δ RC 
slopes: 0.03, P < 0.001). Here, a higher CRP level was associated with 

a particularly high RC in patients with high BUN levels. In contrast, 
the RC of CRP was independent of aspartate aminotransferase (AST)  
(Δ RC slopes: −0.006, P = 1.0).

The statistically significant interactions between the variables pre-
sent in the internal and external datasets showed a high level of similar-
ity in the external dataset (Pearson’s r = 0.59, P = 0.021; Extended Data 
Fig. 3e). To confirm that the fundamental interaction results observed 
with xAI were consistent with conventional models, we examined 
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the simplified linearized effect over the LRP-assigned RC against a 
mixed-effects Cox proportional hazards model.

Here, the direction of interactions derived from xAI matched the 
interactions observed with the Cox regression models in the inter-
nal and external datasets (r = 0.91, P = 0.03 and r = 0.69, P = 0.009; 
Extended Data Fig. 3f,g). Based on these results, we concluded that the 
LRP approach was highly reproducible across various datasets as well 
as consistent with established statistical models that simplify relation-
ships. However, the xAI approach’s full potential extends beyond this 
and enables nonlinear RC assignments for individual patients, taking 
into account their unique disease context.

For results on TTNT, see Extended Data Figure 4a,b.

AID markers for patient-level treatment guidance
AID markers, the combination of a marker value with its LRP-assigned 
RC, enhance the clinical information available to healthcare profession-
als by incorporating the contextual risk associated with each marker. 
A ‘clinician’s guide’ can clearly present the AID marker profile of indi-
vidual patients.

In Fig. 5, we show representative results that illustrate a potential 
real-world use case of the ‘clinician’s guide’ for four different patients. 
In patient 1, age, BMI, body weight, and fT3 values contributed 

unfavorably to the overall prognosis, while the high lymphocyte 
and platelet counts were assigned a favorable (negative) RC. The 
patient’s prognosis deteriorated with impaired breathing, aphagia, 
pain and an advanced T and M stage. Among the different distant 
metastases, liver metastases were identified as particularly unfa-
vorable compared to lung and bone metastases. Overall, the neu-
ral network therefore predicted a highly adverse outcome for this 
patient based on all available data. In patient 2, lymphocytopenia 
and older age particularly contributed to a poor prognosis. However, 
this patient had few comorbidities, with pleural effusion having the 
strongest unfavorable impact. The absence of liver metastases and 
the treatment with pembrolizumab were assigned a favorable RC, 
and the overall risk was considered intermediate. Notably, patient 
3 had elevated CRP levels, which is conventionally associated with 
a potentially dangerous patient condition requiring increased 
monitoring. However, xAI does not consider this variable to be det-
rimental in this particular case, possibly because of this patient’s 
high platelet count and low urea nitrogen levels (Fig. 4). Patient 4 
showed medium visceral adipose tissue (VAT), contributing favorably, 
and low subcutaneous adipose tissue (SAT), contributing adversely. 
With few comorbidities and no metastases, the overall prognosis was  
favorable.
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Evaluation of established scoring systems
Our results illustrated the limitations of single marker-based outcome 
prediction and emphasized the importance of prognostic variables to 
be considered in the disease context characterized by other markers. 
In clinical routine, however, it is common to rely on a few scoring sys-
tems, such as the TNM stage, to assess prognosis and guide treatment. 
Based on these scoring systems, patients are usually rigidly categorized, 
regardless of fundamental differences such as sex, nutritional status 
or comorbidities.

To evaluate the dependency of a score on this disease context, 
we analyzed the correlation between the score and the LRP-assigned 

RC (Extended Data Fig. 4c). For Eastern Cooperative Oncology Group 
performance status (ECOG PS) (r = 0.87), M stage (r = 0.92), and N stage 
(r = 0.76), higher scores correlated with higher computed RC on aver-
age, indicating a consistent influence on the prognosis independent 
of other markers. The weak correlation of tumor grade (r = 0.02) and T 
stage (r = 0.07) with their RC suggested that they should be interpreted 
in the context of additional markers.

Assessment of marker importance at the cohort level
In a multimodal real-world dataset reflecting clinical care, there are 
expected to be both sideline markers of low prognostic relevance and 
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Fig. 3 | Benchmarking xAI against common clinical prognostic approaches. 
a–h, Filtered for patients for whom clinical markers were present. Lines 
indicate the average of all C-indices calculated for each fold and cancer type. 
a,e, UICC Staging (n = 7,572 patients, P = 6.54 × 10−11 and 4.52 × 10−12). b,f, Eastern 
Cooperative Oncology Group performance status (ECOG PS) (n = 2,035 patients, 
P = 2 × 10−5 and 0.00122). c,g, Charlson Comorbidity Index (CCI; n = 7,965 patients, 
P = 5.83 × 10−9 and 4.01 × 10−6). d,h, Modified Glasgow prognostic score (mGPS; 
n = 6,042 patients, P = 3.55 × 10−14 and 1.78 × 10−14). i,j, Comparison between the 

pan-cancer xAI model and a parsimonious Cox model trained on all patients or on 
patients with the test set tumor type for OS (i, n = 6,070 patients, P = 1.06 × 10−12 
and 7.85 × 10−12) and TTNT (j, n = 6,070 patients, P = 6.94 × 10−13 and 8.43 × 10−12). 
Median is indicated by center line, bounds of boxes indicate interquartile range 
and whiskers extend to a maximum distance of 1.5 ⋅ IQR from the hinge. Data 
beyond the end of whiskers are plotted individually. P values are derived from 
Wilcoxon ranked test (two sided).
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critical markers that are highly relevant across patients. To measure the 
marker importance (MI) in a cohort, we calculated the absolute value 
of the RC in consistency with other methods in the field13. We found 
that 90% of LRP scores were assigned to the 114 most important mark-
ers out of 350 (Extended Data Fig. 5a,b). Across all patients, the most 
important markers for the prediction of OS were C-reactive protein 
level (CRP, mean MI: 0.071), free triiodothyronine (fT3, mean MI: 0.066), 

ECOG PS (mean MI: 0.061), M stage (mean MI: 0.058) and LDH (mean 
MI: 0.055; Extended Data Fig. 6a,b). These results are consistent with 
previously reported findings26–29. However, our results suggest that 
fT3 may play a more important role in prognostic assessment than is 
currently recognized in clinical practice.

Events that are rare in certain cancer subgroups may be common 
enough in the pan-cancer dataset for models to assess the prognostic 
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External NSCLC dataset
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Fig. 4 | Contribution of clinical markers to the prediction of OS. a, Marker RC 
on the OS prediction. Each point represents one marker value for one patient 
versus the LRP-assigned RC (y axis) to the patient’s prognosis. Marker values are 
standardized. b, RC of CRP depended on the value of other markers. The left plot 

shows the standardized CRP level and LRP-assigned RC for all patients. The right 
three plots depict the patients for whom the three selected markers: platelet 
count, urea nitrogen and AST, were in the highest or lowest 10% quantile.
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Fig. 5 | Clinician’s guide showing the contribution of each marker to overall 
risk at the patient level. Representative results of four patients are presented. 
The x axis indicates the marker’s RC toward higher (right/positive) or lower 
(left/negative) risk. Colors indicate the presence (black) or absence (white) of 
cancer entities, comorbidities, metastasis locations and systemic treatment. 
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marker value for the respective patient. For continuous markers, marker values 
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To facilitate interpretation, the median absolute survival of 100 patients with a 
similar predicted risk is given. Body composition markers: abdominal volumes 
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impact of the variable. LRP can assess the influence of comorbidi-
ties, defined by ICD codes, and medical interventions, defined by the 
German operation and procedure classification system (OPS), in the 
disease context (Extended Data Fig. 6c,d). Due to the scarcity of each 
comorbidity, MI was not informative here, which is why we report the 
mean RC of affected patients. We found that the comorbidities that 
contributed the most to the prediction of a poor outcome were pain 
(mean RC: 0.064), respiratory abnormalities (mean RC: 0.064), ascites 
(mean RC: 0.056), secondary malignant neoplasm of the respiratory 
or digestive tract (mean RC: 0.048) and pleural effusion (mean RC: 
0.046). Notably, some diagnoses contributed favorably to the overall 
prognosis (for example, heart failure, gastritis and duodenitis). The 
interventions that were assigned the highest RC were ureteral stenting 
(mean RC: 0.074), which may indicate a stenotic process, and meningeal 
reconstruction (RC: 0.049).

Cross-cohort comparison of prognostic markers
Model training on a pan-cancer dataset and sample-wise explanations 
obtained by LRP allowed us to investigate how the MI of a marker dif-
fered between patient subgroups (Fig. 6).

Expectedly, LRP identified many markers whose significance in 
prognosticating a particular cancer type is already established: CA19-9 
had the highest MI in cancers of the small intestine, and biliary tract and 
bilirubin emerged as an essential marker for liver, pancreatic and biliary 
tract cancers30–32. The presence of liver metastases was most relevant 
for cancers of the thyroid gland, rectosigmoid junction and additional 
digestive tract cancers33,34. HbA1c was most important in cancers of 
the pancreas and liver35,36. The tumor marker CEA had the highest MI 
in cancers of the rectosigmoid junction, colon and thyroid37,38.

However, the cross-cancer approach also made it possible to iden-
tify many previously unexplored prognostic associations. Abdominal 
muscle volume, as determined by CT-based body composition analysis, 
was most important for vulvar, uterine and testicular cancers. Inter-
estingly, AST had very high MI for urethral cancer, followed by the 
expected high MI for liver and ocular cancer (mainly uveal melanoma). 
Alanine transaminase appeared to be most important for the prog-
nostic stratification of patients with cancers of the vulva and ovary. 
The ECOG PS was particularly important for pancreatic, prostate and 
liver cancers. Apart from thyroid cancer and brain cancers for which 
this relationship is well known, fT3 was most important in testicular 
cancer39,40.

For results on TTNT, see Extended Data Fig. 7.

Evolution of marker importance during disease progression
Having examined the cancer entity-specific impact of markers on prog-
nosis, we further explored their varying importance for prognosti-
cation during disease progression. Ordering the deceased patients 
according to OS, we could follow the LRP-assigned marker importance 
along a pseudo timeline and observed distinct changes over the course 
of treatment (Fig. 7). ECOG PS and CRP and LDH levels were highly 
prognostic markers throughout disease progression across all cancer 
entities. The prognosis of patients with a short OS was strongly influ-
enced by total serum protein concentration, which may reflect the 
relevance of organ dysfunction at this stage of the disease, particularly 
of the liver and kidneys. The coagulation variable prothrombin time 
and oxygen saturation were highly prognostic in patients with short OS 
but contributed much less to the prognosis of patients with long OS. 
M stage had an overall decisive marker importance, which decreased 
for disease stages with short OS.

Our modular approach allowed us to generate explainable 
Kaplan-Meier plots of patient subgroups with different prognoses. 
In lung cancer, arterial oxygen saturation had the highest MI for most 
patients, but for patients with short survival, protein expression, CRP 
and ECOG PS became even more critical. Metastasis (M stage) gen-
erally had higher MI than lymph node metastasis and tumor stage. 

Interestingly, the importance of metastasis decreased during disease 
progression and was overtaken by T stage and N stage in patients who 
survived only a few months. LDH had exceptionally high MI in testicular 
cancer and melanoma, which is well known in the literature41,42. The MI 
of the latter increased during disease progression. In the liver, the MI 
of AST, total protein, GGT, prothrombin time and LDH increased dur-
ing disease progression. Alanine transaminase was less important for 
patients who survived more than one year.

Next, we examined the prognostic impact of cancer-specific bio-
markers (Extended Data Fig. 8). PD-L1 TPS was the most important 
cancer-specific marker for lung cancer prognosis, which aligns with 
the efficacy of immune checkpoint inhibitor therapy43. In head and 
neck cancer, the tumor marker SCC had a high marker importance that 
increased during disease progression. In liver cancer, the tumor marker 
AFP was of high MI throughout disease progression, but CA19-9 and 
CA125 became more important toward the end of life.

For results on TTNT, see Extended Data Figures 9 and 10.

Discussion
Personalized medicine requires a comprehensive characterization of 
individual patients, which cannot be achieved by conventional scor-
ing systems based on limited sets of markers1,4. Despite the extensive 
routine diagnostic data available for each patient, current clinical tools 
only include small subsets of these variables in a limited number of 
cancer entities2,3. Previous studies have started to show the potential 
of utilizing multimodal data to predict individual patient prognosis 
using public databases7,8,18. In this study, we utilized multimodal routine 
clinical data from 15,726 patients with solid cancers undergoing sys-
temic treatment to uncover the complex mechanisms that determine 
a patient’s prognosis.

Due to the heterogeneity of patients with different cancers and 
disease stages, we can observe how the influence of specific markers 
on prognosis changes depending on the individual patient context. We 
found that the models benefited from training on patients of both the 
same and different cancer entities, resulting in the successful stratifica-
tion of patients into cross-cancer risk groups. This is consistent with 
the growing trend to guide treatment based on predictive biomarkers 
across cancer entities19–21. We assume that these models benefit from 
the fact that some markers (for example, CRP, ECOG PS) provide similar 
prognostic information across cancer types, allowing the model to 
translate learned associations from one cancer entity to another. Using 
xAI, our study provided a comprehensive understanding of the factors 
contributing to a treatment outcome. Without using prior knowledge, 
xAI characterized how each patient’s prognosis was determined by their 
individual marker profile and identified CRP, fT3, M status and ECOG PS 
as the most important factors across all patients. Our results showed 
excellent reproducibility between internal and external datasets and 
were highly consistent with conventional methods.

In the medical domain, xAI has previously been applied to vali-
date the model performance or assess feature importance across 
cancer cohorts18,24,44. Few studies have made use of patient-wise xAI 
explanations, which are essential for trusting model decisions and 
are increasingly required by law for the use of AI systems18,22. As the 
scope of diagnostics increase, it is becoming increasingly difficult 
for healthcare professionals to integrate all patient information 
comprehensively. AI-driven treatment guidance has demonstrated 
its potential to improve patient outcomes45. By using xAI and mul-
timodal patient data, our approach goes beyond risk stratification 
and could simultaneously provide clinicians with AID markers that 
have dual dimensions, the original marker value and the xAI-assigned 
RC. This could help healthcare providers and patients adjust treat-
ment intensity and set personalized treatment goals. As patient data 
can be captured in near-real time within modern hospital infrastruc-
tures, our approach could be seamlessly integrated into routine  
clinical care46.
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By systematically comparing these AID markers among patients, 
we show that prognostic associations are not static and that different 
markers may be critical depending on the cancer entity and the indi-
vidual disease setting. In contrast to traditional statistical methods, 
xAI can build on all available data to assess the complex setting of 
individual patients, provided that common pitfalls are addressed4,47.

Confounding is one of the most common challenges in retrospec-
tive RWD analysis. We aimed to reduce confounding effects caused 
by correlated variables by applying high dropout regularization not 
only to the neural network weights but also to the input to encourage 

the network to learn variables independently48. In a RWD setting, con-
founding can also be introduced by documentation. For instance, gas-
tritis or duodenitis are not expected to positively impact the patient’s 
prognosis. However, the documentation of these non-cancer comor-
bidities may have suggested the absence of an acute life-threatening 
condition. Also, selection bias should be considered in RWD studies. 
In this proof-of-concept study, we enrolled only patients receiving 
systemic cancer therapy. While this cohort provides well-structured 
treatment data, it is more likely to include patients with advanced 
disease. The external validation dataset consisted of patients with 

ECOG

CRP

Protein (total)
Art. oxygen sat.

T stage
LDH

Grading
Prothrombin time

GGT
N stage

HbA1c
AST

Platelets (#)
M stage

ALT
Pack years

Age

AST

CRP

Art. oxygen sat.

T stage
Protein (total)

Grading
GGT

Prothrombin time
LDH

Platelets (#)
ALT

M stage

N stage
Age

LDH

T stage
CRP

N stage
Platelets (#)

HbA1c
GGT
AST

Prothrombin time
Protein (total)

Age
M stage

ALT

CRP

LDH

Protein (total)

AST
Platelets (#)

GGT
ALT

Prothrombin time

Age
M stage

ECOG
CRP

Art. oxygen sat.
Protein (total)

T stage
LDH

Grading
Prothrombin time

N stage
GGT
HbA1c

M stage
Platelets (#)
Pack years

ALT
AST
Age

CRP

Protein (total)
LDH
Age

Prothrombin time

AST

Platelets (#)

ALT
GGT

Melanoma Testis

Liver Lung

Pan−cancer Breast

0 1 2 0 1 2

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Years

M
ar

ke
r i

m
po

rt
an

ce

Fig. 7 | Explainable Kaplan-Meier plots depicting the importance of diagnostic 
markers during disease progression. Black lines represent Kaplan-Meier plots, 
whereas the colored lines visualize the change in marker importance (MI) for 
patients with different survival times. MI lines are scaled between zero and one. 

Only deceased patients were included in this analysis (pan-cancer: n = 8,377, 
breast: n = 487, liver: n = 451, lung: n = 2,753, melanoma: n = 206, testis: n = 50). 
Selected markers were measured in at least 40 patients and within a 2-year 
window. Art. oxygen sat., arterial oxygen saturation.

http://www.nature.com/natcancer


Nature Cancer | Volume 6 | February 2025 | 307–322 317

Article https://doi.org/10.1038/s43018-024-00891-1

NSCLC. As NSCLC was the largest cohort in the internal dataset, this was 
a suitable group for validation, but further external data on different 
cancer types will need to be included in the future. Particular caution 
is also needed when interpreting the RC assigned to the different treat-
ments, as the nonrandomized selection of treatments may lead to  
statistical bias.

In clinical trials, randomization prevents certain forms of con-
founding and bias. Real-world studies combined with xAI will therefore 
not replace RCT but may generate new data-driven hypotheses and 
inform RCT design49. Because our approach is not limited to RWD, RCT 
designed for specific clinical settings could also directly integrate our 
xAI framework.

In summary, we demonstrate an xAI-based approach for large-scale 
multimodal data analysis of prognostic relationships in a real-world 
setting. Given the increasing influence of multimodal data on patient 
management and therapy selection, xAI approaches hold great poten-
tial for precision medicine.

Methods
Study design
Electronic health records from 150,079 patients with cancer treated at 
University Hospital Essen were retrospectively evaluated. Of these, we 
included 15,726 patients who underwent systemic cancer treatment at 
University Hospital Essen between 1 April 2007 and 22 July 2022 in this 
study. OS was defined as the time from initiation of systemic treatment 
to death from any cause. The date of death was obtained from the 
medical record or, if unavailable, from the state cancer registry. Patients 
for whom no date of death was available were censored at the date of 
the last clinical visit. TTNT was defined as the time from initiation of 
systemic treatment until initiation of next line of systemic treatment 
or death from any cause. Patients with no recorded subsequent line of 
treatment and for whom no date of death was available were censored 
at the date of the last clinical visit. The study was approved by the Ethics 
Committee of the Medical Faculty of the University of Duisburg-Essen 
(No. 21-10347-BO). The requirement for written informed consent was 
waived due to the retrospective design of the study and the deidenti-
fication of data.

Data acquisition
All medical data were retrieved from the smart hospital information 
platform (SHIP) of University Hospital Essen. In SHIP, medical data are 
stored in FHIR format and can be collected based on specific queries. 
The various subsystems at Essen University Hospital, for example, for 
laboratory values or electronic medication administration, automati-
cally transfer the data to SHIP. In this study, we created a pan-cancer 
dataset based on all structured data available in SHIP. First, all patients 
with solid tumors were collected based on ICD codes (C00-C75). Then, 
patients who received intravenous or oral cancer treatment docu-
mented in SHIP were selected. Further inclusion criteria were initiation 
of systemic therapy since 1 April 2007 and a minimum age of 18 years at 
the initiation of cancer treatment. A detailed overview of the patient 
enrollment process can be found in Extended Data Fig. 1.

For the resulting cohort of 15,726 patients, further clinical data 
were retrieved from SHIP. To ensure a balance of the most recent data 
with the fewest missing values in our dataset, we defined different time 
windows for querying the variable sets relative to the start of systemic 
cancer treatment. All variables except CT-derived body composition 
can be mapped to LOINC, SNOMED CT, ATC, ICD or OPS terminolo-
gies. Listed below are all of the queried variable sets used to create our 
dataset, along with the time windows where applicable.

Cancer therapies (first recorded in SHIP). For each patient, the sub-
stances of the first line of therapy administered in our cancer center 
were retrieved. The data originate from our electronic medication 
administration system. In total, there were 48 variables.

Demographics. In total, there were two variables: age and sex.

Body composition (maximum 2 months before treatment). In addi-
tion to weight, height and BMI, we included abdominal body composi-
tion, which was automatically obtained from CT images, to accurately 
assess the physical condition of patients. We retrieved abdominal CT 
images with a maximum interval of 2 months before treatment initia-
tion and used a deep-learning model to automatically measure muscle, 
bone and different fat volumes (subcutaneous, visceral, intermuscular 
and total adipose tissue)23. The collected markers were divided by the 
number of abdominal CT slices to ensure patient comparability. In 
total, there were nine variables.

Cancer entity (C0-75). For each patient, exactly one cancer entity 
was queried for which they were receiving treatment. In total, there 
were 60 variables.

Prior diagnoses (any before treatment). We selected all ICD-10 codes 
(except C0-C75) that were present in at least 200 patients. In total, 
there were 68 variables.

Prior medical interventions (any before treatment). We used the 
German operation and procedure classification system (OPS) to iden-
tify prior medical interventions. We selected all OPS codes that were 
present in at least 200 patients. In total, there were 50 variables.

Staging (maximum 1 year before treatment). T, N and M status were 
obtained from tumor board documentation. In total, there were three 
variables.

Metastasis location (any before treatment). Tissue affected by metas-
tasis, if any, were included. In total, there were nine variables.

Vital signs (maximum 2 weeks before treatment). Oxygen saturation, 
body temperature, heart rate and systolic and diastolic blood pressure 
were included. In total, there were five variables.

ECOG PS (maximum 3 months before treatment). ECOG PS was 
obtained from tumor board documentation. In total, there was one 
variable.

Laboratory results (maximum 2 weeks before treatment). We 
selected all variables that were present in at least 20% of patients (62 
variables), plus nine others (mainly tumor markers) that we considered 
particularly relevant for subgroups. In total, there were 71 variables.

Pathology. Cancer subtype beyond ICD-10 classification, histologic 
tumor grade, immunohistochemical results and somatic tumor muta-
tions were included. In total, there were 22 variables.

Smoking status. Smoking status (smoker/nonsmoker) and, if available, 
pack-years of smoking, were included. In total, there were two variables.

The endpoints OS and TTNT were automatically extracted from 
SHIP.

Data preprocessing
Outliers, defined as >3 standard deviations from the mean, were 
removed for continuous variables. Continuous variables were pre-
standardized to zero mean and unit variance. Categorical scores were 
encoded on an ordinal scale (for example, ECOG PS as 0–4, metastasis 
as 0–1). Diagnoses (ICD codes), cancer entities, interventions (OPS 
codes) and systemic cancer treatments were one-hot encoded (0 = not 
present, 1 = present), which resulted in a total of 350 variables for the 
final dataset. For further analysis and description of differences 
between cancers, the cancer representations were summarized into 
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more general cancer entities (Supplementary Table 1). To account for 
missing values while simultaneously keeping the ability to explain the 
present clinical markers, we applied feature expansion: x → (x, 1 − x). 
Missing values were set to (0,0)50. This method has been used previously 
in comparable biomedical settings51,52. Feature expansion was only 
applied to variables that had missing values. There were no missing 
values for ICD and OPS codes, systemic treatments, cancer diagnoses, 
age and sex.

External Flatiron Health dataset
This study used the nationwide Flatiron Health electronic health 
record-derived deidentified database. The Flatiron Health database 
is a longitudinal database, comprising deidentified patient-level 
structured and unstructured data, curated via technology-enabled 
abstraction53,54. During the study period, the deidentified data origi-
nated from approximately 280 cancer clinics (~800 sites of care). The 
study included 3,288 patients diagnosed with advanced NSCLC from 
1 January 2011 to 10 November 2022. The majority of patients (82.7%) 
originate from community oncology settings. The data are deidenti-
fied and subject to obligations to prevent reidentification and protect 
patient confidentiality. Patients with a birth year of 1937 or earlier may 
have an adjusted birth year in Flatiron datasets due to patient deiden-
tification requirements.

For subsequent analysis in this study, extreme outliers were dis-
carded manually before outliers, defined as >3 standard deviations 
from the mean, were removed for continuous variables. Further pre-
processing of the data was performed analogously to the internal 
dataset, which resulted in a total of 18 variables for the final validation 
dataset.

Model architecture
To model treatment outcomes, we used the coxph architecture similar 
to DeepSurv and the training regime from the pycox survival library5,55.

Each variable (potentially feature-expanded) was used as an input 
to a fully connected neural network with one hidden layer and a hidden 
width of 10 times the input neurons.

Thus, we decided to follow an early-fusion approach, as (1) all 
markers are one-dimensional and reasonably independent from each 
other (unlike, for example, pixels of an image or DNA sequences used 
in other studies) and (2) early fusion is particularly suitable for allowing 
interactions between markers56.

Model training
Using five-fold cross-validation, we trained, for each fold, two neural 
networks (OS, TTNT) on 80% of the data to predict the proportional 
hazard risk score for OS and TTNT, respectively. We used the training 
algorithm supplied by the pycox library55. The remaining 20% of data 
was split randomly into a validation set (10%) to fine-tune the number of 
epochs and to early-stop the model and a test set (10%) for the computa-
tion of the concordance index. Cancer entities were balanced between 
training and validation/test sets for each fold. Model calibration was 
assessed using the python package lifelines57.

Models were trained for up to 50 epochs with a learning rate of 0.01 
using the Adam optimizer. We used the default early stopping algo-
rithm supplied by pycox. After the training process was early stopped, 
the learning rate was reduced to 1/10 of the previous learning rate and 
the model was trained for another 50 epochs. This was repeated down 
to a learning rate of 1e-4. We used a dropout rate of 0.5 and a batch size 
of 1024. To reduce the effect of correlations between input variables 
on the relevance explanation, we applied input dropout at a rate of 0.5 
during training48. The concordance scores between predicted risk and 
ground truth were calculated for each fold using the pycox library. The 
identical training, validation, and test splits were used when neural 
networks were trained on individual cancer entities compared to train-
ing on the pan-cancer dataset to ensure comparability. Concordance 

results were discarded if the test set consisted of less than ten samples 
or if the test samples did not have at least five events.

Explaining ML predictions
To explain the model’s predictions, we used LRP, a method for xAI 
that leverages the neural network structure of the model to compute 
explanations robustly and efficiently12. LRP starts with the prediction 
(the value obtained at the output of the neural network) redistributes 
it backwards, layer after layer, by means of propagation rules, and 
collects the explanation in the input layer. A physical analogy to the 
LRP propagation is water flowing through a network of pipes. In this 
physical network, the amount of water injected at the output equals 
the amount observed at the input.

More formally, let j and k be indices for neurons in two consecutive 
layers and a j and ak  be their respective activations. In a typical neural 
network, including the DeepSurv network considered in this work, two 
consecutive layers are related generically by the equation:

ak = ρ(∑
0, j

a jw jk)

In this equation, the sum runs over all neurons in the given layer 
plus a neuron with constant activation a0 = 1. The variable wjk  is the 
weight connecting neuron j to neuron k. We then backpropagate using 
the generalized LRP-gamma rule, similar to previous works51,52. This 
rule propagates from one layer to the layer below using the equation:

R j = ∑k

a+
j
⋅(w jk+γw+

jk
)+a−

j
⋅(w jk+γw−

jk
)

∑0, ja
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j
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where (.)+ = max(0, .) and (.)− = min(0, .), and where γ is a parameter that 
needs to be selected. Here, we used the heuristic 0.01, which worked 
well in other applications52. Applying the rule at each layer, starting at 
the top layer and moving backward until the input layer, we obtain in 
the last step the contribution of each input feature (that is, variable) 
to the prediction. For expanded features, the final LRP score is calcu-
lated as the sum of the LRP scores assigned to the tuple (x, 1 − x).

We treated the LRP score assigned to a specific input as the RC of 
this marker to the overall patient prognosis (OS or TTNT). The ‘marker 
importance’ of a marker across all patients was defined as the sum of 
the absolute LRP scores divided by the number of patients for whom 
this marker was not missing. To calculate the marker importance in a 
subcohort (for example, patients of a single cancer entity), LRP scores 
were first centered by subtracting the cohort mean.

Statistics
No statistical methods were used to pre-determine sample sizes but our 
sample sizes are similar to those reported in previous publications. Data 
collection and analysis were conducted without randomization, and the 
investigators were not blinded to the conditions of the experiments. 
The statistical analyses were conducted in R statistical packages58. All 
tests were two-sided and results were regarded as significant if P < 0.05. 
Wilcoxon ranked test and Pearson correlation were computed using the 
package Hmisc59. Data distribution was assumed to be normal but this 
was not formally tested. A comparison of the xAI model to simplified 
models was done by first selecting the most important variables per fold 
(/and cancer type) using the CoxnetSurvivalAnalysis function (alpha = 
0.9) from the python package sksurv60. Lambda was tuned to select 10 
variables. Subsequently a linear Cox model was fitted on the reduced 
dataset. Linear regression was applied to fit relationships between marker 
values and their corresponding xAI-assigned RC for the internal and 
external datasets, respectively. Subsequently, the slope coefficients of 
these models were compared between the internal and external datasets.
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The search for interactions between markers was quantified by 
comparing linear mixed-effects models with baseline models. For 
each marker pair, the relationship between the ‘primary’ marker and 
the RC was examined under the two conditions when the ‘secondary’ 
marker was high (highest 10%) or low (lowest 10%). For categorical vari-
ables, category levels were selected so that at least 10% of the samples 
were members of the high or low class, respectively. Medications, ICD 
codes, OPS codes, and cancer types were excluded from this analy-
sis due to unbalanced levels. Marker pairs that were present in less 
than 100 samples were discarded. Holm’s multiple test correction  
was applied.

To validate marker relationships of higher complexity, we exam-
ined marker pairs that were found in the internal and external datasets. 
The difference in model coefficients between ‘high’ and ‘low’ classes 
was compared between both datasets. This analysis was restricted 
to markers that were present in both datasets. For the simple linear 
model, the baseline was a model consisting of the intercept only. For 
the mixed-effects linear model, the baseline consisted of a linear model 
with a fixed slope and a random intercept.

Additionally, these relationships between marker values and RC 
were compared with the coefficients (that is, hazard ratios) of univari-
ate Cox proportional hazard models that predicted survival based on 
the respective markers. A mixed-effects variant of Cox proportional 
hazards models was used to validate the mixed-effects case. Cox 
models were discarded if they had a lower log-likelihood than their 
baseline models but did not have to be significant to be included in 
the comparison.

Cox proportional hazards models were implemented with the 
R package survival61. The mixed-effects variants of this analysis were 
modeled using the coxme package62. Other mixed-effects models were 
implemented with lme463.

Visualizations
Kaplan-Meier plots were computed with the R package survival61. 
Fig. 1 was created with BioRender.com (Klauschen15 BioRender.com/
j46z292). All other plots were created with ggplot264.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data supporting the findings of the study are not publicly available due 
to privacy concerns, ethical considerations and legal requirements. 
Data cannot be shared with investigators outside the institution with-
out consent. Access to anonymized data from University Hospital Essen 
may be granted for non-commercial research purposes, subject to a 
formal data access request and a case-by-case review process. Requests 
must include a detailed research plan and should be addressed to J. 
Kleesiek ( Jens.Kleesiek@uk-essen.de) and will be forwarded to the 
relevant institutional review board within one month. Approved access 
requires the signing of a data use agreement.
The external data have been originated by Flatiron Health, Inc. Requests 
for data sharing by license or by permission for the specific purpose 
of replicating results in this manuscript can be submitted to Publica-
tionsDataAccess@flatiron.com. Access to Flatiron Health databases is 
subject to the execution of a data use agreement, which may include a 
use fee. Source data are provided with this paper.

Code availability
Code is available at https://github.com/PhGK/DecodingCancer.
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Extended Data Fig. 1 | Patient inclusion. Flowchart showing the process of patient inclusion.
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Extended Data Fig. 2 | Calibration results. Calibration plots showing the relationship between average predicted survival probability (x axis) and observed survival 
probability (via Kaplan-Meier fitter) on the test set. a: Internal dataset (OS), b: Internal dataset (TTNT), c: External dataset (OS). ECE: Expected calibration error, ICI: 
Integrated calibration index.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Replicability of the xAI approach and comparison to 
linear methods. A: Replicability of the xAI approach on the external dataset. 
Axes indicate the (linearized) relationship between marker values and their xAI-
assigned RCs for the Internal (x axis) and external (y axis) datatset. B,C: Validation 
of xAI results with Cox regression models. The x axis shows the linearized 
relationships between marker values and RC according to xAI. The y axis shows 
the hazards of each marker according to a univariate cox regression model on the 
same dataset (B: Internal data, C: External data). D: Validation of xAI results with 

Cox regression models (all markers, Pearson’s r = 0.85). E: Comparison of higher 
order interactions identified by xAI between internal (x axis) and external (y axis) 
dataset. Given the linearized relationship between a marker Y and the RC of Y, 
the label X- > Y defines how this relationship changes between patient groups 
with high and low X. F, G: Complex interactions found by xAI can be validated 
with mixed-effects Cox proportional hazards models. The effects captured by 
xAI (x axis) correspond strongly to the effects estimated by mixed-effects Cox 
proportional hazards models (F: Internal data, G: External data).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Prognostic value of selected markers. A: Marker risk 
contribution (RC) on the TTNT prediction. Each point represents one marker 
value for one patient versus the LRP-assigned RC (y-axis) to the patient’s 
prognosis. Marker values are standardized. B: The risk contribution of CRP 
depended on the value of other markers. The standardized CRP level and LRP-
assigned RC are shown for all patients in the left plot. The right three plots depict 
the patients for whom the three selected markers platelet count, urea nitrogen 
and AST were in the highest or lowest 10% quantile. C: Comparison of established 
prognostic scores with the LRP-assigned RC for OS (n = 7,196 patients). The x-axis 
depicts the value of the different scores. The y-axis indicates the RC. Comparison 

is shown for each marker and cancer type. Cancer entities are shown only if the 
respective marker has been measured in at least 20 patients. Adjusted P values 
are shown in brackets (two-sided, Pearson’s correlation, Holms correction). 
Adjusted P values for ECOG PS were 4.78e-04, 6.60e-19, 5.56e-11, 9.42e-07, 
3.80e-11, 1.25e-18, 5.89e-242, 5.90e-21, 4.84e-10, 7.75e-04, 2.86e-31, 1.37e-12, and 
2.97e-13. For Grading, adjusted P values were 1, 1, 1, 0.58, 1, 0.000178, 1, 0.00256, 
1, 1, 1, 1, 1. For M stage, all P values were <2e-16. For N stage, all P values were <2e-16 
except for Skin (P = 7.7e-13). For T stage, P values were 1, 1, 1, 1, 1, 0.177, 7.18e-07, 
0.549, 0.279, 1, 0.00123, 1, 1.
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Extended Data Fig. 5 | Cumulative relevance for neural network decision-
making. A: OS, B: TTNT. All markers are ranked according to the decreasing 
marker importance (MI) assigned by LRP across all patients (x axis). MI is 

corrected for missing values. Y axis shows the cumulative MI. 90 % of all MI is 
assigned to 114 (TTNT: 115) key prognostic markers. Markers measured in at least 
20% of the cancer entities in at least 10% of the patients are shown in black.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Marker importance. Markers are ordered from top 
to bottom according to decreasing importance across all patients. A, B: Risk 
contribution (RC) of markers in individual patients is shown on the x axis. RC 
indicates the contribution to a better (negative) or worse (positive) prognosis. 
Point color indicates high (red) or low (blue) marker value. (A: OS, B: TTNT). 
Cancer entities are shown only if the respective marker has been measured in at 

least 20 patients. C, D: ICD (black) and OPS codes (blue) with the highest assigned 
RC. C: OS (n = 9,713), D: TTNT (n = 9,604). Median is indicated by center line, 
bounds of boxes indicate interquartile range, and whiskers extend to a maximum 
distance of 1.5 ⋅ IQR from the hinge. Data beyond the end of whiskers are plotted 
individually.
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Extended Data Fig. 7 | Relationship between marker importance and cancer 
entities for TTNT. The x axis shows the MI on a logarithmic scale. For each 
marker, the three cancer entities with the highest marker MI are annotated. Body 

composition markers: Abdominal volumes of visceral adipose tissue (VAT), total 
adipose tissue (TAT), subcutaneous adipose tissue (SAT), intermuscular adipose 
tissue (IMAT), muscle, bone.
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Extended Data Fig. 8 | xKM curves for tumor-specific markers (OS). xKM curves 
show the progress of marker contribution for the prediction of overall survival 
(OS) for tumor-specific markers along disease progression. Black lines represent 
Kaplan-Meier plots, while the colored lines visualize the change in marker 

importance (MI) for patients with different survival times. MI lines are scaled 
between zero and one. Only deceased patients were included in this analysis 
(Breast: n = 487, Head and Neck: n = 512, Liver: n = 451, Lung: n = 2,753).
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Extended Data Fig. 9 | xKM curves for diagnostic markers (TTNT). xKM curves 
show the progress of marker contribution for the prediction of time-to-next-
treatment (TTNT) for markers along disease progression. Black lines represent 
Kaplan-Meier plots, while the colored lines visualize the change in marker 

importance (MI) for patients with different survival times. MI lines are scaled 
between zero and one. Only deceased patients were included in this analysis 
(Pan-cancer: n = 10,088, Breast: n = 729, Head and Neck: n = 593, Liver: n = 534, 
Lung: n = 3,105, Testis: 73).
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Extended Data Fig. 10 | xKM curves for tumor-specific markers (TTNT). xKM 
curves show the progress of marker contribution for the prediction of time-to-
next-treatment (TTNT) for tumor-specific markers along disease progression. 
Black lines represent Kaplan-Meier plots, while the colored lines visualize the 

change in marker importance (MI) for patients with different survival times. MI 
lines are scaled between zero and one. Only deceased patients were included 
in this analysis (Breast: n = 729, Head and Neck: n = 593, Liver: n = 534, Lung: 
n = 3,105).
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