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W Check for updates

Despite advances in precision oncology, clinical decision-making still relies
on limited variables and expert knowledge. To address this limitation,

we combined multimodal real-world data and explainable artificial
intelligence (xAl) to introduce Al-derived (AID) markers for clinical decision

support. We used xAl to decode the outcome of 15,726 patients across

38 solid cancer entities based on 350 markers, including clinical records,
image-derived body compositions, and mutational tumor profiles. XAl
determined the prognostic contribution of each clinical marker at the
patient level and identified 114 key markers that accounted for 90% of the
neural network’s decision process. Moreover, XAl enabled us to uncover
1,373 prognostic interactions between markers. Our approach was validated
inanindependent cohort of 3,288 patients with lung cancer from a US
nationwide electronic health record-derived database. These results show
the potential of xAl to transform the assessment of clinical variables and
enable personalized, data-driven cancer care.

Despite the vast amount of multimodal clinical data currently avail-
able for each patient in modern healthcare, the promise of person-
alized medicine has yet to be realized. Single-marker studies do not
provide sufficient insight into the complex interplay of patient- and
tumor-specific variables that determine a patient’s prognosis'. As a
result, many of the proposed tools are not used in clinical practice or
donot consider the patient’s entire clinical data reflecting the unique
disease context™*. A promising strategy to overcome this limitation is to
integrate clinical data from multiple sources, such as medical history,
laboratory test results, imaging data and omics analyses"*. Advances
in machine learning and the increasing availability of digitally acces-
sible data made it possible to model complex relationships between
prognostic markers onalargescale’* . Together with recent methods
for understanding the decision-making of such models, referred to
as explainable artificial intelligence (xAl), this makes it possible to
assess individual patient prognosis and unravel the contribution of
each variable'* ™",

In this study, we leveraged these advances by proposing an
approach for decoding prognostic hallmarks based on large-scale

real-world data (RWD). We modeled patient outcomes using a deep
neural network and applied the xAl method layer-wise relevance propa-
gation (LRP) to disentangle how each piece of clinical information
contributed to an individual patient’s prognosis*. Our dataset com-
prises multimodal datafrom 15,726 patients across 38 cancer entities
undergoing systemic treatment. The data include clinical examina-
tion, laboratory tests, clinical records, computed tomography (CT)
imaging-derived body composition and genetic data.

Until now, many existing clinical predictors have been cancer-
entity specific and not designed to incorporate cross-cancer asso-
ciations. However, available data suggest that similarities between
patients extend beyond the histological tumor type, leading to an
increasing number of trials that include patients with different cancer
entities .,

Training our deep-learning approach onapan-cancer dataset ena-
bled the neural network to learn prognostic relationships that extend
across cancer entities. This facilitates the development of a compre-
hensive model that reveals clinically relevant biomarker signatures
without prior knowledge. As a result, our approach can aid clinicians
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in prioritizing critical patient-specific information and optimizing
therapeutic strategies. This approach paves the way for transparent
xAl-guided decision-making compliant withlegal requirements®. We
confirmed the reproducibility and validity of this xAl approach onan
external real-world dataset comprising 3,288 patients with lung cancer
from a US nationwide, electronic health record-derived deidentified
database.

The growing abundance and accessibility of RWD is increasingly
revealing its potential for clinical application. In this study, we move
further and demonstrate the ability of xAl to decode patient outcomes
and provide tailored treatment guidance based on multimodal RWD.

Results

Cohort definition

We retrospectively evaluated data from 150,079 patients with cancer
with available medical records treated at the West German Cancer
Center of the University Hospital Essen, one of Germany’s largest
academic comprehensive cancer centers. Of these, 15,726 patients
(44.3% female) who received systemic cancer treatment between
April 2007 and July 2022 (median: November 2016) were included in
the final analysis (Extended Data Fig. 1). The most frequent cancer
entities were lung cancer (n=4,320), sarcoma (n =1,578) and breast
cancer (n=1,223; for details, see Supplemental Table 1). Censoring
was performed on 7,349 patients (46.7%) to calculate overall survival
(0S) and on 5,638 patients (35.9%) to calculate time to next treat-
ment (TTNT). Metastatic status (M status) was available in a struc-
tured format at baseline for 7,965 patients. Of those, 5,606 patients
were treated for metastatic disease (M1), and 2,359 patients received
systemic therapy for localized or locally advanced cancers (MO). In
5,395 patients, body composition was automatically assessed from
abdominal CT images taken before treatment initiation?**. Intotal, we
included 350 variablesin our analysis, consisting of different modalities
and both patient- and tumor-specific variables, providing a detailed
patient characterization before the first systemic treatment at our
institute (Fig. 1).

Development of pan-cancer models for outcome prediction
Two neural networks were trained to predict OS or TTNT for each
patientbased on their medical profile at the time of firstin-house sys-
temictreatment. We demonstrated the reliability of the neural networks
by performing afive-fold cross-validation for OSand TTNT prediction,
respectively. For each fold, 80% of the data were used for training the
neural network, 10% for hyperparameter tuning and 10% for testing.
Calibration results are shown in Extended Data Fig. 2.

The survival model achieved an average concordance index
(C-index) on the pan-cancer dataset of 0.762 (range across folds:
0.758-0.764) for OS prediction and 0.711 (range: 0.702-0.718) for
TTNT prediction of patients across all cancer entities (Fig. 2a). When
the model performance was tested independently for each cancer
entity with atleast 20 patientsineachfold’s test set, the predictive per-
formance varied. For OS, the highest C-index was achieved for ocular
cancers (0.804, range: 0.771-0.860), whereas the highest C-index of
TTNT was achieved for rectal cancers (0.756, range: 0.644-0.800).

Training models on the pan-cancer dataset, as opposed to exclu-
sively training on single cancer entities, significantly improved model
performance for both OS (mean C-index of patients within individual
cancer entities: 0.75 versus 0.72, P< 0.001) and TTNT (mean C-index of
patients withinindividual cancer entities: 0.70 versus 0.68, P < 0.001).
Only in melanoma patients, the mean results (mean C-index for OS:
0.74 versus 0.75, mean C-index for TTNT: 0.69 versus 0.7, P> 0.05)
were better when the training was performed on the melanomacohort
compared to training on the pan-cancer cohort. The advantage of the
pan-cancer model over the single-entity models suggests that it used
prognostic information shared by the overall cohort to provide robust
predictions.

After training on alarge and granular real-world pan-cancer data-
set, both neural networks for predicting OS and TTNT were able to
stratify patients from the test sets into distinct cross-cancer risk groups
(Fig. 2b).

We compared the performance of the pan-cancer models against
common prognostic scores (Fig.3a-h). Reporting the average C-index,
the xAl model outperformed UICC Staging (OS: 0.75 versus 0.56,
P<0.001; TTNT: 0.70 versus 0.54, P<0.001), the Eastern Cooperative
Oncology Group Performance Status (ECOG PS; OS: 0.81 versus 0.67,
P<0.001, TTNT:0.72 versus 0.62, P=0.001), the Charlson Comorbid-
ity Index (CCI, 0S: 0.75 versus 0.63, P < 0.001, TTNT: 0.69 versus 0.61,
P <0.001) and the modified Glasgow prognostic score (mGPS, 0S: 0.76
versus 0.59,P<0.001, TTNT: 0.70 versus 0.56, P< 0.001).

For clinical deployment, a small set of variables would facilitate
the application of models. Therefore, we compared the xAl model to
asimplified Cox model fitted on ten automatically selected variables
(Fig. 3i,j). The pan-cancer xAl model outperformed the simplified
modelwhen fitted onthe complete training dataset (average C-index:
0.75 versus 0.69, P<0.001) and when fitted on the respective cancer
type (average C-index: 0.75 versus 0.59, P< 0.001).

xAlreveals complex prognostic relationships between
markers

After developing reliable outcome prediction models, we applied xAl
to unravel how clinical information of individual patients influences
the neural networks in assessing prognosis. We chose to explain the
pan-cancer models since they outperformed cancer-specific models
overall. We selected the xAlmethod layer-wise relevance propagation
(LRP) because it allows for the computation of robust explanations at
low computational cost for individual patients'. LRP computed for
each patient the risk contribution (RC) of every clinical variable, such
aslaboratory markers or comorbidities, to the predicted favorable or
unfavorable outcome. This results in Al-derived (AID) markers with
two dimensions, the original marker value and its LRP-assigned RC.
A positive RC indicates a contribution to an adverse outcome and a
negative RC indicates a contribution to a favorable outcome.

By analyzing the AID markers across all patients, it was possi-
ble to investigate how the neural network evaluated the relationship
between the marker and its contribution to the patient’s risk (Fig. 4a).
For example, increasing age and elevated levels of C-reactive protein
(CRP) strongly contributed to predicting an unfavorable prognosis. In
contrast, high fT3, high PD-L1 TPS and higher CT-derived abdominal
muscle volume contributed to predicting a favorable prognosis.

We validated theresults for asubset of markers using external data
from 3,288 patients with non-small cell lung cancer (NSCLC) provided
by Flatiron Health. Upon applying our approach to the external data-
set, we found a strong correlation between the linearized slopes of
RCs on theinternal and external datasets (Pearson’sr=0.9, P< 0.001;
Extended Data Fig. 3a). Thus, xAl predicted a comparable impact of
markers on patient risk in both datasets. To confirm if the fundamental
results of LRP matched conventional models, we examined the simpli-
fied linearized effect predicted by xAl against astandard Cox propor-
tional hazards model. Our analysis revealed that the relationships
computed on the internal and external datasets strongly correlated
to the hazard ratios of each marker (subset of markers measured in
both datasets: internal dataset: Pearson’s r= 0.93, P < 0.001, exter-
nal dataset: Pearson’s r=0.97, P< 0.001, Extended Data Fig. 3b,c; all
markers in internal dataset: Pearson’s r = 0.85, P< 0.001, Extended
DataFig. 3d).

Notably, the RC of a marker varied widely even when different
patients had the same marker value. By utilizing LRP, it becomes
possible to explain some of the variance in RC by marker interac-
tions (Fig. 4b). We observed how the RC of CRP varied depending
on the values of additional ‘secondary’ variables. Out of 8,294 exam-
ined marker pairs, 1,373 (16.6%) showed significant interactions
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Fig.1| Overview of the data composition and explainable Al (xAl)-based
workflow for decoding treatment outcomes. Following the collection of
multimodal pan-cancer data, each patient’s risk score is predicted by deep
learning and enables patient stratification. xAl then decomposes the patient
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riskinto the individual contributions of each marker. This enables treatment
guidance at the patient and cohortlevel. The numbersin parentheses indicate
the number of variables for each data type.

according to a mixed-effects model. For example, high CRP levels
were assigned a high RC, particularly when platelet counts were low (A
RC slopes: x0.07, P<0.001). CRP had less influence on the predicted
risk when the platelet count was high. Although the prognostic sig-
nificance of elevated CRP levels and platelet counts is known, the
exact interaction has not yet been described”. The impact of blood
urea nitrogen (BUN) on the RC of CRP was less pronounced (A RC
slopes: 0.03, P<0.001). Here, a higher CRP level was associated with

a particularly high RC in patients with high BUN levels. In contrast,
the RC of CRP was independent of aspartate aminotransferase (AST)
(ARCslopes:—0.006,P=1.0).

Thesstatistically significantinteractions between the variables pre-
sentintheinternal and external datasets showed a high level of similar-
ity inthe external dataset (Pearson’sr = 0.59, P= 0.021; Extended Data
Fig.3e). To confirm that the fundamentaliinteraction results observed
with xAl were consistent with conventional models, we examined
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Fig.2|Prediction of prognosis following training on pan-cancer RWD. a,
Concordance index for predicting OS and TTNT in five-fold cross-validation. The
dashed lineindicates the prediction result over all patients averaged across folds.
Box plots show prediction results for individual cancer entities with at least 20
patientsinthe test set (n = 6,070 patients overall; prostate: n = 131; kidney: n =147;
eye:n =187; esophagus: n =198; rectum: n =199; stomach: n = 300; pancreas:
n=304;brain: n =312; colon: n = 319; melanoma: n = 324; liver: n = 373; sarcoma:
n=>538;breast:n=619; lung: n=2,119) of each fold after training the neural

network on all cancer entities (red) or the specific cancer entity (yellow). Cancer
entities are ordered from left to right by ascending patient numbers in the overall
dataset. Medianisindicated by center line, bounds of boxes indicate interquartile
range, and whiskers extend to a maximum distance of 1.5 - IQR from the hinge.
Databeyond the end of whiskers are plotted individually. b, Kaplan-Meier plots
for OSand TTNT in the pan-cancer dataset for patients of the combined test sets
(n=7,861) patients. Patients were stratified into five risk groups according to the
risk predicted by the (pan-cancer trained) neural network.

the simplified linearized effect over the LRP-assigned RC against a
mixed-effects Cox proportional hazards model.

Here, the direction of interactions derived from xAl matched the
interactions observed with the Cox regression models in the inter-
nal and external datasets (r=0.91, P=0.03 and r= 0.69, P=0.009;
Extended DataFig. 3f,g). Based on these results, we concluded that the
LRP approach was highly reproducible across various datasets as well
as consistent with established statistical models that simplify relation-
ships. However, the xAl approach’s full potential extends beyond this
and enables nonlinear RC assignments for individual patients, taking
into account their unique disease context.

For results on TTNT, see Extended Data Figure 4a,b.

AID markers for patient-level treatment guidance
AID markers, the combination of amarker value with its LRP-assigned
RC, enhancethe clinicalinformation available to healthcare profession-
als by incorporating the contextual risk associated with each marker.
A“clinician’s guide’ can clearly present the AID marker profile of indi-
vidual patients.

InFig.5, weshow representative results thatillustrate a potential
real-world use case of the ‘clinician’s guide’ for four different patients.
In patient 1, age, BMI, body weight, and fT3 values contributed

unfavorably to the overall prognosis, while the high lymphocyte
and platelet counts were assigned a favorable (negative) RC. The
patient’s prognosis deteriorated with impaired breathing, aphagia,
pain and an advanced T and M stage. Among the different distant
metastases, liver metastases were identified as particularly unfa-
vorable compared to lung and bone metastases. Overall, the neu-
ral network therefore predicted a highly adverse outcome for this
patient based on all available data. In patient 2, lymphocytopenia
and older age particularly contributed to a poor prognosis. However,
this patient had few comorbidities, with pleural effusion having the
strongest unfavorable impact. The absence of liver metastases and
the treatment with pembrolizumab were assigned a favorable RC,
and the overall risk was considered intermediate. Notably, patient
3 had elevated CRP levels, which is conventionally associated with
a potentially dangerous patient condition requiring increased
monitoring. However, xAl does not consider this variable to be det-
rimental in this particular case, possibly because of this patient’s
high platelet count and low urea nitrogen levels (Fig. 4). Patient 4
showed medium visceral adipose tissue (VAT), contributing favorably,
and low subcutaneous adipose tissue (SAT), contributing adversely.
With few comorbidities and no metastases, the overall prognosis was
favorable.
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Fig. 3 | Benchmarking xAl against common clinical prognostic approaches.
a-h, Filtered for patients for whom clinical markers were present. Lines

indicate the average of all C-indices calculated for each fold and cancer type.

a,e, UICC Staging (n=7,572 patients, P=6.54 x 10" and 4.52 x1072). b,f, Eastern
Cooperative Oncology Group performance status (ECOG PS) (n = 2,035 patients,
P=2x10"and 0.00122). ¢,g, Charlson Comorbidity Index (CCI; n = 7,965 patients,
P=5.83x10"and 4.01x107°). d,h, Modified Glasgow prognostic score (mGPS;
n=6,042patients, P=3.55x10"*and 1.78 x10™). i,j, Comparison between the
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pan-cancer XAl model and a parsimonious Cox model trained on all patients or on
patients with the test set tumor type for OS (i, n = 6,070 patients, P=1.06 x 102
and 7.85x10™) and TTNT (j, n= 6,070 patients, P=6.94 x 10" and 8.43 x 10 ™).
Medianisindicated by center line, bounds of boxes indicate interquartile range
and whiskers extend to amaximum distance of 1.5 - IQR from the hinge. Data
beyond the end of whiskers are plotted individually. Pvalues are derived from
Wilcoxon ranked test (two sided).

Evaluation of established scoring systems
Ourresultsillustrated the limitations of single marker-based outcome
prediction and emphasized the importance of prognostic variables to
be considered in the disease context characterized by other markers.
In clinical routine, however, it is common to rely on a few scoring sys-
tems, such asthe TNM stage, to assess prognosis and guide treatment.
Based onthese scoring systems, patients are usually rigidly categorized,
regardless of fundamental differences such as sex, nutritional status
or comorbidities.

To evaluate the dependency of a score on this disease context,
we analyzed the correlation between the score and the LRP-assigned

RC (Extended Data Fig. 4c). For Eastern Cooperative Oncology Group
performance status (ECOGPS) (r=0.87), Mstage (r=0.92),and N stage
(r=0.76), higher scores correlated with higher computed RC on aver-
age, indicating a consistent influence on the prognosis independent
of other markers. The weak correlation of tumor grade (r=0.02) and T
stage (r=0.07) withtheir RC suggested that they should be interpreted
inthe context of additional markers.

Assessment of marker importance at the cohort level
In a multimodal real-world dataset reflecting clinical care, there are
expected to be both sideline markers of low prognostic relevance and
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marker importance (MI) in a cohort, we calculated the absolute value  MI: 0.055; Extended Data Fig. 6a,b). These results are consistent with
of the RC in consistency with other methods in the field”. We found  previously reported findings* >, However, our results suggest that
that 90% of LRP scores were assigned to the 114 mostimportantmark-  fT3 may play a more important role in prognostic assessment than is
ers out of 350 (Extended Data Fig. 5a,b). Across all patients, the most  currently recognized in clinical practice.

important markers for the prediction of OS were C-reactive protein Eventsthatarerarein certain cancer subgroups may be common
level (CRP, mean MI: 0.071), free triiodothyronine (fT3, meanMI: 0.066), enoughinthe pan-cancer dataset for models to assess the prognostic
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Body temperature ° (3
Body weight ° ° VAT (abdominal)
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Heart rate L °
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Sex o °
Systolic blood pressure N - Abnormalities of gait and mobility

Laboratory

Basophil granulocytes (#)
Basophil granulocytes (%)
Bilirubin (total)
Monocytes (%)

Aphagia and dysphagia
Benign prostatic hyperplasia

Disorders of lipoprotein metabolism (E78)
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Albumin o
Alkaline phosphatase Nicotine dependence
ALT Other chronic obstructive pulmonary disease
AST
Blood glucose Other disorders of fluid, electrolyte and acid-base balance
CA125
CA15-3 Other disorders of urinary system
CA19-9 Pain
CAT72-4
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Chloride Secondary malignancies (lymph nodes, C77)
Crealinc'\:;e) Secondary malignancies (other sites, C79)
CYFRA 21-1 Secondary malignancies (respiratory/digestive, C78)

Eosinophil granulocytes (#)
Eosinophil granulocytes (%)
Erythrocytes (#)

FT3

FT4

GGT

Hematocrit

Hemoglobin

INR

LDH

Leukocytes (#)
Lymphocytes (#)
Lymphocytes (%)

MCH

Symptoms and signs concerning food and fluid intake

Volume depletion

Metastasis location
Bone metastasis
Liver metastasis
Lung metastasis

Pleural metastasis

MCHC Pathology

Mmcv EGFR mutation
Monocytes (#)

MPV KRAS mutation

Neutrophil granulocytes (#)
Neutrophil granulocytes (%)
Normoblasts (#)
Normoblasts (%)
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PD-L1(TPS)

TP53 mutation

Systemic treatment

'y

Platelet distribution width (%) o Carboplatin
Platelet distribution width (abs) L3 .
Plateletcrit (%) . Cisplatin
Platelets (#) -— . Gemcitabine
Potassium [ ] -
Protein (total) L Paclitaxel
Prothrombin time .
PSA - . Pembrolizumab
PTT ~ Pemetrexed
Red blood cell distribution width (%) —
Red blood cell distribution width (abs) o
scc P ° TNM stage
Sodium ° - M stage
TSH -
Urea L] . N stage
Urea nitrogen
Uric acid ° ° Tstage
-0.1 04 -01 01 -01 01 -01 041 -0.1 041 -01 041 -01 01 -0.1 04
Risk contribution Risk contribution
Patient 1 Patient 2 Patient 3 Patient 4
0.16 years 0.96 years 0.93 years 1.75 years
Overall patient risk —_— kS & o—
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Fig. 5| Clinician’s guide showing the contribution of each marker to overall marker value for the respective patient. For continuous markers, marker values
risk at the patient level. Representative results of four patients are presented. arestandardized. The predicted overall patient risk is displayed at the bottom.
Thexaxis indicates the marker’s RC toward higher (right/positive) or lower To facilitate interpretation, the median absolute survival of 100 patients with a
(left/negative) risk. Colors indicate the presence (black) or absence (white) of similar predicted risk is given. Body composition markers: abdominal volumes
cancer entities, comorbidities, metastasis locations and systemic treatment. of visceral adipose tissue (VAT), total adipose tissue (TAT), subcutaneous adipose
For markers with ordinal or continuous scales, the point color indicates the tissue (SAT), intermuscular adipose tissue (IMAT), muscle, bone.
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impact of the variable. LRP can assess the influence of comorbidi-
ties, defined by ICD codes, and medical interventions, defined by the
German operation and procedure classification system (OPS), in the
disease context (Extended Data Fig. 6¢,d). Due to the scarcity of each
comorbidity, Ml was not informative here, whichis why we report the
mean RC of affected patients. We found that the comorbidities that
contributed the most to the prediction of a poor outcome were pain
(meanRC:0.064), respiratory abnormalities (mean RC: 0.064), ascites
(mean RC: 0.056), secondary malignant neoplasm of the respiratory
or digestive tract (mean RC: 0.048) and pleural effusion (mean RC:
0.046). Notably, some diagnoses contributed favorably to the overall
prognosis (for example, heart failure, gastritis and duodenitis). The
interventions that were assigned the highest RC were ureteral stenting
(meanRC: 0.074), whichmay indicate a stenotic process, and meningeal
reconstruction (RC: 0.049).

Cross-cohort comparison of prognostic markers

Model training on a pan-cancer dataset and sample-wise explanations
obtained by LRP allowed us to investigate how the MI of a marker dif-
fered between patient subgroups (Fig. 6).

Expectedly, LRP identified many markers whose significance in
prognosticating a particular cancer type is already established: CA19-9
had the highest Mlin cancers of the smallintestine, and biliary tract and
bilirubin emerged as an essential marker for liver, pancreatic and biliary
tract cancers®* 2, The presence of liver metastases was most relevant
for cancers of the thyroid gland, rectosigmoid junction and additional
digestive tract cancers®?*. HbAlc was most important in cancers of
the pancreas and liver®>*°, The tumor marker CEA had the highest MI
in cancers of the rectosigmoid junction, colon and thyroid**%,

However, the cross-cancer approach also made it possible to iden-
tify many previously unexplored prognostic associations. Abdominal
muscle volume, as determined by CT-based body composition analysis,
was most important for vulvar, uterine and testicular cancers. Inter-
estingly, AST had very high Ml for urethral cancer, followed by the
expected high MIfor liver and ocular cancer (mainly uveal melanoma).
Alanine transaminase appeared to be most important for the prog-
nostic stratification of patients with cancers of the vulva and ovary.
The ECOG PS was particularly important for pancreatic, prostate and
liver cancers. Apart from thyroid cancer and brain cancers for which
this relationship is well known, fT3 was most important in testicular
cancer®#,

Forresults on TTNT, see Extended Data Fig. 7.

Evolution of marker importance during disease progression
Having examined the cancer entity-specificimpact of markers on prog-
nosis, we further explored their varying importance for prognosti-
cation during disease progression. Ordering the deceased patients
accordingto OS, we could follow the LRP-assigned marker importance
alongapseudo timeline and observed distinct changes over the course
of treatment (Fig. 7). ECOG PS and CRP and LDH levels were highly
prognostic markers throughout disease progressionacross all cancer
entities. The prognosis of patients with a short OS was strongly influ-
enced by total serum protein concentration, which may reflect the
relevance of organ dysfunction at this stage of the disease, particularly
of the liver and kidneys. The coagulation variable prothrombin time
and oxygen saturation were highly prognosticin patients with short OS
but contributed much less to the prognosis of patients with long OS.
M stage had an overall decisive marker importance, which decreased
for disease stages with short OS.

Our modular approach allowed us to generate explainable
Kaplan-Meier plots of patient subgroups with different prognoses.
Inlung cancer, arterial oxygen saturation had the highest Ml for most
patients, but for patients with shortsurvival, protein expression, CRP
and ECOG PS became even more critical. Metastasis (M stage) gen-
erally had higher MI than lymph node metastasis and tumor stage.

Interestingly, theimportance of metastasis decreased during disease
progression and was overtaken by T stage and N stage in patients who
survived only afew months. LDH had exceptionally highMlin testicular
cancer and melanoma, which is wellknown in the literature**%. The MI
of the latter increased during disease progression. In the liver, the MI
of AST, total protein, GGT, prothrombin time and LDH increased dur-
ing disease progression. Alanine transaminase was less important for
patients who survived more than one year.

Next, we examined the prognostic impact of cancer-specific bio-
markers (Extended Data Fig. 8). PD-L1 TPS was the most important
cancer-specific marker for lung cancer prognosis, which aligns with
the efficacy of immune checkpoint inhibitor therapy*. In head and
neck cancer, the tumor marker SCC had ahigh markerimportance that
increased during disease progression. Inliver cancer, the tumor marker
AFP was of high Ml throughout disease progression, but CA19-9 and
CA125 became more important toward the end of life.

Forresults on TTNT, see Extended Data Figures 9 and 10.

Discussion

Personalized medicine requires acomprehensive characterization of
individual patients, which cannot be achieved by conventional scor-
ing systems based on limited sets of markers'*. Despite the extensive
routine diagnostic data available for each patient, current clinical tools
only include small subsets of these variables in a limited number of
cancer entities>*. Previous studies have started to show the potential
of utilizing multimodal data to predict individual patient prognosis
using public databases”®'®, In this study, we utilized multimodal routine
clinical data from 15,726 patients with solid cancers undergoing sys-
temic treatment to uncover the complex mechanisms that determine
apatient’s prognosis.

Due to the heterogeneity of patients with different cancers and
disease stages, we can observe how the influence of specific markers
on prognosis changes depending on the individual patient context. We
found that the models benefited from training on patients of both the
same and different cancer entities, resulting in the successful stratifica-
tion of patients into cross-cancer risk groups. This is consistent with
thegrowing trend to guide treatment based on predictive biomarkers
across cancer entities' ', We assume that these models benefit from
thefact that some markers (for example, CRP, ECOG PS) provide similar
prognostic information across cancer types, allowing the model to
translate learned associations from one cancer entity to another. Using
xAl, our study provided acomprehensive understanding of the factors
contributing to atreatment outcome. Without using prior knowledge,
xAlcharacterized how each patient’s prognosis was determined by their
individual marker profile and identified CRP, fT3, M status and ECOG PS
as the most important factors across all patients. Our results showed
excellent reproducibility between internal and external datasets and
were highly consistent with conventional methods.

In the medical domain, xAl has previously been applied to vali-
date the model performance or assess feature importance across
cancer cohorts'®****, Few studies have made use of patient-wise XAl
explanations, which are essential for trusting model decisions and
are increasingly required by law for the use of Al systems'®?, As the
scope of diagnostics increase, it is becoming increasingly difficult
for healthcare professionals to integrate all patient information
comprehensively. Al-driven treatment guidance has demonstrated
its potential to improve patient outcomes*. By using xAl and mul-
timodal patient data, our approach goes beyond risk stratification
and could simultaneously provide clinicians with AID markers that
have dual dimensions, the original marker value and the xAl-assigned
RC. This could help healthcare providers and patients adjust treat-
ment intensity and set personalized treatment goals. As patient data
can be captured in near-real time within modern hospital infrastruc-
tures, our approach could be seamlessly integrated into routine
clinical care*.
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Years

Only deceased patients were included in this analysis (pan-cancer: n = 8,377,
breast: n =487, liver: n =451, lung: n = 2,753, melanoma: n = 206, testis: n = 50).
Selected markers were measured in at least 40 patients and within a 2-year
window. Art. oxygen sat., arterial oxygen saturation.

By systematically comparing these AID markers among patients,
we show that prognostic associations are not static and that different
markers may be critical depending on the cancer entity and the indi-
vidual disease setting. In contrast to traditional statistical methods,
XAl can build on all available data to assess the complex setting of
individual patients, provided that common pitfalls are addressed**’.

Confoundingis one of the most common challenges in retrospec-
tive RWD analysis. We aimed to reduce confounding effects caused
by correlated variables by applying high dropout regularization not
only to the neural network weights but also to the input to encourage

the network to learnvariablesindependently*®. InaRWD setting, con-
founding canalso beintroduced by documentation. For instance, gas-
tritis or duodenitis are not expected to positively impact the patient’s
prognosis. However, the documentation of these non-cancer comor-
bidities may have suggested the absence of an acute life-threatening
condition. Also, selection bias should be considered in RWD studies.
In this proof-of-concept study, we enrolled only patients receiving
systemic cancer therapy. While this cohort provides well-structured
treatment data, it is more likely to include patients with advanced
disease. The external validation dataset consisted of patients with
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NSCLC. AsNSCLC was thelargest cohortin the internal dataset, this was
asuitable group for validation, but further external data on different
cancer types will need to be included in the future. Particular caution
isalsoneeded wheninterpreting the RC assigned to the different treat-
ments, as the nonrandomized selection of treatments may lead to
statistical bias.

In clinical trials, randomization prevents certain forms of con-
founding and bias. Real-world studies combined with xAl will therefore
not replace RCT but may generate new data-driven hypotheses and
inform RCT design®. Because our approachis not limited to RWD, RCT
designed for specific clinical settings could also directly integrate our
xAlframework.

Insummary, we demonstrate an xAl-based approach forlarge-scale
multimodal data analysis of prognostic relationships in a real-world
setting. Given the increasing influence of multimodal data on patient
management and therapy selection, xAl approaches hold great poten-
tial for precision medicine.

Methods

Study design

Electronic health records from150,079 patients with cancer treated at
University Hospital Essen were retrospectively evaluated. Of these, we
included 15,726 patients who underwent systemic cancer treatment at
University Hospital Essen between 1 April 2007 and 22 July 2022 in this
study. OS was defined as the time from initiation of systemic treatment
to death from any cause. The date of death was obtained from the
medical record or, ifunavailable, fromthe state cancer registry. Patients
for whom no date of death was available were censored at the date of
the last clinical visit. TTNT was defined as the time from initiation of
systemic treatment until initiation of next line of systemic treatment
or deathfromany cause. Patients with no recorded subsequent line of
treatment and for whom no date of death was available were censored
atthedate of thelast clinical visit. The study was approved by the Ethics
Committee of the Medical Faculty of the University of Duisburg-Essen
(No.21-10347-BO). The requirement for writteninformed consent was
waived due to the retrospective design of the study and the deidenti-
fication of data.

Dataacquisition

All medical data were retrieved from the smart hospital information
platform (SHIP) of University Hospital Essen. In SHIP, medical dataare
stored in FHIR format and can be collected based on specific queries.
The various subsystems at Essen University Hospital, for example, for
laboratory values or electronic medication administration, automati-
cally transfer the data to SHIP. In this study, we created a pan-cancer
dataset based onall structured data available in SHIP. First, all patients
withsolid tumorswere collected based on ICD codes (CO0-C75). Then,
patients who received intravenous or oral cancer treatment docu-
mented in SHIP were selected. Further inclusion criteriawere initiation
of systemic therapy since 1 April2007 and a minimum age of 18 years at
the initiation of cancer treatment. A detailed overview of the patient
enrollment process can be found in Extended Data Fig. 1.

For the resulting cohort of 15,726 patients, further clinical data
wereretrieved from SHIP. To ensure a balance of the most recent data
withthe fewest missing valuesin our dataset, we defined different time
windows for querying the variable sets relative to the start of systemic
cancer treatment. All variables except CT-derived body composition
can be mapped to LOINC, SNOMED CT, ATC, ICD or OPS terminolo-
gies. Listed below are all of the queried variable sets used to create our
dataset, along with the time windows where applicable.

Cancer therapies (first recorded in SHIP). For each patient, the sub-
stances of the first line of therapy administered in our cancer center
were retrieved. The data originate from our electronic medication
administration system. In total, there were 48 variables.

Demographics. Intotal, there were two variables: age and sex.

Body composition (maximum 2 months before treatment). In addi-
tionto weight, height and BMI, we included abdominal body composi-
tion, which was automatically obtained from CT images, to accurately
assess the physical condition of patients. We retrieved abdominal CT
images with a maximum interval of 2 months before treatment initia-
tionand used adeep-learning model to automatically measure muscle,
boneand different fat volumes (subcutaneous, visceral, intermuscular
and total adipose tissue)?. The collected markers were divided by the
number of abdominal CT slices to ensure patient comparability. In
total, there were nine variables.

Cancer entity (CO-75). For each patient, exactly one cancer entity
was queried for which they were receiving treatment. In total, there
were 60 variables.

Prior diagnoses (any before treatment). We selected all ICD-10 codes
(except CO-C75) that were present in at least 200 patients. In total,
there were 68 variables.

Prior medical interventions (any before treatment). We used the
German operation and procedure classification system (OPS) toiden-
tify prior medical interventions. We selected all OPS codes that were
presentin atleast 200 patients. In total, there were 50 variables.

Staging (maximum 1year before treatment). T, N and M status were
obtained from tumor board documentation. Intotal, there were three
variables.

Metastasis location (any before treatment). Tissue affected by metas-
tasis, if any, were included. In total, there were nine variables.

Vital signs (maximum 2 weeks before treatment). Oxygen saturation,
body temperature, heartrate and systolicand diastolic blood pressure
were included. Intotal, there were five variables.

ECOG PS (maximum 3 months before treatment). ECOG PS was
obtained from tumor board documentation. In total, there was one
variable.

Laboratory results (maximum 2 weeks before treatment). We
selected all variables that were present in at least 20% of patients (62
variables), plus nine others (mainly tumor markers) that we considered
particularly relevant for subgroups. In total, there were 71 variables.

Pathology. Cancer subtype beyond ICD-10 classification, histologic
tumor grade,immunohistochemical results and somatic tumor muta-
tionswereincluded. In total, there were 22 variables.

Smoking status. Smoking status (smoker/nonsmoker) and, if available,
pack-years of smoking, wereincluded. Intotal, there were two variables.

The endpoints OS and TTNT were automatically extracted from
SHIP.

Data preprocessing

Outliers, defined as >3 standard deviations from the mean, were
removed for continuous variables. Continuous variables were pre-
standardized to zero mean and unit variance. Categorical scores were
encoded onanordinalscale (for example, ECOG PS as 0-4, metastasis
as 0-1). Diagnoses (ICD codes), cancer entities, interventions (OPS
codes) and systemic cancer treatments were one-hot encoded (O =not
present, 1= present), which resulted in a total of 350 variables for the
final dataset. For further analysis and description of differences
between cancers, the cancer representations were summarized into
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more general cancer entities (Supplementary Table1). Toaccount for
missing values while simultaneously keeping the ability to explain the
present clinical markers, we applied feature expansion: x — (x,1—x).
Missing values wereset to (0, 0. This method has been used previously
in comparable biomedical settings® % Feature expansion was only
applied to variables that had missing values. There were no missing
values for ICD and OPS codes, systemic treatments, cancer diagnoses,
age and sex.

External Flatiron Health dataset

This study used the nationwide Flatiron Health electronic health
record-derived deidentified database. The Flatiron Health database
is a longitudinal database, comprising deidentified patient-level
structured and unstructured data, curated via technology-enabled
abstraction®*, During the study period, the deidentified data origi-
nated from approximately 280 cancer clinics (-800 sites of care). The
study included 3,288 patients diagnosed with advanced NSCLC from
1January 2011to 10 November 2022. The majority of patients (82.7%)
originate from community oncology settings. The data are deidenti-
fied and subject to obligations to preventreidentification and protect
patient confidentiality. Patients with abirthyear of 1937 or earlier may
have anadjusted birth year in Flatiron datasets due to patient deiden-
tification requirements.

For subsequent analysis in this study, extreme outliers were dis-
carded manually before outliers, defined as >3 standard deviations
from the mean, were removed for continuous variables. Further pre-
processing of the data was performed analogously to the internal
dataset, whichresulted in atotal of 18 variables for the final validation
dataset.

Model architecture
Tomodel treatment outcomes, we used the coxph architecture similar
to DeepSurv and the training regime from the pycox survival library>>.

Eachvariable (potentially feature-expanded) was used as aninput
toafully connected neural network with one hiddenlayerand ahidden
width of 10 times the input neurons.

Thus, we decided to follow an early-fusion approach, as (1) all
markers are one-dimensional and reasonably independent from each
other (unlike, for example, pixels of animage or DNA sequences used
inother studies) and (2) early fusionis particularly suitable for allowing
interactions between markers’°.

Model training

Using five-fold cross-validation, we trained, for each fold, two neural
networks (OS, TTNT) on 80% of the data to predict the proportional
hazard risk score for OS and TTNT, respectively. We used the training
algorithm supplied by the pycox library®. The remaining 20% of data
was splitrandomly into a validation set (10%) to fine-tune the number of
epochsand to early-stop the model and atest set (10%) for the computa-
tion of the concordance index. Cancer entities were balanced between
training and validation/test sets for each fold. Model calibration was
assessed using the python package lifelines™.

Models were trained for up to 50 epochs with alearning rate of 0.01
using the Adam optimizer. We used the default early stopping algo-
rithmsupplied by pycox. After the training process was early stopped,
thelearningrate wasreduced to1/10 of the previous learning rate and
the model wastrained for another 50 epochs. This wasrepeated down
toalearningrate of le-4. We used adropout rate of 0.5and abatch size
of 1024. To reduce the effect of correlations between input variables
ontherelevance explanation, we applied input dropoutatarate of 0.5
duringtraining*®. The concordance scores between predicted risk and
ground truth were calculated for each fold using the pycox library. The
identical training, validation, and test splits were used when neural
networks were trained onindividual cancer entities compared to train-
ing on the pan-cancer dataset to ensure comparability. Concordance

results were discarded if the test set consisted of less than ten samples
orifthe test samples did not have at least five events.

Explaining ML predictions

To explain the model’s predictions, we used LRP, a method for xAl
that leverages the neural network structure of the model to compute
explanations robustly and efficiently’. LRP starts with the prediction
(thevalue obtained at the output of the neural network) redistributes
it backwards, layer after layer, by means of propagation rules, and
collects the explanation in the input layer. A physical analogy to the
LRP propagation is water flowing through a network of pipes. In this
physical network, the amount of water injected at the output equals
theamount observed at the input.

More formally, letjand k beindices for neuronsin two consecutive
layersand a ;and a, be their respective activations. Ina typical neural
network, including the DeepSurv network considered in this work, two
consecutive layers are related generically by the equation:

a; =p<2ajwjk)
0,j

In this equation, the sum runs over all neurons in the given layer
plus a neuron with constant activation a, = 1. The variable wy is the
weight connecting neuron jtoneuron k. We thenbackpropagate using
the generalized LRP-gamma rule, similar to previous works®*?, This
rule propagates from one layer to the layer below using the equation:

a‘;.-(wjk+yw;k)+a;~(w_,-k+yw‘/k)

R;= -1 ‘R
=2 Zo,j‘f}'(wjk+VWJ}k)+“}'(ij+ij-k) @>0 " Tk
a*.-(w ]k+yw'.k)+a‘.~(w Jk+yw+,k)
J k)T J 1 "R
R A R

where ()* = max(0,.)and ()~ = min(0,.), and where y isa parameter that
needs to be selected. Here, we used the heuristic 0.01, which worked
wellin other applications®. Applying the rule at each layer, starting at
the top layer and moving backward until the input layer, we obtain in
the last step the contribution of each input feature (that is, variable)
to the prediction. For expanded features, the final LRP score is calcu-
lated as the sum of the LRP scores assigned to the tuple (x,1-x).

We treated the LRP score assigned to a specific input as the RC of
this marker to the overall patient prognosis (OS or TTNT). The ‘marker
importance’ of a marker across all patients was defined as the sum of
the absolute LRP scores divided by the number of patients for whom
this marker was not missing. To calculate the marker importanceina
subcohort (for example, patients of asingle cancer entity), LRP scores
were first centered by subtracting the cohort mean.

Statistics

No statistical methods were used to pre-determine sample sizes but our
samplesizes are similar to those reportedin previous publications. Data
collectionand analysis were conducted without randomization, and the
investigators were not blinded to the conditions of the experiments.
The statistical analyses were conducted in R statistical packages™. All
tests were two-sided and results were regarded as significant if P < 0.05.
Wilcoxonranked test and Pearson correlation were computed using the
package Hmisc®. Data distribution was assumed to be normal but this
was not formally tested. A comparison of the xAl model to simplified
models was doneby first selecting the mostimportant variables per fold
(/and cancer type) using the CoxnetSurvivalAnalysis function (alpha =
0.9) from the python package sksurv®°. Lambda was tuned to select 10
variables. Subsequently a linear Cox model was fitted on the reduced
dataset. Linear regression was applied tofit relationships between marker
values and their corresponding xAl-assigned RC for the internal and
external datasets, respectively. Subsequently, the slope coefficients of
these models were compared between the internal and external datasets.

Nature Cancer | Volume 6 | February 2025 | 307-322

318


http://www.nature.com/natcancer

Article

https://doi.org/10.1038/s43018-024-00891-1

The search for interactions between markers was quantified by
comparing linear mixed-effects models with baseline models. For
each marker pair, the relationship between the ‘primary’ marker and
the RC was examined under the two conditions when the ‘secondary’
marker was high (highest10%) or low (lowest 10%). For categorical vari-
ables, category levels were selected so that atleast 10% of the samples
were members of the high or low class, respectively. Medications, ICD
codes, OPS codes, and cancer types were excluded from this analy-
sis due to unbalanced levels. Marker pairs that were present in less
than 100 samples were discarded. Holm’s multiple test correction
was applied.

To validate marker relationships of higher complexity, we exam-
ined marker pairs that were found in the internal and external datasets.
The difference in model coefficients between ‘high’ and ‘low’ classes
was compared between both datasets. This analysis was restricted
to markers that were present in both datasets. For the simple linear
model, the baseline was a model consisting of the intercept only. For
the mixed-effects linear model, the baseline consisted of alinear model
with afixed slope and arandom intercept.

Additionally, these relationships between marker values and RC
were compared with the coefficients (that s, hazard ratios) of univari-
ate Cox proportional hazard models that predicted survival based on
the respective markers. A mixed-effects variant of Cox proportional
hazards models was used to validate the mixed-effects case. Cox
models were discarded if they had a lower log-likelihood than their
baseline models but did not have to be significant to be included in
the comparison.

Cox proportional hazards models were implemented with the
R package survival®. The mixed-effects variants of this analysis were
modeled using the coxme package®. Other mixed-effects models were
implemented with Ime4®°.

Visualizations

Kaplan-Meier plots were computed with the R package survival®.
Fig. 1 was created with BioRender.com (Klauschen® BioRender.com/
j462292). All other plots were created with ggplot2®*.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Datasupporting the findings of the study are not publicly available due
to privacy concerns, ethical considerations and legal requirements.
Data cannot be shared withinvestigators outside the institution with-
out consent. Access to anonymized data from University Hospital Essen
may be granted for non-commercial research purposes, subject to a
formal dataaccess request and acase-by-case review process. Requests
must include a detailed research plan and should be addressed to .
Kleesiek (Jens.Kleesiek@uk-essen.de) and will be forwarded to the
relevantinstitutional review board within one month. Approved access
requires the signing of a data use agreement.

The external datahave been originated by Flatiron Health, Inc. Requests
for data sharing by license or by permission for the specific purpose
of replicating results in this manuscript can be submitted to Publica-
tionsDataAccess@flatiron.com. Access to Flatiron Health databases is
subject to the execution of adatause agreement, whichmay includea
use fee. Source data are provided with this paper.

Code availability
Codeis available at https://github.com/PhGK/DecodingCancer.
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n=150,079

Enrolled patients with solid cancers from University Hospital Essen

Exclusion of patients without systemic therapy in the internal database

n= 16,904

Exclusion of patients initiating systemic therapy before 1 April 2007

n=16,130

Exclusion of patients under 18 years of age at initiation of systemic therapy

n=15,788

Exclusion of patients being treated for secondary non-solid malignancies

n=15,726

Extended Data Fig. 1| Patient inclusion. Flowchart showing the process of patientinclusion.
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Extended Data Fig. 3| Replicability of the xAl approach and comparison to
linear methods. A: Replicability of the xAl approach on the external dataset.
Axesindicate the (linearized) relationship between marker values and their xAl-
assigned RCs for the Internal (x axis) and external (y axis) datatset. B,C: Validation
of xAl results with Cox regression models. The x axis shows the linearized
relationships between marker values and RC according to xAl. The y axis shows
the hazards of each marker according to a univariate cox regression model on the
same dataset (B: Internal data, C: External data). D: Validation of xAl results with

Cox regression models (all markers, Pearson’s r = 0.85). E: Comparison of higher
order interactions identified by xAl between internal (x axis) and external (y axis)
dataset. Given the linearized relationship between a marker Y and the RC of Y,
thelabel X- > Y defines how this relationship changes between patient groups
with high and low X. F, G: Complex interactions found by xAl can be validated
with mixed-effects Cox proportional hazards models. The effects captured by
xAl (x axis) correspond strongly to the effects estimated by mixed-effects Cox
proportional hazards models (F: Internal data, G: External data).

Nature Cancer


http://www.nature.com/natcancer

Article https://doi.org/10.1038/s43018-024-00891-1

Age ) ALT Art. oxygen sat. AST CRP Heart rate Muscle (abd.) PD-L1 (TPS) Urea Nitrogen
Worse Prognosis

- ! .| ! 1 4'0-5 Better Prognosis

3210123 0 2 4 32101 0 2 46 01234 2 0 2 =2 0 2 0 1 2 2 0 2
Marker value
B
0.6 Worse Prognosis
0.4
* 0.2
0.0
i A -0.2
All patients high Platelets (#) high Urea Nitrogen high AST
low Platelets (#) low Urea Nitrogen low AST -0.4 Better Prognosis
0 1 2 3 4 0 1 2 3 4 0 2 3 4 0 1 2 3 4
CRP level
C
. ECOG Grading M stage N stage T stage
5 0.82 (P=4.8e-04) -0.1 (P=1.0e+00) 0.93 (P<2e-16) 0.85 (P<2e-16) ! 0.14 (P=1.0e+00)
00 & - b g = | — I - Breast
-0.2] ‘ ' + L
0-410.91 (Pc2e-16) [ 0.07 (P=1.0e+00) 0.92 (P<2e-16) | | 0.65 (P<2e-16) -0.1 (P=1.0e+00)
oo ; * -« o8 * = + B I . + Colon
021 + ' | i i
02 0.87.(P=§.6¢-11) 0.02 (P=1.0e+00) 0.95 (P<2e-16) 0.82 (P<2e-16) i -0.02 (P=1.0e+00)
| |
00| , # - & B - « t 1 ] { Esophagus
-02 — — — — r - \ — — — - .
0.2] 087 (P=g4e-07) -0.11 (P=5.8¢-01) 0.95 (P<2e-16) | |  0.78 (P<2e-16) -0.01 (P=1.0e+00) |
h | ! it
ool _ = + 4o ﬁ | Pl e + Head and Neck
i - Pl
” 0.3 0.93 (P=3.8¢e-1) 0.13 (P=1.0e+00) 0.73 (P<2e-16) 0.75 (P<2e-16) 0.1 (P=1.0e+00)
— ] H | | .
200 , * A | & Loe 10T + i Kidney
[ = -
2-0.2! :
o 0.4{ o9t (P<2ie-1i 0.28 (P=1.8¢-04) 0.9 (P<2e-16) 0.82 (P<2e-16) 0.23 (P=1.8e-01)
® | ; .
@ oo, * P ER | B Sy d + Liver
S ! - *
=02 L J
0.77 0.81 (P<2e-16) * [ -0.03 (P=1.0e+00) 0.93 (P<2e-16) | | 0.72 (P<2e-16) 0.12 (P=7.2e-07)
1 : - j Do Lung
0ol 4 + ¥ * - ) + YR | N S | S +
-0.2{ - L o + ] ; ' !
g 0.7 0.84(P<2e-1? 0.23 (P=2.6e-03) 0.93 (P<2e-16) 0.64 (P<2e-16) 0.15 (P=5.5¢-01)
o
= Pancreas
> ! |
© 007 - * + - ¢+ = ' - e T A S 2 . +
o -0.2¢ ; - u . H
5 03 0.92(P=%.Be»10) 0.01 (P=1.0e+00) 0.9 (P<2e-16) 0.8 (P<2e-16) 0.26 (P=2.8¢-01)
= . i . i
& oo, « % B 8 Tl . ! 8 + Prostate
-0.21 L ' £ |
0.5] 0.77(P=a.7e-o4) [ -0.05 (P=1.0e+00) 0.96 (P<2e-16) | | 0.77 (P<2e-16) 0.11 (P=1.0e+00)
: Rectum
00f . * - 4 8 8 = - [l s 8 T + *
-0.2
1.07 0.84 (P<2e-16) [ -0.05 (P=1.06+00) 0.96 (P<2e-16) | [ 0.79 (P<2e-16) -0.16 (P=1.2¢-03)
| — o . i Sarcoma
0.0 + * + 4+ = == —T— " RO S ]
03" = * '
0.3/ o091 (P=1.4e-!2) -0.18 (P=1.0e+00) 0.94 (P<2e-16) | | 0.73 (P=7.7e-13) 0.14 (P=1.0e+00)
| i T Skin (C44)
001 , *© - | P— - *
91 8 L B | - 2 : ' 9
0.3 0.86(P=E.Oe»13) [ 0.07 (P=1.0e+00) 0.95 (P<2e-16) | | 0.78 (P<2e-16) -0.11 (P=1.0+00)
001 4 * - %88 : + ||, + ¢ 8 L + Stomach
-0.24 * L
0 12 3 4 i 2 3 4 0 1 o 1 2 3 01 2 38 4
Marker value

Extended Data Fig. 4 | See next page for caption.

Nature Cancer


http://www.nature.com/natcancer

Article

https://doi.org/10.1038/s43018-024-00891-1

Extended Data Fig. 4| Prognostic value of selected markers. A: Marker risk
contribution (RC) onthe TTNT prediction. Each point represents one marker
value for one patient versus the LRP-assigned RC (y-axis) to the patient’s
prognosis. Marker values are standardized. B: The risk contribution of CRP
depended on the value of other markers. The standardized CRP level and LRP-
assigned RC are shown for all patients in the left plot. The right three plots depict
the patients for whom the three selected markers platelet count, urea nitrogen
and AST were in the highest or lowest 10% quantile. C: Comparison of established
prognostic scores with the LRP-assigned RC for OS (n = 7,196 patients). The x-axis
depicts the value of the different scores. The y-axis indicates the RC. Comparison

is shown for each marker and cancer type. Cancer entities are shown only if the
respective marker has been measured in at least 20 patients. Adjusted P values
areshowninbrackets (two-sided, Pearson’s correlation, Holms correction).
Adjusted P values for ECOG PS were 4.78e-04, 6.60e-19, 5.56¢e-11,9.42e-07,
3.80e-11,1.25e-18, 5.89e-242, 5.90e-21, 4.84e-10, 7.75e-04, 2.86e-31,1.37e-12, and
2.97e-13. For Grading, adjusted P values were1,1,1,0.58,1,0.000178,1,0.00256,
1,1,1,1,1. For M stage, all P values were <2e-16. For N stage, all P values were <2e-16
except for Skin (P =7.7e-13). For T stage, P values were1,1,1,1,1,0.177,7.18e-07,
0.549,0.279,1,0.00123,1,1.
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Extended Data Fig. 6 | Marker importance. Markers are ordered from top least 20 patients. C, D: ICD (black) and OPS codes (blue) with the highest assigned
to bottom according to decreasing importance across all patients. A, B: Risk RC.C:0S (n=9,713),D: TTNT (n = 9,604). Median is indicated by center line,
contribution (RC) of markers inindividual patients is shown on the x axis. RC bounds of boxes indicate interquartile range, and whiskers extend to a maximum
indicates the contribution to a better (negative) or worse (positive) prognosis. distance of 1.5 - IQR from the hinge. Data beyond the end of whiskers are plotted
Point color indicates high (red) or low (blue) marker value. (A: OS, B: TTNT). individually.

Cancer entities are shown only if the respective marker has been measuredin at
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Population characteristics All patients with solid tumors were collected based on ICD codes. Then, patients who received intravenous or oral cancer
treatment documented in our Hospital Information Platform were selected. Further inclusion criteria were: Initiation of
systemic therapy since April 2007 and a minimum age of 18 years at the initiation of cancer treatment. A detailed overview
of the patient enrollment process can be found in the supplementary material.

Recruitment We retrospectively evaluated data from 150,079 cancer patients with available medical records treated at University Hospital
Essen. Of these, 15,726 patients who received systemic cancer treatment between April 2007 and July 2022 were included in
the final analysis.
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Sample size Electronic health records from 150,079 cancer patients treated at the University Hospital Essen were retrospectively evaluated. Of these,
15,726 patients who received systemic cancer treatment for a solid malignancy at University Hospital Essen between April 2007 and July 2022
and had a minimum age of 18 years were included in this study. No statistical methods were used to pre-determine sample sizes but our
sample sizes are similar to those reported in previous publications.

Data exclusions A detailed overview of the patient enrollment process can be found in the Extended Data Figure 1.
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