
Nature Cancer | Volume 6 | February 2025 | 292–306 292

nature cancer

Article https://doi.org/10.1038/s43018-024-00904-z

Spatially resolved transcriptomics and 
graph-based deep learning improve accuracy 
of routine CNS tumor diagnostics
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The diagnostic landscape of brain tumors integrates comprehensive 
molecular markers alongside traditional histopathological evaluation. 
DNA methylation and next-generation sequencing (NGS) have become a 
cornerstone in central nervous system (CNS) tumor classification. A limiting 
requirement for NGS and methylation profiling is sufficient DNA quality 
and quantity, which restrict its feasibility. Here we demonstrate N eP STA 
( ne uropathology spatial transcriptomic analysis) for comprehensive 
morphological and m ol ec ular n eu ro pa th ol ogical diagnostics from single 
5-µm tissue sections. NePSTA uses spatial transcriptomics with graph neural 
networks for automated histological and molecular evaluations. Trained 
and evaluated across 130 participants with CNS malignancies and healthy 
donors across four medical centers, NePSTA predicts tissue histology and 
methylation-based subclasses with high accuracy. We demonstrate the 
ability to reconstruct i mm un oh is to ch emistry and genotype profiling on 
tissue with minimal requirements, inadequate for conventional molecular 
diagnostics, demonstrating the potential to enhance tumor subtype 
identification with implications for fast and precise diagnostic workup.

Recent advances in brain tumor classification have transformed neu-
ropathological diagnostics in daily routine. Traditional diagnostic 
features, such as morphological appearance and single-protein expres-
sion, are now complemented or even replaced with complex molecu-
lar markers assessed by next-generation sequencing (NGS) and DNA 
methylation analysis1,2. Genome-wide DNA methylation profiling has 
dramatically reshaped brain tumor classification and was, hence, incor-
porated into the 2021 World Health Organization (WHO) classification 

of central nervous system (CNS) tumors2–5. This comprehensive meth-
ylation profiling not only improves differentiation of tumor types, with 
substantially higher accuracy in identifying rare tumor variants, but 
also reveals novel tumor subtypes4. However, the granularity of molecu-
lar diagnostics presents technical challenges, particularly the require-
ment for high-quality, abundant DNA, which in turn requires sufficient 
tissue6. This becomes especially pivotal for highly eloquent tumors 
where small biopsy samples often preclude extensive morphological 
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Robust quality and readouts across spatial gene expression 
technologies and institutions
First, we aimed to explore and quantify potential confounders of the 
technology, as clinical applications demand robust and consistent 
quality readouts. In our cohort, samples were processed either at the 
Department of Neuropathology in Heidelberg (cohort 1) or at the Neu-
rosurgical Department in Freiburg (cohort 2). In cohort 1, the majority 
of samples (n = 42, 63.6%) were processed from paraffin-embedded tis-
sue, with only 24 samples (36.6%) processed from freshly frozen tissue. 
Conversely, cohort 2 included approximately half of the samples (n = 18, 
43.9%) processed from paraffin-embedded tissue. Leveraging the mean 
unique molecular identifier (UMI) per spot, we did not detect significant 
differences between the cohorts or sample types in terms of overall 
quality metrics (Fig. 1b). However, upon closer examination, we found 
that certain biological and technical factors contribute to the variation 
in UMI counts across different tissue types and sample preparation 
methods. Both cohorts demonstrated a strong correlation between 
cellular density and the number of UMIs per spot. IDH-wild-type GB 
samples consistently exhibited the highest number of UMIs per spot 
because of their increased cellular density and RNA abundance. The 
variance in the number of spots under tissue was largely influenced by 
the source of the tissue, whether it was a biopsy (smaller tissue frag-
ment) or a bulk resection (larger tissue fragment). Biopsy samples, 
particularly in cohort 1, were more common in lower-grade tumors 
such as astrocytomas, leading to fewer spots overall because of the 
smaller tissue area sampled. The lower spot count in cohort 1 is, thus, 
a reflection of sample size and type rather than an indicator of data 
quality. In nonmalignant tissue samples, the number of cells per spot 
ranged from 0 to 5 cells per spot, which is notably lower compared to 
GB samples, where the cellular density was higher, ranging from 7 to 
15 cells per spot. This discrepancy in cellular density is mirrored by the 
number of UMIs detected per spot, with lower UMI counts consistently 
observed in healthy brain samples (Fig. 1b). The lower UMI counts in 
nonmalignant tissues and lower-grade gliomas, such as astrocytomas, 
can be attributed to several factors. First, the cellular composition of 
nonmalignant and lower-grade tumors differs greatly from that of 
high-grade tumors. For example, nonmalignant regions tend to con-
tain more myeloid cells, which have lower RNA content, resulting in 
fewer UMIs. In contrast, regions with higher neuronal content—such as 
those in GB samples—have more abundant RNA, contributing to higher 
UMI counts10. Therefore, the variation in UMI counts between samples 
reflects both the cellular density and the composition of the tumor 
microenvironment. Additionally, technical factors such as sequenc-
ing depth and sample preparation methods can impact UMI counts. 
For instance, freshly frozen samples generally yield higher-quality 
RNA and more UMIs than formalin-fixed paraffin-embedded (FFPE) 
samples, where RNA degradation can lead to lower UMI detection. In 
our study, the sequencing depth was standardized across all samples 
to minimize technical variability but differences in tissue preparation 
methods may still contribute to the observed variance in UMI counts.

Inferred IHC for important neuropathological markers
While gene expression and protein abundance can vary at the cellular 
level, pinpointing protein abundance at a spatial resolution across 
whole slides is crucial for neuropathological diagnostics2. We pos-
ited that, on a whole slide scale, gene expression might offer insights 
into protein levels, facilitating precise discernment of the presence 
or absence of protein markers. To this end, we devised an innovative 
computational module named ‘inferred IHC’. This module harnesses 
super-resolution spatial transcriptomics through the Bayesian infer-
ence11 to forecast protein abundance, rendering it a viable diagnostic 
surrogate for traditional IHC (Fig. 2a,b). When juxtaposed with consecu-
tive participant sections, our virtual stainings exhibited robust align-
ment with IHC-derived results (Fig. 2b). A direct assessment between 
signal intensity and mRNA abundance revealed notable correlations, 

workup with serial immunohistochemistry (IHC) and yield limited 
DNA, preventing comprehensive molecular diagnostic evaluation. In 
addition, samples with a very low tumor content might also prevent a 
complete molecular workup for diagnosis. Hence, information crucial 
for subsequent management and therapeutic targeting remains elu-
sive. Spatially resolved transcriptomics, previously applied mainly to 
explore spatial architecture in brain tumors, offers a solution7,8. Using 
paraffin-embedded sections, the Visium (10X) technology requires just  
 
a single 5–10-µm section comparable to a single regular IHC stain yet del 
ivers robust expression profiles with spatial precision. Its ability to 
generate high-dimensional data from minimal tissue holds potential 
as an invaluable addition to the neuropathological diagnostic arsenal, 
especially for challenging tissues.

In this study, we developed and validated a diagnostic application 
of spatially resolved transcriptomics, offering a computational frame-
work, named NePSTA (neuropathology spatial transcriptomic analy-
sis), based on classical machine learning algorithms and graph-based 
artificial intelligence (AI) application for neuropathological diag-
nostics. This framework encompasses the entirety of contemporary 
molecular-based neuropathological diagnostics including automated 
histological evaluations, transcriptomics and genetic and epigenetic 
profiling. Assessing 130 participants across a spectrum of neuroepi-
thelial tumors and healthy donors acquired from four distinct medical 
centers, we integrated expression levels and inferred copy-number 
alterations (CNA) to train a graph neural network (GNN) to predict 
histological contexts and methylation-based subclasses. The result 
was a striking accuracy rate of 89.3% on a participant level.

Results
Overview of the training and test cohorts
Leveraging spatially resolved transcriptomics through the Visium 
technology, we achieved robust mRNA profiling from minimal 5-µm 
paraffin-embedded tissue sections. This method’s capability to derive 
extensive molecular insights from small biopsy fragments—where tra-
ditional DNA extraction often fails or tumor cell fraction is low—guided 
our hypothesis. We posited that integrating expression data with their 
spatial context could predict genomic features such as copy-number 
variations (CNVs), provide molecular diagnoses (Heidelberg classi-
fier) and enable inferred immunostainings from a single tissue slice 
(Fig. 1a). Our study involved samples from four German medical centers 
(Heidelberg, n = 50; Freiburg, n = 41; Mannheim, n = 15; Memmingen, 
n = 1), along with external controls published recently9 (n = 11) and 12 
healthy cortex samples, totaling 130 samples. These were divided into 
two cohorts. The first cohort (n = 66) comprised samples from three 
centers, encompassing a range of CNS pathologies from highly malig-
nant glioblastomas (GBs) to epilepsy-associated (glio)neuronal tumors. 
These samples underwent comprehensive spatial transcriptomics 
profiling, alongside state-of-the-art diagnostic workups, including 
morphology inspection, EPIC methylation arrays, classifier predictions, 
IHC and NGS. The second cohort (n = 41) was a single-center cohort 
from Freiburg, similarly profiled (Fig. 1b). We hypothesized that the 
composition of the tumor and neural environment form a distinct 
molecular fingerprint for each CNS pathology, which can be captured 
using spatially resolved transcriptomics. Our aim was to leverage these 
fingerprints to predict epigenetically determined tumor subclasses 
as defined by the Heidelberg classifier. Additionally, the versatility 
of spatial transcriptomics technology enabled several objectives: 
authenticating traditional neuropathological diagnostics, compar-
ing the efficacy of spatial transcriptomics against molecular workups 
or classical morphological evaluations and enhancing precision in 
distinguishing normal from pathological tissues by analyzing control 
tissues (neocortex, n = 5; cerebellum, n = 5; hippocampus, n = 2). We 
also aimed to extend molecular profiling to sparse samples previously 
unsuitable for comprehensive analysis.
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evident in routinely applied diagnostic markers such as Ki67 (R = 0.47, 
P = 1.07 × 10−166), glial fibrillary acidic protein (GFAP; R = 0.32, 
P = 6.59 × 10−63) and neuronal nuclei (NeuN; R = 0.57, P = 2.69 × 10−13) 
(Extended Data Fig. 1a–c). Despite these correlations, a direct quantita-
tive comparison between IHC and gene expression data from Visium 
technology presents challenges because of differences in resolution 

(Extended Data Fig. 1d). IHC stainings provide high-resolution images 
that pathologists use for visual interpretation, offering a spatially pre-
cise, cell-level view of protein expression. In contrast, gene expression 
data from Visium captures transcriptomic information at a different 
resolution, which can complicate direct interpretation. This disparity 
in resolution scales means that, while our inferred IHC module offers 
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Fig. 1 | Overview of the cohort. a, Illustration of the workflow and computational 
pipeline. b, Top: overview of the cohorts (n = 107 participants) with histological 
diagnosis. Middle: methylation-based classification. Colors indicate the type of 
methylation-based subgroup derived from the Heidelberg classifier. Bottom: 

tissue type characteristics and quality control data are demonstrated. Top: bar 
graph showing the total number of spots per participant. Bottom: bar graph 
illustrating the total number of UMIs per participant.
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promising results, it should be seen as a complementary tool rather 
than a direct replacement for traditional IHC. Yet, inferring an infi-
nite number of stainings on one single slide overcomes the changes 
of displayed surface that comes with actual IHC slides on serial sec-
tions. A pivotal diagnostic tool in neuropathology is the proliferation 
index, which measures cell-cycle activity in malignant samples and 
distinguishes between regions of high and low tumor proliferation 
(Fig. 2c). We compared standard Ki67 staining to regional expressions 
of proliferation markers such as MKI67 and TOP2A (Fig. 2d). By quantify-
ing expression across all cell-cycle stages, we provide neuropatholo-
gists with a nuanced perspective on proliferation activity, surpassing 
the limitations of single-protein marker stainings. The importance 
of proliferation assessment in grading tumors according to the WHO 
classification underscores the necessity for a contextualized evalua-
tion of this marker. Using a spatial-transcriptomics-based proliferation 
index offers a detailed understanding of tissue architecture and tumor 
cell dynamics.

Predictions and validation of CNAs
In addition to histopathological morphology and cellular staining, 
modern neuropathological diagnostics rely heavily on detailed 
genomic characteristics of CNS pathologies. Chromosomal altera-
tions, such as the gain of chr7 and loss of chr10 in GB, along with the 
codeletion of chr1p and chr19q in oligodendrogliomas, are defining 
diagnostic criteria according to the WHO classification2,12. While infer-
ence of CNV from single-cell RNA sequencing is documented, recent 
advancements show that high-accuracy CNV profiles can be sourced 
from spatially resolved transcriptomics. Using an optimized algorithm 
for spatial transcriptomics, we computed CNV profiles for all partici-
pant samples. Validation against gold-standard 850K methylation 
assay (EPIC) CNV profiles revealed robust detection of CNAs, crucial 
for diagnosing the specific tumor type (Fig. 3a–c). Direct comparison 
of methylation-based CNV against our inferred CNV detection revealed 
a consensus of CNV alterations in 81.2% cases (consensus no altera-
tions, 70.3%; consensus gains, 5.5%; consensus loss, 5.4%), only 0.05% 
divergent gains (gains detected by Visium and loss detected in the 
methylation-based CNV analysis) and 0.02% divergent losses (Fig. 3d). 
To more precisely examine the potential variability in accuracy of CNV 
detection across different chromosomal regions, we quantified and 
mapped the instances of mismatched detection (either gains or losses) 
from the inferred CNV calls across various participants along the chro-
mosomes, demonstrating an increase in incorrectly detected gains in 
chr6p (Fig. 3e). To rule out that this effect is based on accumulation of 
specific cell types (for example, immune cells with higher expression 
of major-histocompatibility-complex-related genes on chr6p), we 
measured the abundance of spots with high chr6q copies (n = 10,000) 
against random spots without enriched chr6q (n = 10,000). For myeloid 
and lymphoid cells, we did not identify significant differences (tenfold 
cross-validation, P = 0.321).To further investigate the defined chro-
mosomal regions with enhanced mismatches, we hypothesized that 
the probe design by 10X and the relative frequency of probes within 
chromosomal regions might lead to false predictions during gene bin-
ning. In other words, some chromosomal regions contain more probes 
than others. We measured the relative probe-to-probe distance and 
correlated this to the detected mismatches. Reduced probe-to-probe 
distance (in base pairs) was found to significantly correlate with the 
false detection of chromosomal alterations (R = 0.421, P = 2.43 × 10−32; 
Extended Data Fig. 2a,b).

Additionally, inferred CNV profiling leads to an underestimation of 
the gain of chr7, predominantly the centromeric region, while the start 
and telomeric regions of the chromosome are correctly predicted. We 
performed multiclass receiver operating characteristic (ROC) analysis 
to validate the accuracy of detecting gains and losses or diploid chro-
mosome sets, demonstrating an overall area under the curve (AUC) of 
80.37% (Fig. 3f). Notably, spatial resolution in the CNV profiles from 

spatial transcriptomics could discern the subclonal tissue architec-
ture, a nuance missing in traditional methylation-based CNV profiles. 
For instance, DNA isolated from distinct tissue sections showed a CNV 
profile closely mirroring the profile inferred from spatial transcrip-
tomics. However, some subclones with specific alterations were unde-
tectable using methylation-based CNV methods and only identified 
with spatial transcriptomics (Fig. 3g,h). One limitation of inferred CNV 
profiles is their reduced chromosomal resolution, constraining precise 
predictions to larger chromosomal regions. Consequently, pinpoint-
ing single-gene amplifications or deletions, such as EGFR, PDGFRA or 
CDKN2A/B, is unattainable using only inferred CNV profiles. To over-
come this limitation, we later investigate to what extent genotypes can 
be predicted by environmental phenotypes. Our findings underscore 
the capability of spatial transcriptomics to identify notable chromo-
somal alterations. Such revelations are pivotal in distinguishing between 
tumor types such as IDH-mutant astrocytoma and oligodendrogliomas, 
which are primarily discerned through their genomic makeup.

Cell type distribution across tumor entities
Traditional neuropathological diagnostics do not distinguish the distri-
butions of immune, stromal and myeloid cells. However, recent research 
highlights that the prevalence of specific cellular subtypes, such as par-
ticular myeloid cells or cytotoxic T cells, can influence patient outcomes 
and therapeutic responses13,14. Given that future targeted therapies may 
rely on an in-depth understanding of cellular distributions, we investi-
gated the potential of spatial transcriptomics to augment conventional 
neuropathological diagnostics by offering detailed cellular type and 
state distributions. Leveraging the robust and well-validated Cell2lo-
cation algorithm, combined with an extensive GB reference dataset 
(GBMap), we predicted the abundance of myeloid, T cell and stromal 
subpopulations across all methylation classes (Fig. 4a). Although cell 
type distributions in GB were recently delineated15, less common sub-
groups, such as high-grade astrocytoma with piloid features or diffuse 
high-grade neuroepithelial tumors (adult-type, subgroup F)16, remain 
understudied. Although the tumor cell state distribution across GB 
subtypes was relatively equal with enrichment of the mesenchymal 
(Mes)-like states in the methylation group Mes, high-grade astrocytoma 
with piloid features lacked the astrocyte (AC)-like cell populations with 
significant enrichment of the Mes-like, oligodendrocyte-progenitor-like 
and neural-progenitor-like states (Fig. 4a). Comparing these rarer 
tumors to established GB methylation subgroups (receptor tyrosine 
kinase (RTK)I, RTKII and Mes), we found distinctive patterns. The meth-
ylation Mes subtype exhibited immune-rich microenvironments with 
an immunosuppressive myeloid profile, while others (RTKI and RTKII) 
displayed a notable absence of T cell and tumor-associated macrophage 
infiltration (Extended Data Fig. 3). Next, we computed the averaged cell 
proximity of all annotated cell types across GB subtypes demonstrating 
the different cell–cell interaction within individual subtypes (Fig. 4b). 
In line with the cell abundance, the epigenetic subgroups demonstrate 
distinct microenvironmental niches with dominating inflammatory 
response and neovascularization in the Mes subgroups and enhanced 
neuronal–tumor interaction in RTKII tumors. These findings are in line 
with different therapeutic response to anticonvulsive drugs17 or sur-
gical strategies18. This diagnostic enhancement by including cellular 
deconvolution and microenvironmental niches offers unprecedented 
insights into the tumor architecture, an area often overlooked in tradi-
tional neuropathological assessments but of increasing relevance with 
emerging immune therapy approaches or treatment strategies in the 
cancer neuroscience field.

Prediction of histological appearance and methylation 
subclasses
In addition to histomorphological and genetic characterization, epi-
genetic classification has become an important tool for brain tumor 
classification, relying exclusively on molecular data. Recognizing the 
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inability to glean epigenetic insights directly from spatial transcrip-
tomics data, we posited that the spatial gene expression contours, 
influenced by both tumor and microenvironment, might sufficiently 
indicate methylation-based tumor subtypes using spatial transcrip-
tomics data alone. To this end, we harnessed a GNN framework that 

leverages the breadth of local molecular data at each spot and its 
proximal neighborhood to predict histopathological phenotypes. 
Specifically, our model used three-hop subgraphs, where each node 
denoted a spatial location of the Visium array, interconnected by edges 
to neighboring and next neighboring locations (Fig. 5a).
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Fig. 2 | Inferred IHC. a, Representative H&E staining of GB RTKI sample (n = 1 
participant). b, Top: comparison of inferred IHC from spatially resolved 
transcriptomics to super-resolution from GFAP, Ki67 and NeuN. The color 
intensity demonstrates the gene expression. Bottom: the aligned IHC stainings 
are presented from consecutive sections. c, Representative Ki67 staining of 
multiple biopsies from a participant with GB. Middle: the different proliferation 
indices across biopsies can be detected by the inferred IHC reconstruction. Right: 

quantification of mitosis-related gene expression allowed detailed exploration 
of the cell-cycle phases that aligns with the Ki67 staining (n = 1 participant). 
d, Representative H&E and Ki67 staining of GB RTKII sample. Left: on a gene 
expression level, the proliferation markers TOP2A and MIK67 indicate a robust 
detection of highly proliferative regions (n = 1 participant). Paired IHC and spatial 
transcriptomics (for analysis of a–d) was available for 12 participants. Statistical 
testing was performed on all samples.
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To investigate the importance to integrate proximal signals we 
trained a k-hop network with k = {0,1,2,3}, where k = 0 represents a lin-
ear model. We trained the network to learn the spatial transcriptomic 
representation of the different tumor subclasses. The comparison (five-
fold cross-validation) between the linear model and the GNNs (graph 
isomorphism network (GIN) or generative adversarial network (GAN)) 
showed a great increase in accuracy by integrating proximal signals. 
Furthermore, we demonstrated that for global max pooling, the GIN 
showed superior performance. The linear model without neighbor-
hood information achieved an accuracy of 0.409, precision of 0.423, 
recall of 0.373 and F1 score of 0.388. In contrast, models incorporating 
neighborhood information, such as the GIN and GAN with one-hop, 
two-hop and three-hop neighborhoods, showed much higher perfor-
mance. For instance, the GIN three-hop model achieved near-perfect 
metrics with an accuracy of 0.999, precision of 0.999, recall of 0.998 and 
F1 score of 0.998, while the GAN three-hop model achieved an accuracy 

of 0.995, precision of 0.991, recall of 0.995 and F1 score of 0.993. A GIN 
underpinned the GNN design, paired with a multilayer perceptron 
(MLP) for predictions, a structure previously shown to adeptly bridge 
local cellular graph analyses with broader patient phenotypes19. Input 
node features encompassed both gene expression and inferred CNV 
data, which were channeled through the MLP after embedding.

A pivotal step before subgroup prediction involved automated 
spatial transcriptomics data segmentation, aiming to classify sub-
graphs histologically. We used a tenfold cross-validation to train on 
n = 41 (cohort 1, samples with sufficient histological segmentation) 
participants to discern five core categories: main tumor, necrosis 
regions, infiltrative tumor regions, white matter and cortex. Nonma-
lignant sections were categorized as either healthy cortex or arach-
noidea. To boost predictive accuracy, subgraphs from benign tissues 
(neocortex, hippocampus and cerebellum) were included. Model 
validation on n = 27 participants (samples with sufficient histological 
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segmentation) from cohort 2 yielded an accuracy of 87.43% (ground 
truth: neuropathological segmentation) (Extended Data Fig. 4a–c). 
With the primary categorization established, we next analyzed whether 
the model could further subclassify regions classified as tumor into 
methylation subclasses. Specifically, we focused on subgraphs with at 
least one spot flagged as a tumor histologically and trained the model 
to predict methylation subtypes. We divided the samples into two 
distinct spatial transcriptomic datasets. For samples with multiple 
biopsies, we treated the raw data from each biopsy as separate datasets. 
In cases where the entire tissue was on a single slide, we segmented the 
samples as illustrated in Fig. 5a. To avoid bias from similar normaliza-
tion and preprocessing in both the training and the validation cohorts, 
we processed each dataset individually after splitting the data at the 
count level. This strategy allowed us to validate our model on previously 
unseen data, despite the relatively low number of samples per histologi-
cal subgroup. For tumor subgroups with more than three samples, we 
also conducted n-fold cross-validation (detailed data split information 
in Methods). Remarkably, the trained model demonstrated robust 
prediction on unseen data, with an accuracy of 0.893 at the participant 
level (precision, 0.873; recall, 0.877; F1 score, 0.870) (Fig. 5b–e). On GB 
and IDH-mutant glioma, we further performed participant-wise fivefold 
cross-validation to ensure robustness of the model demonstrating 
high performance (accuracy, 0.913; precision, 0.945; recall, 0.883; F1 
score, 0.896) (Supplementary Table 1 and Extended Data Fig. 5a–d). 
To investigate sample heterogeneity, we showed that 60.8% of the 
cohort demonstrated the correct class in the majority of subgraphs 

(>80%), while 30.4% showed the correct subclass in at least 50% of the 
spots (Extended Data Fig. 5e). The overall accuracy of these analyses 
demonstrated not only that spatial transcriptomics data contain the 
same information for subtyping as bulk methylation data but that 
integrating proximal signals improves the classification accuracy of 
brain tumors (Extended Data Fig. 5a–d).

Prediction of MGMT promoter methylation and CDKN2A/B loss
During our CNV analysis, we identified a limitation; the inferred CNV 
approach could not ascertain single-gene amplifications, notably for 
diagnostically relevant genes such as EGFR or CDKN2A/B (refs. 2,12,20). 
Moreover, discerning MGMT promoter methylation—a crucial clinical 
indicator3—proved challenging when relying solely on gene expression. 
Addressing this challenge, we postulated that the unique expression 
architecture inherent in tumors could potentially offer an opportunity 
to predict these molecular characteristics. To harness this insight, we 
augmented our GNN framework, incorporating multiple MLPs specifi-
cally designed to predict MGMT promoter methylation and the loss of 
CDKN2A/B (Extended Data Fig. 6a–c). By integrating spatial patterns 
of transcriptomic data, our enhanced model aimed to overcome the 
limitations of inferred CNV analysis, striving to achieve accurate predic-
tions even when direct identification of molecular markers is not pos-
sible (single-gene deletions). For the MGMT promoter methylation, the 
deep-learning framework was able to predict the correct MGMT status 
in almost all cases, leading to an overall accuracy of 99% (F1 score, 1.0; 
precision and recall, 1.0). In inferred CNV, detection of CDKN2A/B loss 
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and further differentiation between homozygous and heterozygous 
deletion were found to be impossible in cases when the loss was not 
associated with chr9p loss (Fig. 6a,b). Leveraging our GNN framework, 
we were able to differentiate between nondeleted control subgraphs 
and homozygous or heterozygous loss of CDKN2A/B with an accuracy of 
85.4%. Furthermore, we performed whole-sample prediction to identify 

regional diversity of the CDKN2A/B deletion. Using each individual spot 
and associated subgraph, we computed the likelihood of CDKN2A/B 
loss, resulting in a spatial map of CDKN2A/B deletions (Fig. 6c). Regions 
without tumor abundance were correctly classified as nondeleted. Next, 
we evaluated an IDH-mutant astrocytoma with partial loss of CDKN2A/B 
(based on methylation-array data; Fig. 6d) demonstrating the highest 
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prediction score for heterozygous deletion of CDKN2A/B across all four 
biopsies (Fig. 6e,f). As demonstrated in the two examples, tissue can be 
highly heterogeneous and regions of normal brain or myeloid infiltra-
tion can often affect the signal of chromosomal deletion, especially in 
morphologically lower-grade glioma in which the CDKN2A/B status is 
crucial for WHO grading and, even more with recent breakthroughs, 
currently restricted to specific grade21 for therapy decision.

Microenvironmental differences between CDKN2A-mutant 
subclones
To comprehensively assess the extent of CDKN2A/B loss and deter-
mine whether it is predominantly associated with homozygous or 
heterozygous deletion or whether it exhibits a heterogeneous dis-
tribution across tumor samples, we conducted an evaluation of all 
stereotactically obtained biopsies from IDH-mutant tumors (Extended 
Data Fig. 6d). Contrary to our expectations, our findings revealed that 
the majority of samples with heterozygous deletions (two of three) 
displayed a mixed genotype, encompassing both partial and complete 
loss of CDKN2A/B across different biopsy specimens. Given that the 
inferred CNV data lack specific details regarding CDKN2A/B altera-
tions, we used the GNN architecture to elucidate the network’s abil-
ity to predict genotypic characteristics. Subsequent to performing 
single-cell deconvolution, we extracted and compared neighborhoods 
from subgraphs with the highest predictive scores for the absence of 
CDKN2A/B deletion and those indicative of complete CDKN2A/B loss. 
Although the relative abundance of tumor cells did not differ signifi-
cantly between the two predicted genotypes, we observed substantial 
variations in microenvironmental composition (Fig. 7a–c). Specifically, 
neighborhoods with CDKN2A/B deletion exhibited an enriched pres-
ence of monocytes and endovascular cells, well in line with the typi-
cal co-occurrence of high-grade molecular (CDKN2A/B homozygous 
deletion) and morphological (angiogenesis and vascular proliferation, 
necrosis and perinecrotic reaction) findings.

Discussion
The foundation of pathology lies in morphological evaluation but molec-
ular markers have increasingly influenced prognostic stratification and 
treatment choices. The WHO’s CNS5 classification further emphasizes 
molecular markers as essential diagnostic criteria, particularly for tumor 
typing and subtyping. Methylation profiling, once used mainly for brain 
tumors, has become a powerful diagnostic tool across multiple tumor 
types. However, current methods of bulk DNA or RNA extraction can 
introduce sampling bias, missing subtle intratumoral variations. Despite 
the growing role of molecular markers, morphology remains indispen-
sable, particularly for tumor grading, which often relies on morpho-
logical criteria. Molecular data alone can be misleading if sampled from 
heterogeneous tissue areas, where nontumor cells may dilute clinically 
important amplifications. In pathology, consistency across sections is 
critical but slight variations can occur, affecting diagnostic accuracy. 
New spatial technologies, such as spatial transcriptomics, offer an inte-
grative solution by linking molecular data with morphology. Previously 
restricted to research, spatial sequencing now shows potential in routine 
diagnostics, as we demonstrated by validating a wide range of diagnostic 
markers in brain tumors. Incorporating spatial transcriptomics into 
neuropathological workflows enhances our understanding of tumor 
microenvironments, subclonal heterogeneity and cellular interactions. 
With advancing technology and reduced costs, spatial transcriptomics 
is likely to enable detailed analyses of larger, more complex tissue sam-
ples, offering cost effectiveness over traditional methods such as EPIC/
panel-seq and IHC. Through machine learning, we mapped molecular 
predictions back onto histological images, assisting in the diagnostic 
process, particularly with limited tissue availability, which is common 
in brain tumors. Our framework captured spatial gene expression from 
FFPE and freshly frozen tissues, addressing RNA instability issues in FFPE 
samples. By applying GNNs, we improved diagnostic predictions through 

spatially resolved data. This approach aids in differentiating between 
tumor cells and reactive cells in high-proliferation areas, potentially 
avoiding grading inaccuracies. It also enables precise identification of 
key genetic deletions, such as CDKN2A/B, crucial for CNS5-compliant 
grading, which could otherwise be overlooked in bulk analyses.

Collectively, we established and validated NePSTA, a framework 
for comprehensive analysis of spatial transcriptomic analysis with 
a broad spectrum of diagnostic applications such as inferred IHC, 
CNAs and in-depth genotyping. We demonstrated that integration 
proximal signals of spatial transcriptomics along with AI-based algo-
rithms can further predict epigenetic subgroups, perform automated 
segmentation and characterize prognostic genomic alterations such 
as CDKN2A/B loss at spatial resolution. We exemplified NePSTA with 
specifically challenging neuro-oncology samples that can readily be 
applied to increase diagnostic accuracy and precision. This alignment 
of morphology and molecular data unites the recently diverging fields 
of ‘traditional’ and ‘modern’ pathology, which both have their genuine 
and unique advantages, to jointly optimize patient care that ultimately 
depends on optimal diagnostic outcomes.

Methods
Clinical data and ethics
The tissue collection and processing were performed in accordance 
with the local ethic regulations (Institutional Review Board Heidelberg, 
S-318/2022) and the local ethics committee of the University of Freiburg 
approved the data evaluation, imaging procedures and experimental 
design (protocols 100020/09 and 472/15_160880). Written informed 
consent was obtained by all participants. Further information on 
research design is available in the Nature Portfolio Reporting Sum-
mary linked to this article.

Spatial transcriptomics of FFPE samples
Preparation of FFPE samples for spatial transcriptomics followed pro-
tocols from 10X Genomics. Briefly, a small tissue section from a scored 
tissue block was rehydrated, cut into 5-µm sections and placed on a 
Visium slide’s capture frame. For stereotactic biopsies, multiple sec-
tions were included in a single frame. The sections were dried at 42 °C 
for 3 h and stored overnight in a desiccator. Paraffin removal involved 
sequential incubations in xylene, ethanol and water. The tissue was 
stained with hematoxylin and eosin (H&E), scanned with an Aperio AT2 
slide scanner at ×40 and then decrosslinked in TE buffer (pH 9.0) at 70 °C 
for 1 h. The 10X Genomics V1 human transcriptome probe set was used 
for mRNA detection. After a 20-h hybridization at 50 °C, excess probes 
were removed through washes, ligated probes were retained and RNA 
digestion released the probes. Spatial barcodes were added through an 
extension reaction and an index PCR was performed on the basis of qPCR 
evaluation. Samples were sequenced on an Illumina NovaSeq6000, with 
targeted read depths of at least 100 million per sample.

Spatial transcriptomics of freshly frozen samples
Freshly frozen samples were processed following 10X Genomics proto-
cols. After cutting 5-µm sections, the tissue was placed in a Visium slide 
capture frame, incubated with methanol at −20 °C and then washed 
with isopropanol. H&E staining was applied, followed by imaging on an 
Aperio AT2 slide scanner. RNA release was achieved by permeabiliza-
tion, spatial barcodes were added by reverse transcription and DNA 
was synthesized and amplified for library preparation. Sequencing 
was performed on a NextSeq500 with targeted read depths of at least 
100 million reads per sample.

Extraction of DNA for methylation analysis
For methylation analysis, DNA was extracted using the Maxwell RSC 
FFPE DNA purification kit. Tumor-rich regions were first identified by 
pathologists through examination of H&E-stained sections. A punch 
biopsy, either 1.5 mm or 3 mm in diameter, was then collected from 
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the FFPE block in the selected area. The collected tissue was incubated 
with proteinase K at 70 °C overnight to remove paraffin and to digest 
the tissue. Following this, lysis buffer was added to release the DNA. The 
sample was subsequently cooled to allow the paraffin to solidify and 
the aqueous phase containing DNA was transferred to a new tube. DNA 
purification was then completed using the Promega Maxwell system and 
DNA concentrations were measured with the Qubit system (Invitrogen).

Detection of DNA methylation
Methylation profiling and copy-number analysis were carried out using 
data from the Infinium MethylationEPIC BeadChip array (850K). Fol-
lowing the protocol established by Pfister et al.22, 250 ng of extracted 
DNA was subjected to bisulfite conversion with the Zymo EZ methyla-
tion kit. The DNA underwent repair using the Infinium HD FFPE restore 
kit, followed by amplification and hybridization onto an Infinium 
BeadChip. After several washing steps, single-base extension and fluo-
rescent staining, the chip was scanned using an IScan software system. 
For bioinformatics, the minfi workflow (available from https://github.
com/mwsill/minfi) was used for methylation analysis and conumee 
was used for copy-number calling (available from https://github.com/
mwsill/conumee-2), following the methodology described by Sturm 
et al.23. Methylation classification was performed using version 12.5 
of the classifier24.

CNV detection
Most samples’ copy-number profiles were derived using the Infinium 
MethylationEPIC BeadChip array (850K), with four samples (GB5, GB14, 
GB15 and GB16) analyzed using the Infinium MethylationEPICv2.0 
BeadChip array (935K). Sample processing was conducted at the neuro-
pathology department in Heidelberg, following the procedure outlined 
in Pfister et al.22. Tumor-rich areas were identified on H&E-stained slides 
and DNA was extracted either from ten 10-µm-thick tissue slides or by 
punch biopsies from paraffin-embedded blocks (1.5 or 3 mm in diam-
eter) using the Maxwell system (Promega). DNA quality was assessed 
using the Qubit system (Invitrogen) and 250 ng of DNA was then used 
for bisulfite conversion (Zymo). For methylation and CNV profiling, 
the samples were analyzed on either the Infinium MethylationEPIC or 
EPICv2.0 arrays (Illumina). Bioinformatic analyses, including methyla-
tion calling and CNV detection, were performed with minfi (available 
from https://github.com/mwsill/minfi) and conumee (available from 
https://github.com/mwsill/conumee-2), as described by Sturm et al.23, 
with classification performed using version 12.5 of the classifier24.

IHC stainings
Immunohistochemical stainings were performed using a Ventana 
BenchMark Ultra Immunostainer. Stains for GFAP (mouse monoclo-
nal, clone GA5; Cell Signaling), Ki67 (mouse monoclonal, clone MIB-1; 
Dako), ATRX (mouse monoclonal, clone BSB-108; Bio SB), Hip1R (rabbit, 
monoclonal, clone EPR9437; Abcam) and Vim (mouse monoclonal, 
clone V9; Dako) were conducted. ATRX, Hip1R and ATRX stainings 
were performed according to Sahm et al.25. GFAP and Ki67 were stained 
according to the protocol published by Wefers et al.26.

Sample segmentation and histological annotation
Manual segmentation of the histological regions was performed by a 
neuropathologist according to the morphological features of the H&E 
scan. Spots were annotated using the loupe browser from 10X. A matrix 
containing the spatial barcode and the annotation of the neuropatholo-
gist was exported. The segmentation data frame was imported into the 
SPATA objects using the addFeature function of the SPATA2 package.

Data import, preprocessing, filtering and normalization for 
spatial data analysis
For data analysis and quality control, we used the Cell Ranger pipeline 
from 10X Genomics. To facilitate spatial data analysis, we developed 

a custom framework. Data can be imported into our SPATA tool either 
by using a dedicated function (SPATA::initiateSpataObject_10X) or 
through manual entry of count matrices, barcode–coordinate matri-
ces and H&E images. Standard import procedures include normal-
izing gene expression, which is achieved using the Seurat version 4.0 
package. This process involves scaling transcript counts per spot to 
a total of 10,000, followed by natural log transformation. To control 
for batch effects, data normalization included regressing out sample 
batch variations and the percentage of ribosomal and mitochondrial 
gene expressions.

CNA estimation
Our CNA analysis leverages a pipeline integrated within the SPATA2 
R tool, with a development version available at https://github.com/
theMILOlab/SPATA2. The SPATA2::runCnvAnalysis() command enables 
additional CNA analyses. Chromosomal bins were created using the 
SPATAwrapper::Create.ref.bins() function, with a bin size of 1 Mbp used 
for this study. Data were then rescaled and interpolated over a 10-kbp 
window, with normalization achieved using a loess regression model 
through SPATAwrappers::runCNV.Normalization().

Multiclass ROC analysis
To evaluate the performance of our classification model in a multiclass 
setting, we used multiclass ROC analysis. This method extends the 
traditional binary ROC analysis to handle more than two classes by 
averaging pairwise comparisons between classes. The algorithm we 
used for this analysis was developed by Hand and Till27. This approach 
calculates the AUC by considering each class against all other classes 
and then averaging these pairwise AUC values. This method ensures 
that the simplicity of the AUC metric is maintained while providing a 
comprehensive evaluation for multiclass classification problems. The 
steps for the multiclass ROC analysis start with a pairwise comparison. 
For each class k, the AUC for the binary classification of class k is com-
puted versus all other classes. Next, the AUC values obtained from all 
pairwise comparisons are averaged to get the overall multiclass AUC. 
We implemented this algorithm using the pROC library in R, which 
provides functions to compute multiclass ROC curves and AUC values27.

Spatial autocorrelation Moran’s I
We assessed the spatial dependencies among spots using Moran’s I 
statistics. This analysis discerns whether gene expression patterns 
across the sample are spatially clustered, randomly distributed or 
dispersed. Moran’s I is indicative of spatial clustering when positive 
and spatial dispersion when negative. Moran’s I index is given by the 
following formula:

I = N
W ×

∑i∑jwij(Xi − X̄ )(X j − X̄ )

∑i(Xi − X̄ )
2 ,

where N  is the total number of spatial spots, Xi and X j  are the gene 
expression values at spots i and j, respectively. X̄  is the mean gene 
expression value across all spots. wij  represents the spatial weight 
between spots i and j. W  is the sum of all spatial weights wij. The com-
putation of Moran’s I, including the spatial weights matrix, was per-
formed using the ‘inferSpatial.ac()‘ function from the SPATAwrappers 
package.

Spatial correlation analysis
The hlpr_join_with_aes helper function was used to merge these data, 
with optional normalization for gene sets (method_gs) and smoothing 
(smooth), including adjustment of smoothing span (smooth_span) 
as needed. After data preparation, we constructed a graph represent-
ing spatial relationships among spots. This was achieved by generat-
ing a positional data frame (pos) containing the x and y coordinates 
linked to each spot’s barcode. We then created a spatial weight matrix 
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(weight) using the getSpatialNeighbors function from the MERINGUE 
package, which computes proximity between spots. To identify pri-
mary spatial patterns across features, MERINGUE calculates a spa-
tial cross-correlation index (SCI). This index assesses the correlation 
between gene pairs exhibiting significant spatial heterogeneity, con-
sidering genes expressed by a sufficient fraction of cells. The SCI is 
determined using the following formula:

SCI = N
2∑N

i ∑
N
j Wij

∑N
i ∑

N
j Wij (xi − ̄x) (y j − ̄y)

√∑N
i (xi − ̄x)2√∑N

j (y j − ̄y)2
,

where xi and yj represent the levels of two different features and ̄x  and 
̄y are the mean feature levels. Wij represents the spatial weight matrix 

or spatial weights between locations i and j. This matrix captures the 
spatial relationships or proximity between the spatial units (for exam-
ple, barcodes or regions) in the spatial grid. The values in the spatial 
weight matrix Wij quantify the proximity of spots. The feature matrix, 
feature_mat, contained the expression values of the features for each 
barcode and was transposed to align with the spatial weight matrix. 
The resulting matrix encapsulates the spatial correlation coefficients 
for each pair of features across the spatial grid, providing insights into 
the spatial distribution and coexpression patterns of the genes of 
interest.

Imaging IHC and spatial transcriptomic quantification
To quantify the correlation between IHC staining from an image and 
the expression levels of the corresponding gene, we implemented a 
detailed image processing and analysis pipeline. We start by converting 
the IHC image to grayscale by extracting the blue-channel (img[,,3]) and 
transform into data.frame format using the reshape2::melt() function. 
The pixel intensity values were extracted and rescaled to a range of 0–1. 
Next, we performed a Gaussian kernel smoother:

ẑ (x, y) =
∑n
i=1 zi exp (−

(x−xi)
2+( y−yi)

2

2σ2
)

∑n
i=1 exp (−

(x−xi)
2+( y−yi)

2

2σ2
)
,

where zi represents the intensity value at the position (xi, yi) and ̂z(x, y) 
is the smoothed intensity value at the spatial position (x, y). Next, we 
integrated the spatial distribution of the IHC intensity values 
(smoothed) and spatial transcriptomic gene expression of the corre-
sponding genes. For the alignment of spatial data, we segmented the 
spatial data grid into smaller sections and calculates the mean expres-
sion value within each segment using the point.in.polygon method of 
the sf package. If yi ≤ y < yi+1modn or yi+1modn ≤ y < yi, the x coordinate of 
the intersection of the ray extending to the right from (x, y) is computed 
with the following edge:

xintersect = xi +
(( y − yi) (x{i+1modn} − xi))

( y{i+1modn} − yi)

where xi and yi represent the coordinates of the current vertex of the 
polygon. If no cells are present in a segment, a value of ‘NA’ is returned. 
To assess the correlation between image intensities and gene expres-
sion, we fitted a linear model to the data, with expression as the 
dependent variable and cell density as the independent variable. The 
correlation coefficient was calculated to quantify the relationship 
between image intensity and expression. The significance of the cor-
relation was assessed using the P value from the correlation test.

Single-cell deconvolution with Cell2location
To set up the Cell2location model, we configured the AnnData object 
using the setup_anndata function, defining parameters such as the 
number of cells per location and detection sensitivity. We trained 

the model on a graphics processing unit for 500 iterations to ensure 
computational efficiency. After training, we used the export_posterior 
function to extract the posterior distribution of cell type proportions, 
sampling 1,000 times for precise estimation across the spatial frame-
work. Median estimates of cell type abundance were saved in adata_vis.
obsm[‘q05_cell_abundance_w_sf’]. Finally, we incorporated the cell 
type abundance data back into the SPATA object using the addFeature 
function in SPATA2, allowing for further analysis steps within the spatial 
data framework.

Spatial super-resolution inference with BayesSpace
Our analysis incorporated a super-resolution approach implemented 
into the runSuperresolution function, specifically designed to aug-
ment the resolution of spatial gene expression. We used the Bayes-
Space11 algorithm, which inferred super-resolution by performing 
enhanced clustering on principal component (PC) space derived 
from log-normalized gene expression data and then mapping the 
high-resolution PCs back to gene expression space using predictive 
models, such as linear and XGBoost regression, to spatially visualize and  
analyze refined gene expression patterns at a finer scale. To achieve 
this from SPATA2 data, we then created a SingleCellExperiment (SCE) 
object. The preprocessing of the spatial data was conducted through 
the BayesSpace::spatialPreprocess function, which is designed for 
Visium platform data. The data were then clustered spatially with the 
BayesSpace::spatialCluster function, where the number of clusters 
was set on the basis of our earlier determined unique features count. 
The clustering process was iterated for repetitions with a burn-in 
of iterations to ensure model stability and convergence. Following 
spatial clustering, we applied a super-resolution enhancement using 
BayesSpace::spatialEnhance, which further refines the spatial resolu-
tion of clusters by enhancing the signal within the spatial data.

Inferred IHC visualization
For visualizing inferred IHC results, we used the plotInferredIHC (avail-
able from https://github.com/heilandd/NePSTA) function. This func-
tion is designed to create illustrative representations of the spatial 
distribution of cellular features within the tissue on the basis of the 
enhanced-resolution data. The visualization process began with the 
extraction of enhanced PC analysis dimensions from the sce.enhanced 
object and reference PC analysis dimensions from the SCE object using 
the reducedDim function. We then aligned the dimensions of the 
enhanced and reference datasets to a common number of PCs. With the 
BayesSpace::featurePlot function, we generated data for feature visuali-
zation on the basis of the enhanced PC analysis results. We normalized 
the feature intensities using the SPATA2::hlpr_normalize_vctr function 
to ensure that the intensity values were proportional and visually inter-
pretable. Depending on the chosen type of visualization, either scatter 
plots or Voronoi tessellation were used to depict the spatial feature data. 
Scatter plots were rendered using the scattermore::geom_scattermore 
function, while Voronoi tessellation was executed with ggforce::geom_
voronoi_tile. This allowed for a flexible representation of spatial data, 
either as individual data points or as contiguous spatial regions. The 
plots were further refined by adjusting the spatial coordinates to the 
range of the image and scaling the feature intensities for optimal visuali-
zation. The final output was a plot that combines the spatial coordinates 
with the feature data, overlaid onto the spatial image.

Construction of spatial graphs from Visium spatially resolved 
transcriptomic data
Each spatial transcriptomic dataset was preprocessed using SPATA2, 
which included log-transforming the count matrix and aligning the 
imaging data (H&E Image). Nucleus positions were annotated through 
an automated ilastik pretrained segmentation algorithm. For samples 
where high imaging quality was lacking and automated segmentation 
was unsuccessful, we applied a modified version of a recently published 
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CytoSpace algorithm, as described above. We extracted spot coordinates 
using the getCoordsDf function from the SPATA2 package and calculated 
a pairwise distance matrix representing spatial distances between all cell 
pairs on the basis of their x and y coordinates. To prevent computational 
issues from zero-distance values (self-distances), we substituted these 
values with a constant of 1,000, ensuring no cell was mistakenly marked 
as its own neighbor in later steps. We set a distance threshold slightly 
above the smallest nonzero value in the modified matrix to establish 
cell adjacency, where cells within this threshold were marked as adjacent 
(1) and those beyond as nonadjacent (0). The adjacency matrix was con-
verted into an undirected graph using the graph_from_adjacency_matrix 
function from the igraph package, with rows and columns labeled by each 
cell’s unique barcode from getCoordsDf. We retrieved the gene expres-
sion matrix from the ‘obj’ object, transposing it to match the graph ver-
tices. The matrix was then filtered to include only the top 5,000 variable 
genes, corresponding to labeled graph vertices, creating a combined 
structure of spatial and expression data. With this graph, we analyzed 
local spatial gene expression patterns by examining the neighborhood 
around specific query spots. A three-hop neighborhood for a query spot 
included all spots within three edges, capturing the spatial context and 
connectivity within the defined distance.

The NePSTA graph neural network
The NePSTA framework uses GNNs to analyze spatially resolved mul-
tiomics data, integrating clinical, histological and molecular features. 
Using a GIN architecture, NePSTA models local spatial structures and 
predicts tumor-related parameters with high accuracy. A detailed 
description of the network is provided on GitHub (https://github.com/
heilandd/NePSTA).

Data splitting and preparation. From 107 EPIC-characterized par-
ticipants, datasets were divided into training and validation subsets. 
For multibiopsy samples, datasets were split by biopsy cores; for 
single-specimen samples, manual segmentation was performed using 
SPATA2 to create regions. Training data comprised 97,000 subgraphs 
from tumor datasets and 12,000 subgraphs from healthy controls, 
created using a three-hop neighborhood approach. Evaluation data 
comprised subgraphs from the validation datasets covering a range of 
epigenetic classes for robust model evaluation. A detailed description 
of the network is provided on GitHub (https://github.com/heilandd/
NePSTA).

Node and edge features
Expression profiles (top 5,000 genes), CNAs, histological annotations 
(one-hot encoded) and encoded H&E image vectors were included in 
the neural networks. Edge features were defined by spatial proxim-
ity with up to six neighbors per node; self-loops ensured that nodes 
retained the original feature information. A detailed description of the 
network is provided on GitHub (https://github.com/heilandd/NePSTA).

NePSTA GNN architecture
The back bone consisted of a three-layer GIN to process subgraphs, 
aggregating node features using MLPs and message-passing tech-
niques. Regularization consisted of batch normalization, dropout 
layers and leaky rectified linear unit activations to stabilize training. 
The latent space consisted of a global mean pooling of features to 
enable graph-level predictions for survival and tumor classification. 
A detailed description of the network is provided on GitHub (https://
github.com/heilandd/NePSTA).

Evaluation metrics
Metrics used. Accuracy, precision, recall, F1 score and confusion 
matrices were used to evaluate performance. Loss functions con-
sisted of cross-entropy loss for categorical variables and L1 norm and 
mean squared error for continuous variables. Losses were combined 

using weighted sums that were optimized during training. A detailed 
description of the network is provided on GitHub (https://github.com/
heilandd/NePSTA).

Training and inference
Optimization. The Adam optimizer was used to minimize task-specific 
losses over epochs. Gradients were reset after each batch to refine 
model weights iteratively. A detailed description of the network is 
provided on GitHub (https://github.com/heilandd/NePSTA).

Evaluation of the subgraph cell composition
To reconstruct the cellular composition of each subgraph, we pin-
pointed cellular positions as previously described and then determined 
the probable cellular composition by considering the cell count per 
spot and the deconvolution scores from Cell2location, using the spAn-
chor package for implementation. We began by pinpointing each 
nucleus’s spatial location using the SPATAwrappers getNucleusPosition 
function and recorded the spot coordinates using the SPATA2 getCo-
ordsDf function. The spatial coordinates representing the positions 
of nuclei were obtained as P = {pi|i = 1, … , N }, where pi is the coordinate 
pair for the ith nucleus and N is the total number of nuclei. Spatial grid 
coordinates corresponding to the transcriptomics data points were 
retrieved, denoted as G = {gj| j = 1,… ,M }, with each gj representing the 
coordinate pair for the jth grid point. For each grid point gj, a vector of 
deconvolution scores Dj = {djk|k = 1,… ,T }  was extracted, where djk 
represents the score for the kth cell type at grid point j and T is the 
number of cell types. The scores were normalized to a range of [0, 1] 
and the number of cells of each type at each grid point was estimated 
as follows:

Cjk = round(
d′jk × Nj
∑T
k=1d′jk

)

where d′jk  is the normalized score and Nj is the number of cells at grid 
point j. Cell types were assigned to each grid point gj to create a map-
ping Mj, correlating grid points with their respective cell types. The cell 
type mapping was integrated with nucleus position data to produce a 
comprehensive spatial  map of cell  type distribution: 
S = {(pI,Mj)|pi ∈ P,Mj ∈ M }. This methodology facilitates the visualiza-
tion and analysis of the cellular composition within the tissue section, 
providing insights into the complex spatial organization of the cellular 
environment.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data 
were excluded from the analyses. The experiments were not rand-
omized. The investigators were not blinded to allocation during experi-
ments and outcome assessment. Data distribution was measured and 
tailored methods were applied to handle non-normal distributions in 
gene expression, methylation and image data.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The spatial transcriptomics data (validation cohort) used in this study 
were deposited to Dryad (https://doi.org/10.5061/dryad.h70rxwdmj)28 
and Zenodo (https://doi.org/10.5281/zenodo.14064047)29 and are 
accessible to the public. Source data are provided with this paper.

Code availability
The version of our NePSTA pipeline used in this study can be accessed 
from GitHub (https://github.com/heilandd/NePSTA). SPATA2 can also 
be assessed from GitHub (https://themilolab.github.io/SPATA2/).
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Extended Data Fig. 1 | Analysis of inferred IHC. (a–c) Scatter plot of the 
smoothed image IHC intensity signal and the spatial expression abundance 
after co-registration and signal binning per spot. Statistical significance was 

assessed using a two-sided Pearson correlation test without adjustment for 
multiple comparisons d) Surface plots of the IHC and expression signal after co-
registration and signal binning per spot.
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Extended Data Fig. 2 | Inferred CNV: A detailed view. (a) Scatter plot of the probe-to-probe distance sorted by chromosomal positions along with the mismatch plot 
(Fig. 4) (b).
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Extended Data Fig. 3 | Representative enrichment scores. Surface plots of the enrichment of AC-like cells across GB subtypes. (upper pannel, left) Surface plot of the 
enrichment of tumor associated macrophages (type anti.-inflammatory) in the upper panel and aged associated microglia in the bottom part.
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Extended Data Fig. 4 | Regional prediction in graph-based neural networks. (a) 
Spatial transcriptomics overlay on a H&E image. Colors represent the supervised 
segmentation labels (n = 1 patient). (b) Predictive maps highlighting histological 
tumor areas (left) and infiltrative regions (right). The color spectrum indicates 

model-derived logits for each category. Predictive accuracy was tested on the 
full cohort (n = 107 patients). (c) Model’s predictive accuracy presented as a 
confusion matrix; ground truth on the x-axis versus predictions on the y-axis.
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Extended Data Fig. 5 | Graph-based neural networks of different 
neighborhood sizes. (a–d) Confusion matrix of the tumor subtype prediction 
of the full cohort (n = 107). a–e contain different sizes of neighborhoods (NN) 

starting from no-NN (a) to 1-hop(b) 2-hopn(c) and 3-hop (d). (e) Confusion matrix 
of the tumor subtype prediction of the full cohort (n = 107 patients) after 5-fold 
cross validation.
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Extended Data Fig. 6 | Heterogeneity of CDKN2A/B alterations. (a) Schematic 
of the GNN workflow Since the MGMT and CDKN2A/B status is available in both 
cohorts (n = 53 patients) we train (n = 30 patients) and evaluate (n = 23 patients) 
on separate cohorts. (b) Confusion matrix displaying accuracy in MGMT 

prediction; ground truth is plotted against predictions. (c) Confusion matrix of 
the CDKN2A/B prediction. (d) Heatmap of CDKN2A/B prediction scores across 
multiple low-grade glioma biopsies (n = 34 patients).
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