Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The current and emerging immunotherapy paradigm in small-cell lung cancer

Abstract

Small-cell lung cancer (SCLC) is a highly aggressive malignancy with poor prognosis. For decades, etoposide–platinum-based chemotherapy had been the mainstay treatment for SCLC; however, despite initial high response rates, most patients developed resistance. In 2019, the US Food and Drug Administration approved the anti-PD-L1 antibody atezolizumab in combination with etoposide–platinum as the new first-line standard of care for extensive-stage SCLC, heralding a paradigm shift in SCLC therapy. This Review aims to provide an overview of the current landscape and emerging treatment strategies of immunotherapies in SCLC as well as highlight the importance of developing biomarkers to facilitate patient selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different types of immunotherapies and their representative therapeutic agents for SCLC.

Similar content being viewed by others

References

  1. Gazdar, A. F., Bunn, P. A. & Minna, J. D. Small-cell lung cancer: what we know, what we need to know and the path forward. Nat. Rev. Cancer 17, 765 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).

    Article  PubMed  Google Scholar 

  3. Dowlati, A. et al. Immune checkpoint blockade outcome in small-cell lung cancer and its relationship with retinoblastoma mutation status and function. JCO Precis. Oncol. 6, e2200257 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sivakumar, S. et al. Integrative analysis of a large real-world cohort of small cell lung cancer identifies distinct genetic subtypes and insights into histologic transformation. Cancer Discov. 13, 1572–1591 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wildey, G. et al. Retinoblastoma expression and targeting by CDK4/6 inhibitors in small cell lung cancer. Mol. Cancer Ther. 22, 264–273 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. George, J. et al. Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khuder, S. A. Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer 31, 139–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Sun, J. M. et al. Small-cell lung cancer detection in never-smokers: clinical characteristics and multigene mutation profiling using targeted next-generation sequencing. Ann. Oncol. 26, 161–166 (2015).

    Article  PubMed  Google Scholar 

  9. Cho, J. et al. Proportion and clinical features of never-smokers with non-small cell lung cancer. Chin. J. Cancer 36, 20 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu, X. et al. Characterization of never-smoking and its association with clinical outcomes in Chinese patients with small-cell lung cancer. Lung Cancer 115, 109–115 (2018).

    Article  PubMed  Google Scholar 

  11. Torres-Duran, M. et al. Small-cell lung cancer in never-smokers. ESMO Open 6, 100059 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rodriguez-Martinez, A., Torres-Duran, M., Barros-Dios, J. M. & Ruano-Ravina, A. Residential radon and small cell lung cancer. A systematic review. Cancer Lett. 426, 57–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, C. H. et al. Exposure to secondhand tobacco smoke and lung cancer by histological type: a pooled analysis of the International Lung Cancer Consortium (ILCCO). Int. J. Cancer 135, 1918–1930 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, H. A. et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res. 19, 2240–2247 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Balla, A., Khan, F., Hampel, K. J., Aisner, D. L. & Sidiropoulos, N. Small-cell transformation of ALK-rearranged non-small-cell adenocarcinoma of the lung. Cold Spring Harb. Mol. Case Stud. 4, a002394 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ou, S. I. et al. Dual occurrence of ALK G1202R solvent front mutation and small cell lung cancer transformation as resistance mechanisms to second generation ALK inhibitors without prior exposure to crizotinib. Pitfall of solely relying on liquid re-biopsy? Lung Cancer 106, 110–114 (2017).

    Article  PubMed  Google Scholar 

  17. Cha, Y. J., Cho, B. C., Kim, H. R., Lee, H. J. & Shim, H. S. A case of ALK-rearranged adenocarcinoma with small cell carcinoma-like transformation and resistance to crizotinib. J. Thorac. Oncol. 11, e55–e58 (2016).

    Article  PubMed  Google Scholar 

  18. Takegawa, N. et al. Transformation of ALK rearrangement-positive adenocarcinoma to small-cell lung cancer in association with acquired resistance to alectinib. Ann. Oncol. 27, 953–955 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Fujita, S., Masago, K., Katakami, N. & Yatabe, Y. Transformation to SCLC after treatment with the ALK inhibitor alectinib. J. Thorac. Oncol. 11, e67–e72 (2016).

    Article  PubMed  Google Scholar 

  20. Miyamoto, S. et al. Transformation to small-cell lung cancer as a mechanism of acquired resistance to crizotinib and alectinib. Jpn. J. Clin. Oncol. 46, 170–173 (2016).

    PubMed  Google Scholar 

  21. Lin, J. J. et al. Small cell transformation of ROS1 fusion-positive lung cancer resistant to ROS1 inhibition. NPJ Precis. Oncol. 4, 21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, Y. Small cell lung cancer transformation from EGFR-mutated lung adenocarcinoma: a case report and literatures review. Cancer Biol. Ther. 19, 445–449 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamagata, A., Yokoyama, T., Fukuda, Y. & Ishida, T. Alectinib re-challenge in small cell lung cancer transformation after chemotherapy failure in a patient with ALK-positive lung cancer: a case report. Respir. Med. Case Rep. 33, 101440 (2021).

    PubMed  PubMed Central  Google Scholar 

  24. Shen, Q., Qu, J., Sheng, L., Gao, Q. & Zhou, J. Case report: transformation from non-small cell lung cancer to small cell lung cancer during anti-PD-1 therapy: a report of two cases. Front. Oncol. 11, 619371 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Imakita, T., Fujita, K., Kanai, O., Terashima, T. & Mio, T. Small cell lung cancer transformation during immunotherapy with nivolumab: a case report. Respir. Med. Case Rep. 21, 52–55 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Sehgal, K. et al. Small cell transformation of non-small cell lung cancer on immune checkpoint inhibitors: uncommon or under-recognized? J. Immunother. Cancer 8, e000697 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fruh, M. et al. Small-cell lung cancer (SCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24, vi99–vi105 (2013).

    Article  PubMed  Google Scholar 

  28. Rudin, C. M., Giaccone, G. & Ismaila, N. Treatment of small-cell lung cancer: American Society of Clinical Oncology endorsement of the American College of Chest Physicians guideline. J. Oncol. Pract. 12, 83–86 (2016).

    Article  PubMed  Google Scholar 

  29. Cheng, Y. et al. Durvalumab after chemoradiotherapy in limited-stage small-cell lung cancer. N. Engl. J. Med. 391, 1313–1327 (2024).

    Article  CAS  PubMed  Google Scholar 

  30. Horn, L. et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N. Engl. J. Med. 379, 2220–2229 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Paz-Ares, L. et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet 394, 1929–1939 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. von Pawel, J. et al. Topotecan versus cyclophosphamide, doxorubicin, and vincristine for the treatment of recurrent small-cell lung cancer. J. Clin. Oncol. 17, 658–667 (1999).

    Article  Google Scholar 

  33. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma, Y. et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38, 729–741 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Emens, L. A. & Middleton, G. The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol. Res. 3, 436–443 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sordo-Bahamonde, C. et al. Chemo-immunotherapy: a new trend in cancer treatment. Cancers 15, 2912 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, S. V. et al. Updated overall survival and PD-L1 subgroup analysis of patients with extensive-stage small-cell lung cancer treated with atezolizumab, carboplatin, and etoposide (IMpower133). J. Clin. Oncol. 39, 619–630 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hellmann, M. D. et al. Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell 35, 329 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Paz-Ares, L. et al. Durvalumab, with or without tremelimumab, plus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer: 3-year overall survival update from CASPIAN. ESMO Open 7, 100408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Paz-Ares, L. et al. LBA89 - PD-L1 expression, patterns of progression and patient-reported outcomes (PROs) with durvalumab plus platinum-etoposide in ES-SCLC: results from CASPIAN. Ann. Oncol. 30, v928–v929 (2019).

    Article  Google Scholar 

  42. Wang, J. et al. Adebrelimab or placebo plus carboplatin and etoposide as first-line treatment for extensive-stage small-cell lung cancer (CAPSTONE-1): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 23, 739–747 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Cheng, Y. et al. Effect of first-line serplulimab vs placebo added to chemotherapy on survival in patients with extensive-stage small cell lung cancer: the ASTRUM-005 randomized clinical trial. JAMA 328, 1223–1232 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rudin, C. M. et al. Pembrolizumab or placebo plus etoposide and platinum as first-line therapy for extensive-stage small-cell lung cancer: randomized, double-blind, phase III KEYNOTE-604 study. J. Clin. Oncol. 38, 2369–2379 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spigel, D. R. et al. Second-line nivolumab in relapsed small-cell lung cancer: CheckMate 331. Ann. Oncol. 32, 631–641 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Cheng, Y. et al. LBA9 Updated results of first-line serplulimab versus placebo combined with chemotherapy in extensive-stage small cell lung cancer: An international multicentre phase III study (ASTRUM-005). Ann. Oncol. 33, S1562 (2022).

    Article  Google Scholar 

  47. Cheng, Y. et al. Tislelizumab plus platinum and etoposide versus placebo plus platinum and etoposide as first-line treatment for extensive-stage SCLC (RATIONALE-312): a multicenter, double-blind, placebo-controlled, randomized, phase 3 clinical trial. J. Thorac. Oncol. 19, 1073–1085 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Cheng, Y. et al. Toripalimab plus chemotherapy as a first-line therapy for extensive-stage small cell lung cancer: the phase 3 EXTENTORCH randomized clinical trial. JAMA Oncol. 11, 16–25 (2025).

    Article  PubMed  Google Scholar 

  49. Issafras, H. et al. Structural basis of HLX10 PD-1 receptor recognition, a promising anti-PD-1 antibody clinical candidate for cancer immunotherapy. PLoS ONE 16, e0257972 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reck, M. et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann. Oncol. 24, 75–83 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Reck, M. et al. Phase III randomized trial of ipilimumab plus etoposide and platinum versus placebo plus etoposide and platinum in extensive-stage small-cell lung cancer. J. Clin. Oncol. 34, 3740–3748 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Goldman, J. W. et al. Durvalumab, with or without tremelimumab, plus platinum-etoposide versus platinum-etoposide alone in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): updated results from a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 22, 51–65 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Rudin, C. M. et al. SKYSCRAPER-02: tiragolumab in combination with atezolizumab plus chemotherapy in untreated extensive-stage small-cell lung cancer. J. Clin. Oncol. 42, 324–335 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Sands, J. et al. 1463 Coformulated vibostolimab/pembrolizumab plus chemotherapy as first-line therapy vs atezolizumab plus chemotherapy for extensive-stage small-cell lung cancer (ES-SCLC): randomized, phase 3 KEYVIBE-008. J. Immunother. Cancer 12, A1693–A1694 (2024).

    Google Scholar 

  55. Zitvogel, L., Kepp, O. & Kroemer, G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat. Rev. Clin. Oncol. 8, 151–160 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. van der Most, R. G. et al. Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy. Cancer Immunol. Immunother. 58, 1219–1228 (2009).

    Article  PubMed  Google Scholar 

  57. Gadgeel, S. M. et al. Phase II study of maintenance pembrolizumab in patients with extensive-stage small cell lung cancer (SCLC). J. Thorac. Oncol. 13, 1393–1399 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Owonikoko, T. K. et al. Nivolumab and ipilimumab as maintenance therapy in extensive-disease small-cell lung cancer: CheckMate 451. J. Clin. Oncol. 39, 1349–1359 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bhavnani, K. Jazz Pharmaceuticals announces statistically significant overall survival and progression-free survival results for Zepzelca® (lurbinectedin) and atezolizumab combination in first-line maintenance therapy for extensive-stage small cell lung cancer. PR Newswire (15 October 2024).

  60. Pignon, J. P. et al. A meta-analysis of thoracic radiotherapy for small-cell lung cancer. N. Engl. J. Med. 327, 1618–1624 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Warde, P. & Payne, D. Does thoracic irradiation improve survival and local control in limited-stage small-cell carcinoma of the lung? A meta-analysis. J. Clin. Oncol. 10, 890–895 (1992).

    Article  CAS  PubMed  Google Scholar 

  62. Murray, N. et al. Importance of timing for thoracic irradiation in the combined modality treatment of limited-stage small-cell lung cancer. The National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 11, 336–344 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Turrisi, A. T. 3rd & Glover, D. J. Thoracic radiotherapy variables: influence on local control in small cell lung cancer limited disease. Int. J. Radiat. Oncol. Biol. Phys. 19, 1473–1479 (1990).

    Article  PubMed  Google Scholar 

  64. McCracken, J. D. et al. Concurrent chemotherapy/radiotherapy for limited small-cell lung carcinoma: a Southwest Oncology Group Study. J. Clin. Oncol. 8, 892–898 (1990).

    Article  CAS  PubMed  Google Scholar 

  65. Takada, M. et al. Phase III study of concurrent versus sequential thoracic radiotherapy in combination with cisplatin and etoposide for limited-stage small-cell lung cancer: results of the Japan Clinical Oncology Group Study 9104. J. Clin. Oncol. 20, 3054–3060 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Johnson, B. E. et al. Patients with limited-stage small-cell lung cancer treated with concurrent twice-daily chest radiotherapy and etoposide/cisplatin followed by cyclophosphamide, doxorubicin, and vincristine. J. Clin. Oncol. 14, 806–813 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Peters, S. et al. Consolidation nivolumab and ipilimumab versus observation in limited-disease small-cell lung cancer after chemo-radiotherapy – results from the randomised phase II ETOP/IFCT 4-12 STIMULI trial. Ann. Oncol. 33, 67–79 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Gong, Y. et al. Abstract CT255: AdvanTIG-204: A phase 2, multicenter, randomized, 3-arm, open-label study investigating the preliminary efficacy and safety of ociperlimab (anti-TIGIT) + tislelizumab (anti-PD-1) + concurrent chemoradiotherapy (cCRT) in patients with untreated limited-stage small cell lung cancer (SCLC). Cancer Res. 84, CT255 (2024).

    Article  Google Scholar 

  69. Higgins, K. et al. Concurrent chemoradiation ± atezolizumab (atezo) in limited-stage small cell lung cancer (LS-SCLC): results of NRG Oncology/Alliance LU005. Int. J. Radiat. Oncol. Biol. Phys. 120, S2 (2024).

    Article  Google Scholar 

  70. Rosenthal, R. et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 567, 479–485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marty Pyke, R. et al. Evolutionary pressure against MHC class II binding cancer mutations. Cell 175, 416–428.e413 (2018).

    Article  PubMed  Google Scholar 

  72. Dejima, H. et al. Immune evolution from preneoplasia to invasive lung adenocarcinomas and underlying molecular features. Nat. Commun. 12, 2722 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hu, X. et al. Evolution of DNA methylome from precancerous lesions to invasive lung adenocarcinomas. Nat. Commun. 12, 687 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. von Pawel, J. et al. Randomized phase III trial of amrubicin versus topotecan as second-line treatment for patients with small-cell lung cancer. J. Clin. Oncol. 32, 4012–4019 (2014).

    Article  Google Scholar 

  75. Trigo, J. et al. Lurbinectedin as second-line treatment for patients with small-cell lung cancer: a single-arm, open-label, phase 2 basket trial. Lancet Oncol. 21, 645–654 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Antonia, S. J. et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 17, 883–895 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Ready, N. E. et al. Nivolumab monotherapy and nivolumab plus ipilimumab in recurrent small cell lung cancer: results from the CheckMate 032 randomized cohort. J. Thorac. Oncol. 15, 426–435 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Ott, P. A. et al. Pembrolizumab in patients with extensive-stage small-cell lung cancer: results from the phase Ib KEYNOTE-028 study. J. Clin. Oncol. 35, 3823–3829 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Chung, H. C. et al. Phase 2 study of pembrolizumab in advanced small-cell lung cancer (SCLC): KEYNOTE-158. J. Clin. Oncol. 36, 8506 (2018).

    Article  Google Scholar 

  80. Chung, H. C. et al. Pembrolizumab after two or more lines of previous therapy in patients with recurrent or metastatic SCLC: results from the KEYNOTE-028 and KEYNOTE-158 studies. J. Thorac. Oncol. 15, 618–627 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Reinmuth, N. et al. Novel combinations of immunotherapies or DNA damage repair inhibitors in platinum-refractory extensive-stage small cell lung cancer: the phase II BALTIC study. Clin. Cancer Res. 30, 4055–4067 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Navarro, A. et al. Abstract CT256: Results from KEYNOTE-B98: a phase 1b/2 study of pembrolizumab plus investigational agents in patients with anti-PD-(L)1-refractory extensive-stage small-cell lung cancer (ES-SCLC). Cancer Res. 84, CT256 (2024).

    Article  Google Scholar 

  83. Haen, S. P., Loffler, M. W., Rammensee, H. G. & Brossart, P. Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat. Rev. Clin. Oncol. 17, 595–610 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lin, M. J. et al. Cancer vaccines: the next immunotherapy frontier. Nat. Cancer 3, 911–926 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Krug, L. M. et al. Immunization with N-propionyl polysialic acid-KLH conjugate in patients with small cell lung cancer is safe and induces IgM antibodies reactive with SCLC cells and bactericidal against group B meningococci. Cancer Immunol. Immunother. 61, 9–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Giaccone, G. et al. Phase III study of adjuvant vaccination with Bec2/bacille Calmette-Guerin in responding patients with limited-disease small-cell lung cancer (European Organisation for Research and Treatment of Cancer 08971-08971B; Silva Study). J. Clin. Oncol. 23, 6854–6864 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Chiappori, A. A. et al. Randomized-controlled phase II trial of salvage chemotherapy after immunization with a TP53-transfected dendritic cell-based vaccine (Ad.p53-DC) in patients with recurrent small cell lung cancer. Cancer Immunol. Immunother. 68, 517–527 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Sabari, J. K., Lok, B. H., Laird, J. H., Poirier, J. T. & Rudin, C. M. Unravelling the biology of SCLC: implications for therapy. Nat. Rev. Clin. Oncol. 14, 549–561 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Byers, L. et al. 697 A phase 1 study of AMG 119, a DLL3-targeting, chimeric antigen receptor (CAR) T cell therapy, in relapsed/refractory small cell lung cancer (SCLC). J. Immunother. Cancer 10, A728 (2022).

    Google Scholar 

  90. Huehls, A. M., Coupet, T. A. & Sentman, C. L. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell Biol. 93, 290–296 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Paz-Ares, L. et al. Tarlatamab, a first-in-class DLL3-targeted bispecific T-Cell Engager, in recurrent small-cell lung cancer: an open-label, phase I study. J. Clin. Oncol. 41, 2893–2903 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ahn, M. J. et al. Tarlatamab for patients with previously treated small-cell lung cancer. N. Engl. J. Med. 389, 2063–2075 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Wermke, M. et al. First-in-human dose-escalation trial of BI 764532, a delta-like ligand 3 (DLL3)/CD3 IgG-like T-cell engager in patients (pts) with DLL3-positive (DLL3+) small-cell lung cancer (SCLC) and neuroendocrine carcinoma (NEC). J. Clin. Oncol. 41, 8502–8502 (2023).

    Article  Google Scholar 

  94. Beltran, H. et al. Updated results from a phase 1/2 study of HPN328, a tri-specific, half-life (T1/2) extended DLL3-targeting T-cell engager in patients (pts) with small cell lung cancer (SCLC) and other neuroendocrine cancers (NEC). J. Clin. Oncol. 42, 8090 (2024).

    Article  Google Scholar 

  95. Clamon, G. et al. Interleukin-2 activity in patients with extensive small-cell lung cancer: a phase II trial of cancer and leukemia group B. J. Natl Cancer Inst. 85, 316–320 (1993).

    Article  CAS  PubMed  Google Scholar 

  96. Clamon, G., Herndon, J., Akerley, W. & Green, M. Subcutaneous interleukin-2 as initial therapy for patients with extensive small cell lung cancer:: a phase II trial of cancer and leukemia group B. Lung Cancer 19, 25–29 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Zarogoulidis, K. et al. Interferon α-2a and combined chemotherapy as first line treatment in SCLC patients: a randomized trial. Lung Cancer 15, 197–205 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Zarogoulidis, K. et al. Immunomodifiers in combination with conventional chemotherapy in small cell lung cancer: a phase II, randomized study. Drug Des. Devel. Ther. 7, 611–617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mattson, K. et al. Natural interferon alfa as maintenance therapy for small cell lung cancer. Eur. J. Cancer 28a, 1387–1391 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. Jett, J. R. et al. Phase III trial of recombinant interferon γ in complete responders with small-cell lung cancer. J. Clin. Oncol. 12, 2321–2326 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Kelly, K. et al. Role of recombinant interferon alfa-2a maintenance in patients with limited-stage small-cell lung cancer responding to concurrent chemoradiation: a Southwest Oncology Group study. J. Clin. Oncol. 13, 2924–2930 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. van Zandwijk, N. et al. Role of recombinant interferon-γ maintenance in responding patients with small cell lung cancer. A randomised phase III study of the EORTC Lung Cancer Cooperative Group. Eur. J. Cancer 33, 1759–1766 (1997).

    Article  PubMed  Google Scholar 

  103. Pillai, R. N. et al. Interferon α plus 13-cis-retinoic acid modulation of BCL-2 plus paclitaxel for recurrent small-cell lung cancer (SCLC): an Eastern Cooperative Oncology Group study (E6501). Cancer Chemother. Pharmacol. 74, 177–183 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Thomas, M. et al. Immunotherapeutic maintenance treatment with toll-like receptor 9 agonist lefitolimod in patients with extensive-stage small-cell lung cancer: results from the exploratory, controlled, randomized, international phase II IMPULSE study. Ann. Oncol. 29, 2076–2084 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fu, Z., Li, S., Han, S., Shi, C. & Zhang, Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct. Target Ther. 7, 93 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vitorino, P. et al. Rova-T enhances the anti-tumor activity of anti-PD1 in a murine model of small cell lung cancer with endogenous Dll3 expression. Transl. Oncol. 14, 100883 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Chapoval, A. I. et al. B7-H3: a costimulatory molecule for T cell activation and IFN-γ production. Nat. Immunol. 2, 269–274 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Luo, L. et al. B7-H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific CD8+ cytolytic T cells. J. Immunol. 173, 5445–5450 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Zhou, W. T. & Jin, W. L. B7-H3/CD276: an emerging cancer immunotherapy. Front. Immunol. 12, 701006 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee, Y. H. et al. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res. 27, 1034–1045 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Scribner, J. A. et al. Preclinical development of MGC018, a duocarmycin-based antibody-drug conjugate targeting B7-H3 for solid cancer. Mol. Cancer Ther. 19, 2235–2244 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Metrangolo, V. & Engelholm, L. H. Antibody–drug conjugates: the dynamic evolution from conventional to next-generation constructs. Cancers 16, 447 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, W., Erbe, A. K., Hank, J. A., Morris, Z. S. & Sondel, P. M. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front. Immunol. 6, 368 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hubert, P. et al. Antibody-dependent cell cytotoxicity synapses form in mice during tumor-specific antibody immunotherapy. Cancer Res. 71, 5134–5143 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Zahavi, D., AlDeghaither, D., O’Connell, A. & Weiner, L. M. Enhancing antibody-dependent cell-mediated cytotoxicity: a strategy for improving antibody-based immunotherapy. Antib. Ther. 1, 7–12 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Blackhall, F. et al. Efficacy and safety of rovalpituzumab tesirine compared with topotecan as second-line therapy in DLL3-High SCLC: results from the phase 3 TAHOE study. J. Thorac. Oncol. 16, 1547–1558 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Johnson, M. L. et al. Rovalpituzumab tesirine as a maintenance therapy after first-line platinum-based chemotherapy in patients with extensive-stage SCLC: results from the phase 3 MERU study. J. Thorac. Oncol. 16, 1570–1581 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Kahl, B. S. et al. A phase I study of ADCT-402 (loncastuximab tesirine), a novel pyrrolobenzodiazepine-based antibody-drug conjugate, in relapsed/refractory B-cell non-Hodgkin lymphoma. Clin. Cancer Res. 25, 6986–6994 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Stein, E. M. et al. A phase 1 trial of vadastuximab talirine as monotherapy in patients with CD33-positive acute myeloid leukemia. Blood 131, 387–396 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Phillips, T. et al. A phase 1 trial of SGN-CD70A in patients with CD70-positive diffuse large B cell lymphoma and mantle cell lymphoma. Invest. New Drugs 37, 297–306 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Bardia, A. et al. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: final safety and efficacy results from the phase I/II IMMU-132-01 basket trial. Ann. Oncol. 32, 746–756 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Gray, J. E. et al. Therapy of small cell lung cancer (SCLC) with a topoisomerase-I-inhibiting antibody-drug conjugate (ADC) targeting Trop-2, sacituzumab govitecan. Clin. Cancer Res. 23, 5711–5719 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Johnson, M. et al. OA05.05 Ifinatamab deruxtecan (I-DXd; DS-7300) in patients with refractory SCLC: a subgroup analysis of a phase 1/2 study. J. Thorac. Oncol. 18, S54–S55 (2023).

    Article  Google Scholar 

  124. Bhowmick, S. J. AbbVie showcases robust solid tumor pipeline at ASCO 2024 with new data from its innovative antibody–drug conjugate (ADC) platform AbbVie News Center (28 May 2024).

  125. Chandana, S. R. et al. First-in-human study of ABBV-706, a seizure-related homolog protein 6 (SEZ6) targeting antibody–drug conjugate (ADC), in patients (pts) with advanced solid tumors. J. Clin. Oncol. 42, 3001 (2024).

    Article  Google Scholar 

  126. Chu, Q. et al. BMS-986012, an anti-fucosyl-GM1 monoclonal antibody as monotherapy or in combination with nivolumab in relapsed/refractory SCLC: results from a first-in-human phase 1/2 study. JTO Clin. Res. Rep. 3, 100400 (2022).

    PubMed  PubMed Central  Google Scholar 

  127. Wei, J., Li, W., Zhang, P., Guo, F. & Liu, M. Current trends in sensitizing immune checkpoint inhibitors for cancer treatment. Mol. Cancer 23, 279 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Krebs, M. G. et al. Olaparib and durvalumab in patients with relapsed small cell lung cancer (MEDIOLA): an open-label, multicenter, phase 1/2, basket study. Lung Cancer 180, 107216 (2023).

    Article  CAS  PubMed  Google Scholar 

  129. Gandara, D. R. et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat. Med. 24, 1441–1448 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Peters, S. et al. Atezolizumab versus chemotherapy in advanced or metastatic NSCLC with high blood-based tumor mutational burden: primary analysis of BFAST cohort C randomized phase 3 trial. Nat. Med. 28, 1831–1839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen, M. et al. Cold and heterogeneous T cell repertoire is associated with copy number aberrations and loss of immune genes in small-cell lung cancer. Nat. Commun. 12, 6655 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rudin, C. M. et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat. Rev. Cancer 19, 289–297 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gay, C. M. et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell 39, 346–360.e347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Xie, M. et al. Abstract CT024: Durvalumab (D) + platinum-etoposide (EP) in 1L extensive-stage small-cell lung cancer (ES-SCLC): exploratory analysis of SCLC molecular subtypes in CASPIAN. Cancer Res. 82, CT024 (2022).

    Article  Google Scholar 

  135. Nabet, B. Y. et al. Immune heterogeneity in small-cell lung cancer and vulnerability to immune checkpoint blockade. Cancer Cell 42, 429–443.e424 (2024).

    Article  CAS  PubMed  Google Scholar 

  136. Busch, S. E. et al. Lung cancer subtypes generate unique immune responses. J. Immunol. 197, 4493–4503 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Wang, H. et al. Prognostic significance of PD-L1 expression and CD8+ T cell infiltration in pulmonary neuroendocrine tumors. Diagn. Pathol. 13, 30 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  Google Scholar 

  139. Kalari, S., Jung, M., Kernstine, K. H., Takahashi, T. & Pfeifer, G. P. The DNA methylation landscape of small cell lung cancer suggests a differentiation defect of neuroendocrine cells. Oncogene 32, 3559–3568 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Nguyen, E. M. et al. Targeting lysine-specific demethylase 1 rescues major histocompatibility complex class I antigen presentation and overcomes programmed death-ligand 1 blockade resistance in SCLC. J. Thorac. Oncol. 17, 1014–1031 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zheng, Y., Wang, Z., Wei, S., Liu, Z. & Chen, G. Epigenetic silencing of chemokine CCL2 represses macrophage infiltration to potentiate tumor development in small cell lung cancer. Cancer Lett. 499, 148–163 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Arner, E. N. & Rathmell, J. C. Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell 41, 421–433 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ricci, J.-E. Tumor-induced metabolic immunosuppression: mechanisms and therapeutic targets. Cell Rep. 44, 115206 (2025).

    Article  CAS  PubMed  Google Scholar 

  145. Elia, I. & Haigis, M. C. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat. Metab. 3, 21–32 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chiu, D. K. C. et al. Hypoxia induces myeloid‐derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C‐C motif) ligand 26. Hepatology 64, 797–813 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Liu, B. & Wei, C. Hypoxia Induces overexpression of CCL28 to recruit Treg cells to enhance angiogenesis in lung adenocarcinoma. J. Environ. Pathol. Toxicol. Oncol. 40, 65–74 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591, 645–651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Nishiga, Y. et al. Radiotherapy in combination with CD47 blockade elicits a macrophage-mediated abscopal effect. Nat. Cancer 3, 1351–1366 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang, H. et al. CDK7 inhibition potentiates genome instability triggering anti-tumor immunity in small cell lung cancer. Cancer Cell 37, 37–54.e39 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Oser, M. G., MacPherson, D., Oliver, T. G., Sage, J. & Park, K. S. Genetically-engineered mouse models of small cell lung cancer: the next generation. Oncogene 43, 457–469 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Qu, F. et al. Crosstalk between small-cell lung cancer cells and astrocytes mimics brain development to promote brain metastasis. Nat. Cell Biol. 25, 1506–1519 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hiatt, J. B. et al. Inhibition of LSD1 with bomedemstat sensitizes small cell lung cancer to immune checkpoint blockade and T-cell killing. Clin. Cancer Res. 28, 4551–4564 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sattler, M. & Salgia, R. LSD1-targeted therapy-a multi-purpose key to unlock immunotherapy in small cell lung cancer. Transl. Lung Cancer Res. 12, 1350–1354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hu, H. et al. Current status in rechallenge of immunotherapy. Int. J. Biol. Sci. 19, 2428–2442 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Welsh, J. W. et al. Phase I trial of pembrolizumab and radiation therapy after induction chemotherapy for extensive-stage small cell lung cancer. J. Thorac. Oncol. 15, 266–273 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by a Barbanti Small Cell Lung Cancer Award, University of Texas MD Anderson Physician Scientist Award, University Cancer Foundation Sister Institution Network Fund, National Institutes of Health (NIH)/NCI U01-CA213273, NIH/NCI U01-CA256780-01, the LUNGevity Foundation, Rexanna’s Foundation for Fighting Lung Cancer, the Andrew Sabin Family Foundation, Cancer Prevention Research Institute of Texas, the University of Texas MD Anderson Lung Cancer Moon Shot Program, The University of Texas Lung SPORE Program, the University of Texas MD Anderson Lung Cancer Genomics Program, the University of Texas MD Anderson Lung Cancer Interception Program, and the generous support from the Andrea Mugnaini and Edward LC Smith Fund. We thank C. Hu, Z. H. Kwok and J. Li from Helius for their support during preparation of this Review.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and L.B. jointly supervised the preparation of this manuscript. K.Q. and C.M.G. contributed their clinical and translational expertise on the topic.

Corresponding authors

Correspondence to Lauren A. Byers or Jianjun Zhang.

Ethics declarations

Competing interests

C.M.G. serves on advisory committees for Abdera, AstraZeneca, BMS, Daiichi Sankyo, G1, Jazz, MonteRosa, Roche/Genentech and reports Speaking Engagement from AstraZeneca, BeiGene, MJH, OncLive, PeerView, Targeted Healthcare, and receives Paid Consulting from Catalyst, Kisoji, STCube. L.A.B. serves on advisory committees for AstraZeneca, AbbVie, Genetech, Amgen, Daiichi Sankyo, Novartis and has research support from AstraZeneca, Amgen. J.Z. reports grants from Merck and Helius, grants and personal fees from Johnson and Johnson and Novartis, personal fees from Bristol-Myers Squibb, AstraZeneca, GenePlus, Innovent, Varian, Catalyst and Hengrui outside the submitted work. K.G. declares no competing interests.

Peer review

Peer review information

Nature Cancer thanks Christine Lovly and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, K., Gay, C.M., Byers, L.A. et al. The current and emerging immunotherapy paradigm in small-cell lung cancer. Nat Cancer 6, 954–966 (2025). https://doi.org/10.1038/s43018-025-00992-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-025-00992-5

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer