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High-entropy alloys (HEAs) have attracted extensive attention in recent decades due to their unique
chemical, physical, and mechanical properties. An in-depth understanding of the structure–property
relationship in HEAs is the key to the discovery and design of new compositions with desirable
properties. Related to this, materials genome strategy has been increasingly used for discovering new
HEAs with better performance. This review paper provides an overview of key advances in this fast-
growing area, along with current challenges and potential opportunities for HEAs. We also discuss
related topics, such as high-throughput preparation, characterization, and computation of HEAs, and
data-driven machine learning for accelerating alloy development. Finally, future research directions
and perspectives for the materials genome-assisted design of HEAs are proposed and discussed.

High-entropy alloys (HEAs), also called multi-principal element alloys1–3,
are chemically disordered but topologically ordered with the formation of
random solid-solution (SS) structures, such as face-centered cubic (FCC),
body-centered cubic (BCC), or hexagonal-close-packed (HCP). Under-
standing the composition–structure–properties relationship has long been a
topic of great interest inHEAs. Thus, extensive studies have beencarriedout
on various HEAs, andmany attractive properties have been achieved in the
last two decades. These properties include good plasticity, high strength and
hardness, outstanding high-temperature-softening resistance, and unique
electrical and magnetic properties. In the past few years, besides metallic
systems, high entropy materials have expanded to ceramics made of car-
bides, borides, or nitrides of IV and V group transition metals, which have
remarkable properties4–6. Due to these unique properties and large com-
position space, high entropy materials have promising potential applica-
tions under extreme conditions, such as, in high-temperature structural
components, corrosion-resistant parts, coatings, and nuclear materials7.

However, with regard to the property-oriented designs of HEAs, some
challenges remain to be solved. (1) Owing to the chemically disordered
structure, HEAs are not necessarily equimolar compositions; that is, many
potential elements in theperiodic table can conceivably be incorporated into
HEAs via microalloying or principal element substitution. Therefore, an
essentially infinite number of HEAs are available. Since the compositions of
HEAs can be continuously adjustable, the properties of interest can be
optimized. Conceptually, this poses a serious challenge—How can potential
HEAs with properties of interest be fine-tuned efficiently in such a large
composition space rather than in a conventional “trial and error”manner8?

(2) Coupledwith the fact that fully understanding the complicated interplay
between constituents and properties is a prerequisite when designing new
HEAs,How can the intrinsic relationship in a vast and complex database be
uncovered? To date, inspired by the Materials Genome Initiative (MGI),
high-throughput techniques (preparation, characterization, and calcula-
tion) and the data-driven machine learning (ML) method have been
adopted by synergistically combining experiment, theory, and computation
in a tightly integrated and high-throughput manner, and to predict and
optimizeHEAs at anunparalleled scale and in an effectiveway 9. These tools
canbeused to screen extensive composition space for a desiredpropertyand
simultaneously pinpoint specific alloys with the desired properties. Speci-
fically, high-throughput techniques are able to bridge the gap between
experiments and ML modeling; that is, high-throughput approaches can
provide valuablematerials information for the followingML, and vice versa,
ML can provide intelligent feedback to the experiments10–12. Through
continuing efforts to integrate experiment, computation, and data-driven
ML, the underlying structure–property relationships to the materials gen-
ome can be revealed and thus seed a new generation of advanced HEAs13.

This review aims to present a brief state-of-the-art overview of the
materials genome strategy (MGS) applied in HEAs and provide a timely
focus on key developments, including challenges and opportunities, in this
interdisciplinary area. Specifically, we will give a brief introduction to the
development ofHEAs and the application ofMGI in thisfield. Additionally,
some challenges will also be listed in a brief manner in “Introduction”. In
section “High-throughput preparation and characterization of HEAs”, the
main high-throughput preparation and characterization techniques for
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HEAswill be discussed in detailed and critical issues needed to be solvedwill
also be proposed. In section “High-throughput computing for HEAs”, we
will present and discuss applications of high-throughput computation
method in accelerating the development of HEAs. An in-depth discussion
about data-driven ML strategy for HEAs will be provided in section “Data-
driven machine learning strategies “. Finally, in “Outlook” section, we will
give an outlook of potential research activities to be exploited and main
scientific challenges to be addressed in the future. The core purpose
underlying the brief review is to provide an important opportunity to
advance the understanding of MGS employed in HEAs and to offer
researchers a platform to foster new ideas.

High-throughput preparation and characterization
of HEAs
The design of HEAs poses a significant challenge when exploring the phase
structure and desirable properties through the vast potential multi-
component compositional space available14. As such, unconventional high-
throughput preparation techniques are crucially important, particularly for
effectively narrowing down the alloys in a wide composition space. Among
these, HEAs exploit a variety of preparation techniques, such as, combi-
natorial thin film deposition, laser additive manufacturing (LAM), rapid
alloying prototype, diffusionmultiples, and those based onwelding. Inwhat
follows, we will give an overview of the different high-throughput techni-
ques that were used to preparemulti-componentHEAs and point out some
critical issues that needed to be resolved.

High-throughput preparation techniques for HEAs
LAM. Combinatorial LAM endows the process with both high heating
and cooling rates, and has been used as an efficient method for the
synthesis of HEAs. Among various LAMmethods, lasermetal deposition
(LMD) is the preferred technique used to make HEA combinational
libraries. During the LMD process, the feedstock nozzles convey the raw
material powder to a rapidly movingmelt pool formed by a laser through
an inert gas flow. Apparently, LMD is more suitable for high-throughput
synthesis owing to the advantage of its real-time and variable feeding
system, which applies two ormore hoppers with different powder feeders
to permit changes in the deposited powder compositions15–21.

Combinatorial laser deposition of compositionally graded complex
alloys has been regarded as an attractive approach for assessing the
composition–microstructure–property relationships of HEAs. LMD is
quite capable of synthesizing refractory HEAs that are difficult to make19.
Melia et al. prepared a MoNbTaW alloy system by additive manufacturing
with commercial refractory elemental powders, which have good spherical
morphology, leveraging the additivemanufacturingprocess andmechanical
testing to enable rapid alloy exploration, as shown in Fig. 1. In the steady
state, there was an evident linear spatial trend in the composition and a
significantly variation of hardness, with composition dominated by solution
strengthening (Fig. 1d)19. Compared to other mechanical properties (i.e.,
strength, plasticity, toughness, etc.), hardness is the simplest one that can be
obtained effectively by mechanical testing automatically in areas with dif-
ferent compositions of small samples. In view of the hardness–strength

relationship (Hv ≈
3σyðMPaÞ

9:81 )22, hardness allows for indirect and efficient
evaluations of mechanical properties.

Borkar et al. studied the compositionally graded AlxCrCuFeNi2
(0 <x < 1.5) HEAs produced by laser deposition from a blend of elemental
powders, using a double powder feeder with two hoppers containing
CrCuFeNi2 and Al2CrCuFeNi2 powders, respectively. The sample of a
cylindrical geometry was deposited with a smooth change of alloy com-
position in height15. Additionally, an identical laser deposition processing
method, laser-engineered net shaping (LENS), was also applied to construct
the compositional and microstructural libraries of AlxCoCrFeNi in a high-
throughput manner18. The discrepancy between LENS and the above-
mentioned case was that the substrate (CoCrFeNi plate) for LENS was
priorly made by an arc-melting and copper mold-casting method, while in

Borkar’s work, a blend of powders of a nominal composition of CrCuFeNi2
was used. During the LENS process, the laser power and moving speed
remained unchanged, and the feeding rate of Al powder for eachmonolayer
patch increased in certain increments. The entire deposition process
includes the addition of Al and two subsequent remelting processes per-
pendicular to the deposition direction, to improve the mixing and com-
positional homogeneity of the alloyed region18.

In fact, the design and parameter adjustment of the LMD process has
an important effect on sample preparation. For example, the substrate
greatly influences the composition and microstructure of the deposited
alloys, which can be improved by increasing the stack thickness or a rea-
sonable experimental design. The former will not only increase the pre-
parationcost, butwill also affect themicrostructureuniformity. Selecting the
main component of the alloy as the substratematerial, depositing the sample
in the thickness direction with less affection for the substrate, and a con-
trolled composition gradient could form a reasonable experimental
design17,23.

Combinatorial deposition of thin film materials libraries. Combina-
torial thin film synthesis by sputtering using multiple deposition sources
is a state-of-the-art route for constructing of materials libraries that are
composed of a wide range of gradually changed alloy compositions24,25.
Continuous preparation of multiple gradients can be achieved by
adjusting the processing parameters, such as the compositions of the
targets, the power and angle of each gun, and thematerial and rotation of
the substrate. For HEAs, several approaches based on sputtering have
been employed for alloy design by tweaking these parameters25–30. Since
HEAs contain more than three principal elements, the preparation of
thin film samples is an important part of high-throughput experiments.
The composition library can be prepared by stacking multilayers, which
were deposited by coordinating the single sputtering source with a
removable mask. Due to the characteristics of the system alloys, the
homogenization process requires a higher temperature with a long heat
treatment duration. The substrate material and the experimental process
are desired for higher requirements.

The co-sputtering method, that is, using several targets to sputter
simultaneously to obtain a composition library through the adjustment of
processing parameters, is an ideal way to realize the compositional design of
HEAs.However, the number of targets available is often insufficient tomeet
the number of constituent elements. Considering the mechanical coordi-
nationandcharacterizationaccuracy, this issue canbe effectively resolvedby
using targets ofmultiple elements.At present, the synthesis of combinatorial
films is widely used in the preparation of a sample library of HEAs. Ludwig
et al. reported quinary Ru–Rh–Pd–Ir–Pt composition spread thin-film
materials libraries that were co-sputtered from a load-lock-equipped
combinatorialmagnetron sputtering system. Fig. 2a shows the coverage of a
ternary and a quaternary library, and Fig. 2b illustrates co-deposition from
five deposition sources and compositional gradients of a co-sputtered
quinary materials library. Six composition spread materials libraries were
synthesized via target arrangement permutations, each of which comprises
composition gradients in different subsections of the quinary composition
space. Forty percent of all possible Ru–Rh-Pd–Ir–Pt HEA compositions
(defined by 10–35 at.% variations of individual elements) were covered
by the materials libraries31. Additionally, Zhang et al. reported the
Ti–Al–Cr–Fe–Ni composition library prepared via magnetron co-
sputtering using Al, Ti, and CrFeNi targets29. They considered that the Cr,
Co, and Fe atomic sizes are similar, and the inclusion of two magnetic
components can avoid the interference of themagnetic field. Elements with
great differences in sputtering power cannot be placed on the same target
simultaneously. Therefore, the components in the alloy are divided into Al,
Ti, andCrFeNi targets,with a 1:1:1 composition ratio of theCrFeNi target.A
similar method is also applied to the (Cr, Fe, V)–(Ta, W) alloy system28,
which is regarded as a pseudo-binary alloy composed of transition group
elements Cr, Fe,V, and refractory elements Ta,W. Samples fabricated using
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this method possess a large compositional range, with the interdependence
of composition changes at the same time.

As mentioned above, the number of targets required for the
synthesis of HEAs can be met by either mixing the elements or using a
single targetmade of separate element segments.How to achieve the alloy
composition gradient is hence an important component of a high-
throughput experiment, which will greatly affect the subsequent char-
acterization. Amaterials library composed of continuously changed alloy
compositions can be achieved by adjusting the angle of the sputtering
guns with respect to the substrate normally kept at a certain angle. Pat-
ches of alloy units closer to a particular source exhibit a higher con-
centration of the corresponding elements, with a lower density of the
elements in patches farther away. The co-sputtering of multiple element
targets can, in principle, make up a complete composition space of the
system, preparing multiple alloy compositions in one experiment25,26,30.
Moreover, the composition gradient of elements was controlled by
tuning the sputtering power in some actual cases due to the differences in
deposition efficiency and the desired composition range of the con-
stituted elements. In the development of HEAs, the change of a single
element in content has a great effect on the formation of solid solutions,
which depends on the power of the single sputtering target. Marshal et al.
reported the influence of Al content (from 3.5 to 54 at.%) on the phase

formation and magnetic properties in the FeMnCoCrAl thin film
libraries32. Five compositionally graded FeMnCoCrAl thin films were
deposited to study the influence ofAl by varying the power density from2
to 7.5W/cm2 to obtain multiple Al concentration gradients, which
facilitated the investigation of the effect of Al. The sample also contains
both Co and Cr component gradients, and multiple explications can be
obtained through nondestructive characterization techniques.

Since the thin film samples obtained by sputtering exhibit a smooth
composition change spatially, it is necessary to divide the composition into
several sample units to facilitate subsequent characterization26,30,33,34. One
way is to directly cover the substrate with a physical metal mask of micron
thickness during deposition to generate sample units26,35. An improved
method is the use of a micro-machined Si deposition mask to mitigate
deposition-shadowing effects by the creation of angled walls36. The sample
units provide enoughworkspace for the subsequent characterization, which
improves the accuracy of the experiment and reduces the difficulty of
operation. In addition, sample units can be partitioned by the proper
operation of the substrate. The substrate was divided into small squares by
laser beam cutting to facilitate the characterization of the material library
prior to deposition28,29. Cutting is done on the back side of the substrate to
mark the location of each sample, and semipermeable cutting is required to
ensure the integrity of the front surface of the substrate.

Fig. 1 | Analysis of the additive manufacturing
processed (MoTaW)x(Nb)1−x compositionally
graded part cross-section. a An optical image.
b {100} Pole figure oriented parallel to the build
direction with maximum intensity of 5.19 MRD.
c IPF map. d The composition and hardness gra-
dients along the height of the part. The arrows in
d show the two axes of the hardness data19 (adapted
with permission from ref. 19. Copyright 2020
Elsevier).
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High-throughput diffusion multiples. A diffusion multiple exposes
three or more different metal blocks to high temperatures and ensures
their close interfacial contact to create solid solutions or intermetallic
compounds by thermal diffusion, allowing for the effective evaluation of
the phase formation kinetics and several materials phenomena. Unlike
traditional diffusion couples and diffusion triples37, diffusion multiples
are usually prepared via hot isostatic pressing, by which different mul-
tiples can be assembled into a single sample. In recent years, Zhao et al.
have conducted preliminary studies on high-throughput diffusion
multiples38–41 and the technique has recently been extended to the
development of HEAs42–45. To reduce the interference of other factors on
the diffusion of elements, the synthesis of diffusion multiple assemblies
has more stringent requirements on the constituents and experimental
parameters; for example, the assemblies usually need to be fixed in a
vacuum and the blocks melted by arc melting using high-purity
base metals to avoid the contamination of the interstitial elements.
The diffusion temperature or annealing temperature usually varies
from 0.6 to 0.8 Tm, withmultiple temperature control groups to achieve a
firm connection at the diffusion interface to reduce the pressure on the

contact interface defects45. Hot isostatic pressing is applied in a vacuum
diffusion welding furnace or vacuum hot-pressing apparatus to
strengthen the bonds between the different blocks. Additionally, the
diffusion time for diffusion multiples should be long enough, usually in
the tens of hours, to produce sufficient diffusion layers facilitating sub-
sequent characterization.

ForHEAs, a largediffusion region canbeobtainedbyhigh temperature
with a long diffusion time. There are several typical cases for diffusions
multiples in HEAs, whose difference is primarily in the design of the dif-
fusion units of metal blocks. As shown in Fig. 3a, the diffusion multiple
consists of three metal blocks, with the two equiatomic binary alloys
(Fe–50Mn and Co–50Ni) bonded together, followed by bonding Cr on top
of the surface42. Quinary alloys in diffusive contactwere created at the triple-
junction interface with two ternary alloy systems (FeMnCr and CoNiCr)
and onequaternary FeMnCoNi alloy systemprepared simultaneously at the
contact surface. For a high-throughput determination of inter diffusivity
matrices in the Co–Cr–Fe–Mn–Ni alloy system43, a solid diffusionmultiple
was made by the hot-pressing technique, using quinary alloy blocks pre-
pared by arcmelting under anAr atmosphere (see Fig. 3b). The blocks were

Fig. 2 | Visualization of the compositional coverage of continuous composition
spreadmaterials libraries co-sputtered from three tofive sources forming ternary
to quinary (HEA) systems. a Coverage of a ternary and a quaternary library.

b Illustration of co-deposition from five deposition sources and compositional
gradients of a co-sputtered quinary materials library31 (adapted with permission
from ref. 31. Copyright 2022 John Wiley and Sons).
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cut from buttons of four different quinary alloys, with the surface contact
blocks having a compositiondifference in a certain constituent element. The
diffusion multiple was fabricated by a self-assembly vacuum hot-pressing
apparatus, after which the Co–Cr–Fe–Mn–Ni diffusionmultiple was sealed
into an evacuated quartz tube for annealing. The sample has a composition
gradient in the directions perpendicular to the four contact surfaces, which
serves as a carrier for studying multi-component diffusion.

Current studies mainly focus on the Co–Cr–Fe–Mn–Ni system with
medium-sized atoms. Due to the sluggish diffusion effect of HEAs46,47, the
diffusionmultiple preparation requires a long time and a high temperature.
However, for refractory alloys, especially those containingW, Nb, Mo, and
Ta, the highmelting temperatures and lower diffusion coefficients limit the
high-throughput preparationunder the current experimental conditions. In
summary, the diffusion multiple techniques are effective in making some
HEAs and is well suited for determining their diffusion coefficients and
phase precipitation kinetics.

Gradient alloying via welding. To create alloy libraries, a concept based
on welding has been used, which serves as a screening tool in the study of
HEAs48,49. The continuous movement of the molten pool and the large
heat-affected zone during welding are the main factors for high-
throughput preparation using this technique. Due to the complex com-
positions of HEAs, it is crucial to homogenize the composition in the
molten pool-covering area. Friction stir welding (FSW) is a solid-state
high-temperature severe plastic deformation process using the heat
generated by the friction between a high-speed rotating welding tool
and the workpiece. Friction stir processing has been used to realize the
continuous preparation of alloy libraries via the existing welding tech-
niquewith changingworkpiece composition50–52. Using weldingmethods
as a high-throughput technique allows for faster creation of material
property libraries, and some researchers have used these techniques to
screen HEAs.

As shown in Fig. 4a, the FSP technique for high-throughput compo-
sitional screeningwas used to study the effect of gradient variations ofCuon
the phases (ε-HCP and γ-FCC) andmechanical properties of a vacuum arc
melted Fe40Mn20Co20Cr15Si5 (at.%) base material52. To achieve composi-
tional gradients in the FSW sample, the tapered section of the pure copper
piece was modified in the base alloy tank to have similar dimensions,
creating precise dimensional control throughmilling. The assembled region
was then subjected to a friction stir process, with the tapered portions of Cu
and HEAmounted in the grooves of the substrate. A Cu backing plate was
placed below for cooling, using a W-Re tool for alloying a continuous
increase of the additional element. Figure 4b demonstrates the nanoin-
dentation response of FSW-alloyed samples along the gradient alloying
direction, in terms of the load-displacement curve, and elastic modulus
values can be calculated from the load-displacement curve. Nanoindenta-
tion behaviormakes it clear that modulus values can be altered by changing
the alloy chemistry52. Similarly, FSW was used to explore the possibility of
introducing a BCC transformation domain in a γ-FCC dominated
Fe38.5Mn20Cr15Co20Si5Cu1.5 (at.%) alloy by the vanadium addition, in
which theV strips of different widths and controlled channels on basemetal
fit precisely for the followingprocess51. Thehigh temperature from frictional
heating and deformation due to tool rotation during the FSW leads to
uniformity of microstructure and composition. However, the composition
adjustment of the alloy prepared by this FSW is limited to a certain con-
stituent element, and the composition diversity needs to be improved.

Radiofrequency inductively coupled plasma (RF-ICP). Although the
co-sputtering method has demonstrated great potential for high-
throughput synthesis of HEAs, their properties can be significantly dis-
tinct from those of their bulk counterparts due to the smaller grain size in
the film sample and the size effect. Therefore, a fast and high-throughput
synthesis method for potentially bulk HEAs is highly desirable. In this
regard, RF-ICP has been utilized for high-throughput alloy preparation
by making use of a plasma arc high energy density beam as a heat source,

together with high heating/cooling rates53,54. The system includes an ICP
torch, an RF generator, and a water-cooled copper crucible that contains
mixed pure meal powder. The melting process was under the RF-ICP
torch for less than 40 s and argonwas kept running to cool down the alloy
and protect the samples from the air after the plasmawas off. RF-ICPwas
used for rapid synthesis of the FeCoNiCu bulk HEAs (Fig. 5)54. The fast
synthesis method by RF-ICP shows the potential of the high-throughput
preparation of HEAs for their accelerated discovery. As seen, the auto-
matic platform can process 20 samples in one run (~10 min). Moreover,
this platform is highly scalable by incorporating more RF-ICP torches,
leading to considerable improvement in the efficiency of HEA synthesis.

Additionally, when combined with an automatic powder mixing and
blending system, the fast and combinatorial synthesis of bulk HEAs can be
achieved in amuchmore efficientmanner. Thehigh-throughput capacity of
this RF-ICPmethod enables efficient verification of the new alloys predicted
by computational simulations or the ML algorithm. The RF-ICP method
allows researchers to prepare 100 designed alloys within an hour, leading to
higher efficiency than other typical methods for HEAs synthesis54.

Structure characterization
After high-throughput preparation of HEAs, it is crucial to characterize the
microstructure of these samples to evaluate their properties. The analysis of

Fig. 3 | Different combination modes for the synthesis of HEAs by diffusion
multiple methods. a Micrograph of the hot-pressed appearance of “tri-junction”
diffusion multiple sample42 (adapted with permission from ref. 42. Copyright 2016
Elsevier). b The schematic diagram for the Co–Cr–Fe–Mn–Ni diffusion multiple43

(adapted with permission from ref. 43. Copyright 2017 Springer Nature).
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the composition and structure of complex materials libraries is the basic
component of high-throughput characterization, which is usually carried
out by electromagnetic spectrum in different bands such as X-ray, ultra-
violet, and infrared. Energy dispersive X-ray (EDX) analysis is by far the
most commonly used method to measure the composition of individual
alloys in a library synthesized by high-throughputmethods30,32. It is effective
for the characterization of sputtered thin films with continuous component
gradients. The theoretical component gradients were obtained by simula-
tion and parameter adjustment, and then the compositions of different
points in the prepared sample were measured and calibrated using a bulk
sample of known compositions in the library. To improve measurement
accuracy, the multiple iteration method is a useful choice when analyzing
the composition of a library sample. It should be noted here that EDX
performed on a large area cannot provide information about whether the

elements are truly incorporated into a single-phase lattice. In this
regard, combining other methods such as scanning electron microscopy
(SEM) and X-ray diffraction (XRD) is a routine strategy and is effective
for high-throughput phase identification with high resolution by
adjusting the magnification of the acquired images. For example, Fig. 6a
shows a schematic representation of a combinatorial high-throughput
Alx(CoCrFeNi)100−x HEA synthesis setup via two individual magnetron
sputtering sources. As indicated by grazing-incidence X-ray diffraction
(GIXRD) and EDX results (Fig. 6b), the structures of thin films transform
fromFCC toBCCwith increasing amounts ofAl. The surfacemorphologies
of the thin films investigated by SEM are shown in Fig. 6c. As seen, the thin
film with low Al content (#1–#6) that possesses an FCC structure, has a
relatively compact columnstructurewith columndiameters of about 20 nm,
while for #7–#10HEA thin filmwith a BCC structure, the smaller elongated

Fig. 4 | Alloy synthesis on welding technologies. a A schematic of friction stir
gradient alloying process and corresponding tools. bMicrohardness variation in
gradient alloyed sample superimposed with the schematic of the FSW assembly and

nanoindentation plots (load vs displacements) of different areas on the FSW
assembly52 (adapted with permission from ref. 52. Copyright 2020 Elsevier).
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columns form on the surface, and the elongated small columns grow to
accumulate forming elliptical columns of larger sizes. The SEM results
indicate that the column morphology changes are associated with the
composition of the thin films55. In some cases, an optical microscope
combinedwith a camera can take a series of images at short intervals, which
can then be verified by SEM to measure structural evolution in situ36.
Metallography reflects the microstructure information of alloy samples, to
some extent, and can be used as an alternative method for high-throughput
characterization.

Apart from SEM, electron backscattered diffraction (EBSD) is also an
importantmethod for high-throughput screening ofmaterials libraries. The
orientation information can be obtained by analyzing the symmetry of
EBSD patterns. Moreover, when coupled with the spacing of the Kikuchi
lines associated with EBSD, one can identify the phase information of
materials libraries. Zhao et al. used this method to rapidly screen the local
microstructure changes and clarify the phase formation mechanism

associatedwith interdiffusion in theCu–Pt–Ru ternary libraries, whichwere
synthesized by diffusion couples40. It should be emphasized that such an
approach can be developed to study phase diagrams of diffusion couple-
based combinatorial libraries when coupledwith other elemental chemistry
analytical techniques. For other combinatorial libraries made by LAM or
multiple deposition sources, EBSD has also been implemented to gather
detailed phase information of AlxCrCuFeNi2

15, AlxCoCrFeNi
17, and

CoCrFeMnNi Cantor alloys libraries56, and the like. However, a major
bottleneck of EBSD is the analysis of patterns, which requires human input
to select potential phases for dictionary patternmatching. High-throughput
and autonomous determination of crystal symmetry is the most important
step inmaking EBSD into a high-throughput technique. In this case, a data-
driven ML approach is developed for rapid and autonomous identification
of the crystal symmetry from EBSD patterns. Typical algorithms, including
convolutional neural networks57, few-shot learning58, and support vector
machine59, are adopted to autonomouslydeterminephase structures ofNiAl

Fig. 6 | Alx(CoCrFeNi)100−x HEA thin films synthesized using the magnetron
sputteringmethod. a Schematic representation of a combinatorial high-throughput
HEA synthesis setup using two individual magnetron sputtering sources, and the
top-surface view of the substrate containing the HEA library with a constant

concentration gradient. b GIXRD patterns of diffraction intensity vs diffraction
angle 2θ, and EDX atomic percent vs sample number analysis. c SEM images of
Alx(CoCrFeNi)100−x thin films along the Al concentration gradient55 (adapted with
permission from ref. 55. Copyright 2020 Elsevier).

Fig. 5 | Schematic of the high-throughput experimental setup for synthesizing
alloys with a large composition space via the RF-ICP system. The mixed pure
metal powders, such as Fe, Co, Ni, Cu, and Al etc., are placed in a water-cooled

copper crucible and melted under the RF-ICP torch. Argon is kept running to cool
down the samples and prevent them from the air54 (adapted with permission from
ref. 54. Copyright 2020 John Wiley and Sons).
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and steels, indicating the feasibility and efficiency of the combined EBSD-
ML approach for high-throughput characterization.

For multi-component alloys with complex thermodynamic processes
and crystallization behavior, structural characterization is essential for the
rapid screening of newmaterials. A detailed structural characterization has
been conducted to characterize Fe, Ni, Co, and the correlated compound
phases using a scanning microbeam X-ray diffractometer with a spatial
resolution of 50–300 μm60. It utilizes a unique high-brilliance and high-
intensity X-ray microfocus source with a 300-micron beam spot. Another
optimized test mode is the use of automatic XRD detection equipment to
measure the component points through a mask. The sampling spacing can
depend on the accuracy of the device or the sample points with a specific
component gradient, whichprovides greatflexibility.With thedevelopment
of XRD technology towards high brightness and micro-focus, the process
and time consumption of high-throughput characterization will be sim-
plified and reduced to some extent.

Fromamicrodomain or in situmeasurement perspective, synchrotron
X-ray and neutron scattering techniques have great capabilities for high-
throughput characterization. Synchrotron radiation sources achieve
high brightness micro-focus in the full spectrum from infrared to hard
X-ray, and meet the requirements in brightness and spatial resolution
for rapid and accurate characterization of high-throughput material
samples34,61,62. Neutron scattering has potential applications for the char-
acterization of themagnetic structure of combinatorialmaterials libraries, as
neutrons have deep penetration power and possessmagneticmoments. The
high temporal and spatial resolution enabled by synchrotron and neutron
scattering facilities can break the flux bottleneck in high-throughput
experiments.

Mechanical properties
High-throughput assessments of properties for HEAs have been carried out
extensively over the years. Mechanical parameters, such as modulus,
hardness, and so forth, can be used to predict and screenbulkmaterials with
better mechanical properties. In recent years, a series of micromechanical
testing methods have been developed, including testing for hardness52,
tension63, compression64, fatigue65, thermal stress66, and the small punch test
(SPT)67–69 etc., providing tools for high-throughput characterization
of HEAs.

Hardness is the basic index for testing the mechanical properties of
structuralmaterials.Among the differentmechanical properties, hardness is
the simplest one that can be obtained in a high-throughput manner. An
automated hardness testerwith a constant loadingmode generates amicro-
hardness mapping along the set trace. The nanoindentation technique
enables fully automated measurements of hardness and elastic modulus
from a small region of a sample with a displacement resolution of 1 nm,
which is useful for directly probing a single phase since the interaction
volume is within a single grain. Coury et al. converted nano hardness and
elastic modulus into yield strength using a revised Clausner–Ritcher
equation, and the strain hardening coefficient was kept independent from
stress–strain curves. In addition, the experimental and simulation results
indicate that the strength is maximized when the atomic size mismatch is
maximized. Moreover, it is necessary to consider the strain hardening of
these alloys to accurately estimate their strength by nanoindentation44.
Shukla et al. performed micro-hardness tests along four depth levels of a
sample from the top surface, and each indent point was also 0.5mm apart
along the alloying path so that the systemic hardness and moduli were
obtained. It is found that an increase in moduli and hardness values can be
attributed to solute–matrix interaction. The as-cast ε phase-dominant
microstructure showed∼153 GPamoduli, while the same for a completelyγ
microstructure with supersaturated Cu content reached up to ∼224 GPa52.
Inmeasuring nano hardness andmodulus ofmulticomponent samples, the
setting route of nanoindentation is usually along the gradient direction of a
specific alloying element, and the discrete points andmicro-hardness can be
analyzed for multiscale observation70. According to the hardness–strength
relationship, one can efficiently select the potentialHEAcandidateswith the

desired mechanical properties, such as higher yield strength in a relatively
large composition space. Although there may exist discrepancies between
the high-throughput made and bulk samples for the absolute value of
mechanical properties, the variation trend of the composition and proper-
ties of interest can still provide effective information for the design of
new HEAs.

Due to the small scale of the HEAs prepared by the above-mentioned
high-throughputmethods (i.e., addictivemanufacturing, sputtering, etc.), it
is usually difficult to cut bulk specimens from the thin layers or coatings. The
SPT is an evolving small specimen test technique with the potential to
extract the mechanical properties (ductility, elastic modulus, yield strength,
ultimate tensile strength, fracture toughness, etc.) from small-volume HEA
specimens prepared by high-throughput methods67,69. It should be noted
here that a prerequisite for using this test is to establish correlations between
SPT and conventional mechanical tests such as tensile testing for HEAs in
priori. However, the SPT response is easily influenced by different test
parameters, that is, for specimen shapes and thickness, test speed, ball
diameter, and so on. It is therefore imperative to understand the effects of
these parameters. This necessitates the optimization of test parameters to
obtain nearly unique SPT responses, at least for a class of HEA materials.
Thus, it is necessary to relate the conventional and SPT results by empirical
and analytical relations.

Additionally, the cooling rates of commonly used addictive manu-
facturing and sputtering high-throughput methods are much higher than
those of traditional castingmethods used for the preparation of bulk HEAs.
Notably, in some extreme cases, owing in part to the multi-principle nature
ofHEAs, theHEAcoatings or layers via high-throughputmethods can form
amorphous structures, which make the mechanical properties quite dif-
ferent from the bulk HEAs. Thus, the optimization of preparation para-
meters tomake the cooling rate agree with the castingmethod is significant
for the formation of HEAs. In sum, although there are some discrepancies
between thin and bulk HEA materials, the SPT methods can at least
determine the mechanical properties and guide the researchers to develop
better HEAs in a such large composition space.

Physical properties
As one of the typical physical properties, the magnetic properties of
HEAs depend heavily on the size, microstructure, and preparation pro-
cess of the sample. Many efforts have been made to measure and map
magnetic properties at very high spatial resolution. Borkar et al. pre-
sented a new combinatorial approach, based on laser additive deposition
of compositionally graded alloys, for rapid assessment of the
composition–microstructure–magnetic relationships in AlxCrCuFeNi2
alloys (0<x < 1.5 at.%) HEAs. Along the same alloy gradient, the micro-
structures are FCC solid solution, FCC/L12, mixed FCC/L12+ BCC/B2,
and finally predominantly BCC/B2 with increasing Al content. Owing to
the change of microstructures, the low Al-containing FCC/L12 regions
are weakly ferromagnetic, while the BCC/B2 regions with higher Al
contents are strongly ferromagnetic, exhibiting lower coercivity and
higher saturation magnetization15. For the FeMnCoCrAl HEA system,
Marshal et al. developed thin-film libraries for the combinatorial eva-
luation of the phase formation and magnetic properties combined with
spatially resolved atom probe tomography and DFT simulation. It was
found that the addition of Al can promote the formation of BCC struc-
ture, which exhibits soft ferromagnetic behavior. A further increase in the
non-ferromagnetic Al content beyond 8 wt% decreased the overall
saturationmagnetization due to the substitution of ferromagnetic species
by paramagnetic Al and lattice distortions, which was in agreement with
DFT predictions32. As can be seen in these cases, high-throughput
techniques are efficient in explaining the microalloying effects on the
magnetic properties of HEAs and therefore have great potential for the
future designs of soft magnetic HEAs with better performance. However,
it should also be noted that the size effect and magnetocrystalline ani-
sotropy caused by thin film may lead to some artifacts, which can be
eliminated by increasing the thickness of as-prepared film/layer libraries
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or changing the measurement direction when performing magnetic
testing.

Besides saturation magnetization, studies of high-throughput techni-
ques for otherphysical properties ofHEAsare rather sparse.However,when
expanding the scope to other materials synthesized via high-throughput
techniques, there are different physical properties of interest. For example,
useful combinatorial methods for examining magnetic properties include
magnetic force microscopy and scanning magneto-optical Kerr effect
imaging40. In addition, the Decay microwave probe microscope, with very
high micro-region resolution, can measure magnetic properties, including
susceptibility and spin resonance. Combined with automatic sample table
control and data acquisition, it is possible to realize a high-throughput
automatic electromagnetic measurement of the composite material
chips71,72. Additionally, magnetic optical imaging with an indicator film is a
useful approach to study magnetic phase diagrams and the composition
dependenceofCurie temperature73. Although these cases are based onother
materials, one can still be enlightened by the above-mentioned techniques,
which provide new ideas for the study of functional HEAs with better
performance.

High-throughput computing for HEAs
Besides experimental methods, theoretical and calculation methods also
play an increasingly important role in exploringHEAs. The combination of
simulations and experiments is beneficial to understanding of the physical
mechanism underlying the phase formation and the structure–properties
relationship. Currently, some classic computational simulation methods
havebeendeveloped to guide thedesignofnewHEAs in a large composition
space, such as molecular dynamics (MD)74 and first-principle calculations
based on density functional theory (DFT)75. With the advancement of
computer hardware and software, the emergence of high-throughput cal-
culation (HTC) has attracted much attention, which can significantly
speed upmaterial design and shorten the research and development cycle76.
The core idea of HTC is “integration,” which emphasizes the integration
of calculation and data, and the integration of multi-scale simulations.
Therefore, many integrated computing platforms have been developed,
including Pymatgen77, FireWorks78 and Atomate79, ALKEMIE80,
MatCloud81, and Open Quantum Materials Database82, which have been
widely used in the community and make workflow and dataflow more
maneuverable and transparent.

HTC has been widely used to investigate phase structure and its evo-
lution with composition and temperature in HEAs. Among different
simulationmethods, due to their versatility and reliability, the development
of high-throughput DFT methods for calculating the properties is of great
interest in the HEAs community. The typical approach that has been
developed to model HEAs is DFT based on the coherent potential
approximation83–85. In addition, applying high-throughput first-principles
calculations, Santodonato et al.86 studied the temperature and composition-
related phase evolution inHEAs, and focused on the aluminum-containing
HEA with an enhanced multiphase microstructure. Additionally, the first-
principles-based integrated software AFLOW87 is exploited to high-
throughput screening of the crystal structure of alloys. Lederer et al.88

screened thousands of systems in the AFLOW library, and predicted a large
number of previously unknown potential quaternary and quinary solid
solution alloys, which provides a helpful guide for designingnewHEAswith
a solid solution structure.

The calculationof phasediagram(CALPHAD)approach aims to study
the thermodynamic properties of various phases by developing thermo-
dynamic models89. There are different software developed based on the
CALPHAD approach, one of the typical commercial software is Thermo-
Calc, which includes high-throughput modules such as TC-Python.
Thermo-Calc users run batch calculations for many varied parameters in a
high-throughput manner. Many attempts have been made to develop
thermodynamic modeling in a variety of different alloy systems using the
high-throughput CALPHAD method, including phase diagrams and
thermodynamic properties90–95. Due to the limitations of the empirical VEC
rule in different HEA systems, Zhong et al. recently proposed a data
screening procedure to develop new HEAs via a high-throughput CAL-
PHAD approach (as shown in Fig. 7)94 and found the relationship between
phase formation behavior and VEC. Additionally, Zhang et al.90 reported a
sufficiently large database of the Al–Co–Cr–Cu–Fe–Ni HEA system to
calculate the primary solidification phase. Klaver et al.93 used the Thermo-
Calc to determine the phase evolution behavior of AlCrMnMoTi, AlCr-
MoNbTiV, AlCrMnNbTiV, and AlCrFeTiV alloys at different tempera-
tures and found that AlCrMnNbTiV and AlCrMoNbTiV were better HEA
formers. Gurao and Biswas91 studied 1287 equiatomic quinary alloys using
the CALPHAD method to find single-phase FCC and BCC HEAs.
According to their calculation results, they achieved the optimized alloy
composition just by preparing two FCC alloys and seven BCC alloys, which

Fig. 7 | The schematic of discoveringHEAswith a high-throughputCALPHADapproach.Al–Co–Cr–Fe–Ni quinary systemswere used as the case study to investigate the
reliability VEC rule and its application to the material design94 (adapted with permission from ref. 94. Copyright 2020 Elsevier).
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dramatically increased the efficiency of alloy designing. In particular,
CALPHAD can predict the phase diagram under extreme conditions, such
as high temperatures and high pressures, which are difficult to explore for
experimental studies.

As a newly emerging technology, HTC still faces critical challenges.
First, most integrated calculation programs currently available are based on
first-principles calculations; thus the material data are obtained from a few
to dozens of atoms, which requires developing the HTC further on a larger
scale. In this regard, combining ML and first principles to develop high-
precision potential functions for MD simulations is a significant trial96.
Second, the classification of the accumulated materials data is still vague,
making it difficult tomaintain amaterials database in the future. It should be
clearly divided according to an authoritative materials classification system.
In addition, the data format should be strictly followed in the acquisition
process. In terms of an in-depth understanding of HEAs, due to the multi-
principal elements contained in HEAs and the metastable state in ther-
modynamics, there is an urgent need to develop a reliable thermodynamics
database that contains a series of composition, temperature, and phase-
equilibrium data for HEA systems. In this regard, the related binary and
ternary systems should be gathered and assessed by implementing experi-
ments and calculations on HEA systems.

Data-driven ML strategies
The enormous composition space for designing HEAs offers not only
opportunities but also great challenges, requiring intelligent and efficient
strategies for materials discovery. As a burgeoning branch of materials
science, data-drivenmethods, such asML, which are used to study a wealth
of existing experimental and computational data, have become a very
exciting area of research in materials science. ML refers to programs that
automatically improve their ability to perform tasks by learning from
experience in many scenarios. This automates the time-consuming
knowledge acquisition process, which is essential to speed up computing
and reduce the cost of developingdata-based systems.WithML,whengiven
enough data and a rule-discovery algorithm, computers can analyze the
trends in datasets and further help one to understand the relationships
between properties and different parameters, which is beneficial in guiding
materials modeling. ML is most useful in situations in which human
learning is impossible, such as when data and interactions within the data
are too complicated and intractable for human understanding and
conceptualization97.

Datasets for HEAs
The first and most important step in ML is to generate robust datasets for
training the ML model. The selection of suitable data can be deceptive in
ML, which is why so much emphasis is placed on the visualization of the
datasets98. The construction of a dataset is task-oriented; that is, the final
prediction plays a decisive role in what type of data should be collected.

The study of ML in HEAs mainly focuses on the formation of single-
phase solid solutions (i.e., BCC, FCC, andHCP), while somework has been
carried out on mechanical properties such as hardness and modulus.
Compared to traditional metallic materials, HEAs are newcomers that have
been studied for only nearly twodecades. Todate,mostHEAdata have been
collected from published experimental work or simulation methods.
Miracle and Senkov’s review summarizes a dataset containing 648 entries of
HEAs in different systems14. Based on this dataset, Zhuang et al. constructed
a dataset composed of 401 HEAs, which consists of 174 SS phases, 54
intermetallics (IM), and 173 SS+ IM phases, by removing some multiple
alloys with the same composition99. Later, in 2020, Gao et al. built a dataset
consisting of 1252 samples—625 single-phase and 627multi-phase alloys—
covering binaries and multi-component systems100. Besides experimental
data, computational methods, such as high-throughput ab initio and DFT-
based approaches, are used alternatively to produce phase formation
information. Curtarolo et al. developed a high-throughput ab initiomethod
called LTVC (Lederer–Toher–Vecchio–Curtarolo) to predict the transition
temperatureofmulti-component systems88. In thisway, adataset containing

a total of 1798 unique equiatomic compositions was constructed, consisting
of 117 binaries, 441 ternaries, 1110 quaternaries, and 130 quinaries. Based
on this dataset,Vecchio et al. built a data-drivenworkflow for predicting the
composition–phase–structure relationship101.

Besides the phase formation data, there are property datasets of HEAs.
Using the integrated CALPHAD-ML approach, Sun and Lu et al. predicted
the hardness of Ti–Zr–Nb–Ta refractory HEA, which included building a
database of 100 quaternary alloys, training the ML model, hardness pre-
diction, and experimental verification102. A database composed of alloy
composition and hardness data for the Ti–Zr–Nb–Ta RHEAs was estab-
lished by combining CALPHAD. To search for high-entropy ceramics,
Vecchio et al. performed an ML framework on 56 previously reported
entropy-formation ability values, including nine synthesized compositions,
six single phase, and three multi-phases. The high-entropy ceramics in the
dataset are mainly composed of eight carbide-forming metal elements (Hf,
Nb, Ta, Ti, Mo, V, W, and Zr)103. Regarding the modulus, Chen et al.
combined first principles andML to predict the elasticity of severely lattice-
distorted HEAs with experimental validation. TheMLmodels were trained
on 6826 ordered inorganic compounds from theMaterials Project database
to predict the Voigt–Reuss–Hill averages of bulk and shear modulus with
log-normalization104. In the case of experimental data formodulus, Roy et al.
compiled Young’s modulus consisting of only 87 HEA entries from limited
available experimental reports105. All the above-mentioned datasets are
summarized in Table 1.

Despite substantial progress in the construction of datasets for HEAs,
the data size improvement is still far fromcomplete.As a result, the results of
calculations and predictions based on these databases may deviate sig-
nificantly from the experimental results. Moreover, when reporting their
findings, researchers tend to publish only favorable data, while the bad data
points are often dropped. This will lead to the dataset being unbalanced and
will affect subsequent ML models’ performance. Therefore, there is an
urgent need to develop reliable and robust databases dedicated toHEAs. As
such, high-throughput preparation and characterization, as well as HTC,
would be a reliable approach to batch production of HEA libraries,
including composition and property information.

Phase formation prediction
As a new paradigm for developing HEAs, the data-to-knowledge ML
strategy has the potential to explore complex structures and property space
in an efficient way. Additionally, it can also yield valuable insights into the
key factors that determinemacro-performance and thus guide the design of
HEAs with enhanced properties. As mentioned above, ML in the field of
HEAs relies on the availability of libraries of compositions, structures, and
properties that have been assembled and scrutinized by experimental and
computational methods. Considering the different data sizes, phase for-
mation behaviors (i.e., single solid solution formation for HEAs) have
attracted much attention from the academic community105–120. In addition,
there are increasing studies on the physical or mechanical properties of
HEAs. From the perspective of ML, the two cases above correspond to
classification and regression issues, respectively. As such, in this section, we
will review ML techniques and propose the possibility of further develop-
ment of ML in HEAs.

Phase formationbehavior is crucial to theperformanceofHEAs.While
computer simulations, such as first-principles calculations and MD simu-
lations, have become a commonly used tool for materials discovery, their
computation expense limits their application in the accelerated exploration
of potential HEAs. The recent implementation of data-driven techniques
has provided a possible alternative for efficiently predicting phase formation
in HEAs109–112,117,119,121,122. ML can recognize the inner data pattern and
construct a model to make quick predictions for unseen samples. Based on
very sparse data, Raabe et al. proposed an active learning framework, which
includes three main steps—targeted composition generation, physics-
informed screening, and experimental feedback—to accelerate the design of
high-entropy Invar alloys in an almost infinite compositional space (see Fig.
8). Compared with the conventional design approach, which requires years
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and many experiments, this ML workflow requires only a few months to
developHEAswith desirable properties121.Wu et al. usedML to successfully
predict eutectic HEAs with excellent mechanical properties in the
Al–Co–Cr–Fe–NiHEA system, and analyzed the key elements for forming
eutectic HEAs117. Islam et al. established a neural network model to predict
the formation of the HEA phase. Cross-validation revealed a predictive
accuracy of 83% on this limited data set109. Amitava et al. used more algo-
rithms to establish multiple prediction models and forecast the different
structures of the solid solution (FCC, BCC). The prediction accuracy is over

90%, which is attributed to the fact that the random forest model has
overwhelming advantages in dealing with small datasets compared to the
artificial neural network algorithm111. Thus, understanding and applying
multiple ML algorithms is necessary for the prediction of HEA phase for-
mation.Moreover, to solve the data shortage problem ofHEAs, Lee utilized
a conditional generative adversarial network to find a model distribution
that emulates the distribution of known HEAs, then augmented realistic
samples based on feature representation, and finally realized the expansion
of the original dataset119. The results show that the accuracy of the model is
significantly improved due to data augmentation.

Compared with the original ML modeling method, using feature
engineering to construct a new descriptor can effectively determine the
structure–performance relationship123. Material descriptors and models
determine the robustness of theML prediction. Pei et al. carried out theML
modeling analysis ofmany parameters and the link between the phases, and
identified the physical parameters that are crucial to the formation of solid
solutions100, such as volume modulus, melting temperature, etc. Dai et al.
used feature engineering and the ML strategy to extend the descriptor
dimension from a low dimension originally to a high dimension114. Due to
the uniqueness of different algorithm constructions, the best performance
model depends on the effective combination of datasets, descriptors, and
algorithms. In this regard, Zhang et al. proposed a systematic framework
that utilized a genetic algorithm (GA) to efficiently select theMLmodel and
materials descriptors from a huge number of alternatives and demonstrated
its efficiency on two-phase formation problems in HEAs114. Generally, the
prediction accuracy of themodel can be improved through hyperparameter
optimization, suchas increasing thenumberofhidden layers andneurons in
the neural network107. Overfitting and underfitting are the common pro-
blems that anyMLmay encounter113, and there is no exception in the study
of predicting HEA phases by ML. Huang et al. found the overfitting phe-
nomenon using ML phase projection. By adjusting the super parameters
involved in the training process, training accuracy can always be improved
to a higher level99. Wen et al. proposed ML models to predict the solid
solution strength/hardness of HEAs123. Figure 9 shows the prediction error
for the hardness of HEAs by five-fold cross-validation with possible

Table 1 | Datasets of phase and mechanical properties
for HEAs

Item Data
size

Year Ref.

Phase Single phase 648 2017 14

174 SS+ 54 IM+ 173 SS and IM 401 2019 99

625 SS+ 627 multiphases 1252 2020 100

117 Binaries, 441 ternaries, 1110
quaternaries, and 130 quinaries

1798
(DFT)

2020 88

Single phase 70 2023 153

Mechanical
properties

Hardness 100 2021 102

Hardness 162 2021 123

Hardness 85 2021 22

Hardness 557 2022 154

Hardness 290 2021 155

Modulus 6826 2019 104

Modulus 87 2020 105

Yield strength 122 2021 156

Yield strength 501 2023 157

Thermal expansion coefficient 699 2022 121

Fig. 8 | Schematic flow chart of the active learning framework. This framework aims to design the composition of HEAs, combining ML models, DFT calculations,
thermodynamic simulations, and experimental feedback121 (adapted with permission from ref. 121. Copyright 2022 AAAS).
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combinations of different features (ξ, δXr, and ε, etc.). All ML models,
including random forests (RF), support vector regression (SVR), kernel
ridge regression (KRR), Gaussian process (GP), extreme gradient boosting
(XGB), and Bayesian regularized neural networks (BRNN), show a basin-
like tendency, indicating that too many or too few features will reduce the
accuracy. According to “Occam’s razor” principle, simplicity, and inter-
pretability with a minimum number of features are necessary for adequate
accuracy. Using more features complicates the interpretation of the model
and risks overlearning.

In the absence of unified evaluation criteria, excessive optimism is
often reported116 as a result of overfitting and the use of inappropriate
training and test data. It is necessary to propose new standard criteria that
can be used to evaluate the true accuracy and performance ofMLmodels.
An emphasis on experimental validation and repeatability through code
archiving also helps overcome this challenge. The regularization method
can be incorporated into theMLmodel to improve the generalizability of
the model119. The hyperparameters of the model can also be optimized
by the Bayesian optimization method to obtain good generalizability
under the condition of high accuracy. In addition, constructing new rules
with strong interpretability and universality through ML is desirable,
which can be explored using conformable regression. Therefore, com-
bining experimental results with theoretical guidance to analyze specific
target characteristics is imperative to screen new HEAs with good
performance115.

Prediction of mechanical properties
As a new kind of structural material that can serve under extreme envir-
onments,HEAs exhibit uniquemechanical properties, such as high strength
and hardness, and low moduli. These properties are generally used as
selection parameters in the search for new alloys. This raises the question of
whetherMLalgorithms canbe readily used to the search for candidate alloys
with better mechanical properties in such a large composition space.

As one of the most typical mechanical properties of HEAs, hardness
has strong correlations with other properties, which requires an in-depth

understanding. For instance, based on a reliable hardness–strength
relationship, complexmechanical tests can be replaced to some extent by
efficient and inexpensive hardness tests for a fast and comprehensive
assessment of mechanical properties. Hence, developing data-driven
methods, in addition to experimental methods, is essential to effectively
calculate, predict, and evaluate the hardness of HEAs. In this regard,
several studies have attempted to explore the possibility ofML as an aid in
hardness assessment. For example, using the integrated CALPHAD-ML
approach, Sun and Lu et al. predicted the hardness of Ti–Zr–Nb–Ta
refractory HEAs, which included building a database of 100 quaternary
alloys, training the ML model, hardness prediction, and experimental
verification, as shown in Fig. 10 102. Menou et al. used a multi-objective
optimization GA, together with solid solution hardening and thermo-
dynamic modeling (CALPHAD), to design HEAs with high hardness124.
Combining the radial basis function neural network algorithm and first-
principles calculations, Zhu et al. found the key role of Al and its sig-
nificant influence on hardness in modeling the Al–Cr–Fe–Ni system125.
In a similar Al–Co–Cr–Cu–Fe–Ni system, Su et al. formulated a
property-orientated materials design strategy combining ML, design of
experiment, and feedback from experiment to search for HEAswith high
hardness126. On this basis, they further proposed ML models, including
feature engineering and physical models, to provide insights for pre-
dicting the hardness of these HEAs.

In recent years, there have been several studies on themoduli of HEAs.
Recent developments in thefield ofHEAs have sparked interest in usingML
to predict moduli. Balasubramanian et al. implemented gradient boost
algorithms to predict Young’s modulus (E) as well as the phase structure of
low-, medium-, andHEAs composed of refractory elements. TheML result
was in good agreement with the experiments and revealed that the melting
temperature and the enthalpy ofmixing are the key featuresdetermining the
E of refractory HEAs105. Fewer studies have evaluated the role of ML in the
plasticity or strength of HEAs compared to other mechanical properties
(e.g., hardness and modulus). A principal reason is that the plasticity and
strength data are very sensitive to the preparation process and sample sizes,

Fig. 9 | Feature selection based on combinations of features from differentML algorithms.The predicted error of eachmodel contains a subset of the eight features in the
data set123 (adapted with permission from ref. 123. Copyright 2020 Elsevier).
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leading to the poor quality of the original input dataset. Despite the obsta-
cles, some attempts have been made to investigate the possibility of an ML
framework for predicting the plasticity and strength of disordered alloys.
Recently, Liu et al. constructed a data set through high-throughput pre-
paration of solid solutions using powder metallurgy with Zr–Ti–Nb–O
alloys as target materials127. Their study provides an enlightening idea for
enhancing the plasticity of HEAs by tailoring key features via tuning the
element content.

ML force fields
MDsimulations are normally conductedwith classic interatomic potentials.
As these potentials often scale linearly with the number of atoms, they are
computationally inexpensive, and the loss in accuracy is ignored to facilitate
longer simulations or simulations with large-scale systems that include
hundreds of thousands of atoms. However, the construction of force fields
and tight-binding parameters is not straightforward. Given this, ML
methods can provide a useful option for creating a reliable potential energy

Fig. 10 |Hardness distributions as functions of the Ta content. a 0.05–0.2 at.% Ta.
b 0.25–0.4 at.% Ta. c 0.45–0.6 at.% Ta. d 0.65–0.8 at.% Ta. e Hardness values were
predicted using theMLmodel for RHEAswithTa contents of 0.35. fHardness values

predicted using the ML model for RHEAs with Ta contents of 0.4102 (adapted with
permission from ref. 102. Copyright 2021 AIP Publishing).
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representation. Machine learning potentials (MLPs) are mathematical
representations of the multidimensional potential-energy surface as a
function of atomic positions. Unlike traditional potentials, reference data-
bases of MLPs are usually generated by DFT calculations without experi-
mental information. The other two ingredients required for MLPs are local
structural descriptors, such as atom-centered symmetry function
descriptors128, the smooth overlap of atomic positions129, and spectral
neighbor analysis potential descriptors130–132 etc., representing atomic con-
figurations and supervised learning models to obtain reliable relations
between structure and energy, force, or stress tensor133–135.

MLPshavegreatlypromoted the studies of structure, thermodynamics,
and mechanical properties of HEAs. Short-range ordering (SRO) refers to
local chemical/structural ordering, which is a common structural feature in
HEAs. It arises from the chemical interactions of constituent elements and
significantly affects structural stability, and magnetic and mechanical
properties136–138. Meshkov et al. used a low-rank potential in combination
with MC simulations to investigate chemical SRO in the equiatomic fcc
CoCrFeNi HEA, and demonstrated that Fe and Cr form sublattices139.
Similar schemes were also employed to study the phase stability, phase
transitions, and chemical SROof the bccNbMoTaWHEAbyKostiuchenko
et al.140 They claimed that if local lattice distortions are introduced, the single
phase stabilizes instead of separating into sublattices until it drops to room
temperature. Later on, a new algorithm combining the thermodynamic
integration method with moment tensor potentials was developed by
Grabowski et al. to study the anharmonic free energy of a five-component
VNbMoTaW refractory HEA, which achieved DFT-level accuracy141.
DeepMD was also applied to molten TiZrHfNb using ab initio molecular
dynamics (AIMD) trajectories142. Structural analyses of a VZrNbHfTamelt
via partial RDFs and SRO parameters were exploited using high-
dimensional neural network potential, indicating that vanadium atoms
are repulsed by other types of atoms143. Another NbMoTaW potential,
adopting the SNAPmodel, was applied to study the complex strengthening
mechanisms by modeling Nb segregations to the grain boundaries.

Applying the SNAPmodel, polycrystallinemodels with andwithoutMonte
Carlo/MD simulations were obtained, as shown in Fig. 11a–b144.
Byggmästar et al. developed a set of Gaussian approximation potentials that
were used to study segregation and radiation damage of the bcc refractory
VNbMoTaW HEA145,146. The potentials show good accuracy and transfer-
ability in termsof elasticity, thermal stability, liquid anddefect structure, and
surface properties145. Figure 11c, d shows that the final defect structure of
irradiatedVNbMoTaWcontainsonly smallerdislocation loopswith respect
to the pure W. In conclusion, the reduction of interstitial migration, the
immovable dislocation loops, and the increase of vacancymobility together
promote the recombination of defects rather than clustering in HEAs146. In
addition, there are some MLPs for medium entropy alloys147–149 and high
entropy ceramics4–6. For example, Pak et al. used Canonical Monte Carlo
simulations with the ML interatomic potentials to determine the tem-
perature conditions for the formation of single-phase andmulti-phase high-
entropy ceramics and claimed that for TiZrNbHfTaC5 produced with
electric arc discharge, the single-phase formation temperaturewas as high as
2000 K6.

In general, interatomic potentials based on ML help to address the
longstanding dilemma between efficiency and accuracy inMD simulations,
but there are still some challenges in this field. First, the completeness of
databases organized for the potentials of multicomponent chemically dis-
ordered systems is complicated and non-standardized, which is further
exacerbatedby short- ormedium-range orders. Additionally, it is difficult to
apply MLPs out of databases due to better flexibility but less extrapolation.
Another concern is that MLPs are not based on physical information150.
While active learning approaches151 and physically informed MLPs152 may
be the solutions, further development is still needed.

Outlook
This paper presents a concise review covering several aspects of this rapidly
growing field over the past two decades, fromhigh-throughput experiments
and computations to the data-drivenML ofHEAs. To inspire and spur new

Fig. 11 | Polycrystalline models obtained via
simulation method. a The same polycrystalline
model after random initialization with equimolar
quantities of Nb, Mo, W, and Ta144 (adapted with
permission from ref. 144. Copyright 2020 Springer
Nature). b Snapshot of polycrystalline model after
hybrid Monte Carlo/MD simulations. c, d Defect
evolution during annealing146 (adapted with per-
mission from ref. 146. Copyright 2021 American
Physical Society).
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ideas, we present some perspectives and possible research directions
in HEAs.

High-throughput characterization techniques and high-quality
data acquisition for HEAs
To keep pace with continuous advancements in high-throughput material
preparation methods, it is crucial to develop high-throughput character-
ization techniques that offer high resolution, efficiency, and affordability.
From a microdomain or in situ measurement perspective, synchrotron
X-ray techniques possess exceptional capabilities for high-throughput
characterization of a vast array of material samples due to their remarkable
brightness, and high temporal and spatial resolution, thereby alleviating the
flux bottleneck in high-throughput experiments. In addition, subsequent
data crafting with high quality remains an ongoing challenge. Manually
extracting data with expert knowledge is a time-consuming task for thou-
sands of articles. Thus, it is increasingly necessary to develop methods for
automated data extraction that are both rapid and accurate. Techniques
such as web-crawler, natural language processing, or pattern recognition
could potentially facilitate the automatic extraction of information from
articles or patterns such as SEM, EBSD synchrotron XRD, and others.

Metastable state of HEAs
Due to the multi-principal elements contained in HEAs and the metastable
state, there is an urgent need to understand the nonequilibrium thermo-
dynamics of HEAs from both experimental and calculation perspectives.
The cooling rates of some high-throughput methods are much higher than
those of traditional castingmethods used for the preparation of bulk HEAs.
In some extreme cases, owing in part to themulti-principal nature ofHEAs,
the combinationalmaterials librariesmade using high-throughputmethods
can form amorphous structures, which make the properties quite different
from bulk HEAs. In terms of high-throughput CALPHAD, to develop a
reliable thermodynamic database for HEA systems, the related binary and
ternary systems should be gathered and assessed by implementing experi-
ments and calculations.

Analysis of SRO in HEAs
To understand comprehensively the correlations between SRO and prop-
erties, and to facilitate the development of innovative alloys, it is imperative
to scientifically describe and quantitatively characterize SRO in these
compositionally complex alloys. However, the multi-principal element
nature of HEAs poses significant challenges for direct experimental obser-
vation and accurate description of the SRO. Detailed chemical ordering
information can be obtained by combining ML techniques with AIMD
simulations or reverse Monte Carlo refinement methods.

Evaluation criteria and interpretability of ML methods for HEAs
In the absenceofunified evaluation criteria, excessiveoptimism is frequently
observed, resulting from overfitting and the use of unsuitable training and
test data. It is essential to propose new standardized criteria to properly
assess the true accuracy and performance of ML models. Prioritizing
experimental validation and repeatability through code archiving can also
help mitigate this issue. Additionally, the interpretability of ML models
remains limited and necessitates bridging existing gaps. There is a need to
develop new rules with robust interpretability and universality throughML
exploration using appropriate algorithms. Techniques such as partial
dependence plots, individual conditional expectation, permutation feature
importance, global surrogate, local surrogate (LIME), and SHAP (SHapley
Additive exPlanations) exhibit varying technical characteristics that
enhance interpretability.

In summary, the future studies of high-throughput experiments,
computations, and data-drivenML inHEAs will focus on a comprehensive
workflow design, incorporating rational experimental design, automated
high-throughput synthesis, fundamental principles of high-throughput
materials characterization, computational modeling, and data mining

techniques. This multidisciplinary approach will offer a robust framework
for the rational design and discovery of materials.
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