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Forest vegetation increased across
China’s carbon offset projects and
positively impacted neighboring areas
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As forest-based carbon offset programs gain increasing attention, quantifying their impacts beyond
project boundaries remains an open issue, particularly in subtropical and temperate regions. Here we
focus on the local spillover effects of 36 forest offset projects in China’s voluntary carbon market.
Using matching and difference-in-difference analysis, we compare the forest status of the project
areas and buffer zones to their reference areas. Results show overall positive forest gains of 2.25% to
4.25% in project sites, with neighboring areas seeing spillover gains of 0.91% to 1.60%, exhibiting
heterogeneity in individual projects. Further analysis finds limited evidence of leakage, possibly due to
China’s land policies and project features; instead, positive spillovers are facilitated by knowledge
diffusion and information flow, supported by reduced wildfire activities and project application
patterns. This study demonstrates that well-designed forest offset programs can yield benefits
beyond their boundaries, providing insights for offset policy design and project implementation.

Carbon offsets have become a crucial strategy for achieving carbon neutrality
and addressing climate change1,2. Such offsets are usually included in carbon
markets3. Among the offset programs, forest offsets are receiving particular
attention as a cost-effective carbon sink and nature-based climate solution3–5.
Forest-based offset projects regulate land use in a targeted region. Credits are
generated from forest-related activities, including management, reduced
deforestation, afforestation, and reafforestation6. Most studies of the effective-
ness of offset policies have focused on the impacts within the treated area, with
concerns about accurate measurement7,8, the assessment of additionality9–11,
and the assurance of permanence12,13. However, spillover effects outside the
boundaries of a protected area have received less consideration. This research
gap may lead to biased or incorrect evaluation of project efforts14,15. Leakage
(negative spillover), referring toshifts in forest loss toareas thatareunprotected,
might undermine the value of offsets14,16. By contrast, a positive spillover of
forest gains outside the boundaries of the protected area would amplify the
effects of offset policies17.

The direction of spillovers varies across project regions and types15.
Leakage is a common concern for many kinds of land use restrictions. The
result may be underperformance of the project’s objectives. For forest off-
sets, leakage can occur through two mechanisms18: (1) forest harvest
activities may shift from within the project boundaries to outside areas,
typically at a local scale; (2) market demand may shift due to changes in
commodity prices, land prices, and the relative competitiveness of different
regions, leading to the risk of global leakage19,20. Even though some attention

has been paid to potential local leakage when evaluating forest offset pro-
jects, it has been only a secondary research objective; even that limited
research has focused on leakage in tropical forests and reducing emissions
from deforestation and degradation projects21–24, especially in the
Amazon14,21,25,26. Research on the subtropical and temperate regions, as well
as other types of forest offsets, is still limited.

In contrast to the leakage problem, forest offsets may yield extra
benefits through the following channels15: (1) learning spillovers that
transmit knowledge about more sustainable practices and technologies27–29,
(2) social norms spillovers, such as comparisons of activities among
neighboring communities26,30, and (3) the inherent ecological-physical links
between protected areas and adjacent land27,31. Positive spillovers have been
less studied compared to leakage. Moreover, the existing literature usually
studies either positive or negative spillovers, lacking a comprehensive ana-
lysis and consideration of diverse channels.

Spillovers could play an important role in developing methodologies
for forest offset programs, as they may impact the effectiveness and sus-
tainability of these programs. A spillover aligned with the program’s
objectives could enhance the overall project benefits, while a negative spil-
lover undermining these goals can cause over-crediting, necessitating
explicit mitigationmeasures in themethodologies. However, the evaluation
methodologies regarding spillover of forest-based offsets vary widely across
programs and regions. This is particularly evident inChina,where spillovers
have been neglected. In contrast to the stringent requirements for leakage
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accounting in California’s forest offset projects32, almost all of China’s
projects report zero leakage estimates in the project design documents
(PDDs), and claim to have positive spillover effects. In addition, China’s
unique context may influence spillovers; this context includes its strict land
use system, the diverse climate pattern, and the features of forest offset
projects. However, to our best knowledge, the current literature lacks
identification strategies and empirical evidence concerning spillovers in
China, and the claims of these projects remain unproven. Given these
research gaps, this study focuses on the spillovers of China’s forest offset
projects.

As theworld’s largest emitter, China faces substantial pressure for carbon
offsets to achieve carbonneutrality. Its abundant forestry carbon sequestration
resources are expected to play a pivotal role33–36. In 2012, China launched its
voluntary emission reduction market, the Chinese Certified Emissions
Reduction (CCER) program, inviting project applications upon announce-
ment. Project developerswere required to submitdetailedPDDsandmaterials
specifying eligible project boundaries, planned or ongoing activities, and
demonstratingproject additionality.By2017,whenauthorities suspendednew
CCERproject applications, the official website had listed 100 forestry projects.
In 2023, the CCER program was re-launched with updated measures,
guidelines, andmethodologies.Although the programwas temporarily halted,
our results suggest that forest managers continued to maintain and improve
their forests, anticipating future offset credits.

We analyzed 36 out of 100 projects, for which we collected detailed
location data (Fig. 1a). We replicated the project areas and created 5-km
buffer zones (Fig. 1b). Utilizing a grid-based sampling approach at a

resolution of 30m× 30m and employing statistical matching, we con-
structed reference areas with characteristics similar to the project sites,
representing the counterfactual outcome for forest status in the absence of a
project (Fig. 1d). We define a positive program outcome as forest gain, also
described as improved vegetative quality. This outcome is measured as the
annual peak forest greenness, that is, the normalized difference vegetation
index (NDVI), spanning 2000–2022. To assess the impact of CCER pro-
grams and the resulting local spillover effects, we employed difference-in-
difference (DID) regressions to compare the average changes in NDVI
associatedwith the buffer zones of the project and reference areas before and
after the intervention (see details in Methods).

Our research enriches the understanding of the role of forestry carbon
offsets, and increases their credibility and reliability in mitigating climate
change, particularly in subtropical and temperate regions.We contribute to
the existing literature by evaluating the impacts of the voluntary carbon
market, evaluating spillovers from multiple directions and channels,
developing appropriate methods, and assessing the rationality of offset
methodologies. We also fill the research gap on China’s offset projects,
provide a reference for evaluating and managing potential spillovers in a
broader context, and add encouraging empirical evidence on the effective-
ness of forestry projects from a micro-level perspective.

Results
Before assessing the impacts of intervention, we explored whether the
constructed reference area can accurately represent the trends of forestry
before the launch of China’s voluntary carbon market. The collective trend

Fig. 1 | Study area and research design. a The national distribution of forest offset
projects across China overlaid on the 2005 NDVImap. Red circles represent project
locations with documented vertex coordinates (our study sample), while blue circles
indicate projects without specified coordinates. Note that a single county may have
multiple project applications, and a project may span multiple counties. b An
example of one specific project site (blue) and its 5 km buffer zones (light blue). c A

30 m × 30 mgrid (gray) on the project area, precisely delineating its boundary. dThe
matched control counties (dark green) within the same province as the project
locations (purple). e Our grid-based matching results (see Methods), with control
pixels sampled from the control counties, excluding those within established pro-
tected areas. The matched pixels are shown in black.
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of theprojects, alongwith their buffers shown inFigs. 2 and3, exhibits nearly
identical pre-treatment patterns. This suggests that the reference area can
serve as a counterfactual scenario with similar socioeconomics and geo-
graphical characteristics.

Forest gain in the offset project sites
A prerequisite for generating spillovers to nearby areas is that the projects
must have initial impacts within their boundaries. Before interpreting the
results regarding spillovers, we conducted average and project-specific tests
to check the effectiveness of forest offset projects in achievingprogramgoals.
As Fig. 2 shows, the trends of the project and the reference area became
divergent after 2012, which is the post-treatment period. This divergence
continued to grow over time, revealing overall positive effects of the CCER
program. The baseline results of overall project sites show a positive effect of
2.25% to 4.25% with p-value less than 0.01 (Supplementary Table S1). This
provides some evidence that the policy intervention has incentivizedproject
candidates to engage in additional forestry activities.

Furthermore, we conducted a site-based examination to analyze
individual projects (Fig. 2c; Supplementary Tables S2, S4). Among all the
available projects, 29 out of 36 project sites demonstrated statistically sig-
nificant positive DID estimators, indicating positive program impacts in
terms of forest gain. The majority of the estimated effects ranged between
1% and 5%, with the highest effect reaching 37%. One site showed statis-
tically non-significant effects and the remaining five projects (in gray) had
negative DID estimators at the 1% level, most of whose nearby areas also
exhibiting a negative trend (Fig. 3c). The patterns observed in these negative
projects suggest either the absence of forest gains or the influence of other
systematic factors, including climate-related damage within a broader
region.Therefore, thesefive significant negative projects are deemed as non-

effective samples due to the lack of evidence of additional forestry activities
inside the project boundaries.

The spillover effects in nearby sites
Generally, the forest status in all buffer zones follows a similar trend to that
of the project sites (Supplementary Fig. S2), indicating regional ecological
and physical links. As the buffer zones extend farther from the project areas,
the proportion of forest types decreases and NDVI gradually declines. Due
to spillover effects on surrounding areas, either forestry development or
carbon leakage, trends within and beyond project boundaries are changing.
Therefore, directly comparing trends between project sites and their buffer
zones is insufficient to explore the treatment effects. To investigate the
potential spilloversmore thoroughly,we performed amatchedDIDanalysis
on the 5-km buffer zones using a grid-based sampling approach.

The full sample trends indicate that the pixels in buffer zones and their
control groups exhibited consistent patterns prior to 2012, with notable
changes emerging after 2012 (Fig. 3a). Over 23 years, the average forest gain
spillover from the project sites to neighboring areas ranges from 0.91% to
1.60% (for NDVI and kNDVI respectively, p < 0.01, Supplementary
Table S1). This effect becomes increasingly positive in the post-treatment
period, reflecting strengthened forestry efforts and cumulative impacts as
the CCER policy was implemented.

However, our project-specific analyses revealed variations in spillover
effects. Individual site-based estimations (Fig. 3d; Supplementary Tables S3,
S5) showed that, out of 36 projects, regardless the five non-effective projects,
10 projects induced negative impacts to the buffer zones, ranging from
−10.27% to −0.06% with p < 0.01; conversely, 20 projects significantly
induced positive impacts, ranging from 0.09% to 22.34%; while one project
showed no significant effect. This highlights the complex nature of

Fig. 2 | Forestry activities in project sites. a The annual mean trends of NDVI in
project areas and reference areas, with the red vertical line representing the year
2012. b The annual site-based NDVI differences between each of the 36 project sites
and their corresponding reference areas, as represented by blue dots for each year.

The red line across the plot represents themean of these differences across all project.
c The average treatment effect on the treated for individual projects estimated by
difference-in-difference regression, where the whiskers extending above and below
each point indicate the 95% confidence interval.
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spillovers, which can vary across a wide range of settings, including the
geographical location, the ecological setting, and the project features.
Therefore, the existence, magnitudes, and even directions of spillovers
should be assessed within specific settings.

The results are robust to alternative model specifications (Supple-
mentary Table S6). First, we substituted the control group (the outcomes of
1:1 nearest neighbor matching) with the top three and top five nearest
neighbors, recognizing that matching outcomes can affect the estimation.
Second, to account for potential confounding factors arising fromvariations
in area size, wemodified our grid processing approach to adjust the number
of observations of eachbuffer zone associatedwith their sizes (seeMethods).
Third, to address the concern about potential spatial autocorrelation in our
geospatial data, we implemented spatial statistical methods and used spa-
tially robust standard errors developed byConley37,38. Fourth, to account for
discrepancies between the CCER launch year and the project application
submission time, we substituted the intervention time with the public
comment start date for eachproject, conducting theDID regressionwithin a
staggered framework39. Lastly, to address potential temporal confounding
during our long study period, particularly in light of China’s intensified
forestation efforts post-2000 and the initiation of several large-scale tree
plantation programs in the early 2000s40, we conducted additional estima-
tions using shorter intervals 2007–2017 and 2009–2015.

The results are also robust to alternative indices and dataset. First, to
address the non-linear relationship and saturation effect of NDVI in areas
with high vegetation cover and during peak seasons, we employed kNDVI41

as an alternative vegetation index. Results remained consistent, with kNDVI
matching results (Supplementary Fig. S3) aligning with trends in Figs. 2a
and 3a. The estimated effects were slightly larger in absolute value (Sup-
plementary Tables S1–S3), possibly due toNDVI limitations in dense forest

areas. Second, we further validated our results using NDVI data estimated
from different sources. Due to computational constraints, we used 1 km×
1 km resolution data from another source for matching and baseline
regression. While the conclusions remained consistent (Supplementary
Fig. S4; Supplementary Table S6, columns 8-9), the higher-resolution data
used in our primary analysis yielded approximately 5 times larger effect.
This is attributed to the fact that most of the projects consist of numerous
small-scale polygons, with nearly 45% of the 1 km2 grids covering project
sites contained less than 10% project area, resulting in a coarser repre-
sentation of green biomass (see comparison in Supplementary Fig. S5).
Third, to address the potential influence of the large sample size on the
statistical significance of the results,we aggregated the treatment and control
pixels in both project sites and the buffers to conduct baseline estimation on
this smaller sample. The project-level results remain significantly positive
and show only minor differences from our pixel-based estimates. These
findings underscore both the robustness of our conclusions and the
importance of data resolution. Additionally, the results are robust to the
presence of other forest restoration and environmental programs.

Furthermore, we performed two types of placebo tests by randomly
aligning the treatment pixels and intervention period using a bootstrapping
procedure (Supplementary Fig. S6). We first created pseudo-treatment
groups by randomly selecting samples from the control group, maintaining
the original interventionperiod.Then,we randomly selectedboth treatment
groups and intervention periods between 2000 and 2022. Both tests were
repeated 1000 times. These placebo tests simulated scenarios where either
no forestry carbon offset projects occurred in the project areas, or other
policy interventions happened in different years. The results show that our
actual DID estimates lie at the extreme right tail of both the empirical
distributions of the placebo estimates and the associated theoretical normal

Fig. 3 | Forestry activities in buffers. a The annual mean trends of NDVI in the
buffer zones of the project and reference areas, with the red vertical line representing
the year 2012. b The annual site-based NDVI differences between each of the 36
project sites and their corresponding reference areas, as represented by blue dots for

each year. The red line across the plot represents themean of these differences across
all projects. c The average treatment effect on the treated for individual projects’
buffer zones estimated by difference-in-difference regression, where the whiskers
extending above and below each point indicate the 95% confidence interval.
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distribution. This implies a positive effect that is statistically different from
zero, signifying that our observed treatment effects are unlikely to be the
results of random factors and instead represent genuine policy intervention
effects.

Heterogeneity in spillovers
The spatial distribution of estimated spillovers for the 36 sample projects
is presented in Fig. 4a, facilitating a comparison of spillover effects across
different spatial scales. The density patterns reveal that as buffer distance
increases, the distribution of estimators becomes more concentrated
around zero. The average effects diminish, with a notable drop between
the 1 km and 2 km buffers from 0.85% to 0.15%, followed by a gradual
reduction to approximately zero at greater distances. This observed trend
suggests a spatial gradient of forest project impacts on vegetation quality
beyond project boundaries, with the primary impact occurring within the
1 km buffer zone. The pattern also indicates that the 5-km buffer zone
serves as an appropriate analytical boundary for capturing spillover
effects.

We further investigated how project features impact outcomes by
categorizing projects based on county economic development level
(grouped by per capita GDP), project type (forest management = 6, affor-
estation = 25, and vegetation restoration = 5), and primary ecosystem type
(forest = 26, grassland = 3, cultivated land = 6, desert = 1) (Fig. 4b). The

positive spillovers are larger in less-developed regions, vegetation restora-
tion projects, and farmland-predominant ecosystems.

First, regarding the economic status, the potential economic benefits
and new technologies from the projects are appealing to economically
disadvantaged communities42,43, leading to larger positive spillovers in less-
developed regions.

Second, we discuss the heterogeneity with respect to project type. The
ecosystem services provided by afforestation and vegetation restoration
programs have been extensively studied44–46. These projects, including
cropland-to-forest conversion, mine rehabilitation, and reduced defor-
estation, have been shown to influence local climate patterns47, mitigate soil
erosion and land degradation48,49, and enhance ecosystem resilience. Such
effects likely contribute to more substantial spillovers in surrounding areas.

Third, we distinguish the primary ecosystem type within the buffer
zones.The substantial spillovers observed in farmlandecosystemsalignwith
the mechanism tests on land-use changes (see Table 1), where cultivated
land experienced an overall decrease while grassland and forest cover
increased within the 5-km buffers. This suggests that the spillovers may be
partly attributed to the promotion of farmland-to-forest conversion,
potentially driven by farmers’ re-evaluation of revenue from forestry
activities and offset projects when these are perceived asmore profitable50,51.

Conversely, a significantdecrease in vegetationqualitywas found in the
buffer zone primarily composed of desert ecosystem. Satellite imagery

Fig. 4 | Heterogeneity test. aThe spatial pattern of estimated spillovers in the buffer
zones. The main plot depicts the density distribution of DID estimators for buffer
zones at distances of 1 km, 1-2 km, 2-3 km, 3-4 km, and 4-5 km from the project
boundaries. The inset in the upper left corner displays the average effects across these

buffer distances, with each bar representing the mean estimator value for a specific
buffer interval. b A heterogeneity analysis based on three key features: economic
status, primary ecosystem type, and project type; the whiskers extending above and
below each point indicate the 95% confidence intervals for the respective estimates.

Table 1 | The channels of the forestry spillovers

Land use Forest loss Wild fire

Cultivate Forest Grass Full Negative Positive Frequency Freq/km2

DID estimator −0.018***
(−17.59)

0.002
(1.26)

0.024***
(25.80)

−0.001**
(−2.33)

−0.000
(−0.94)

−0.002**
(−2.14)

−0.110*
(−1.77)

−0.002**
(−1.84)

Constants 0.181***
(156.13)

0.570***
(419.11)

0.237**
(221.00)

−0.003***
(−2.76)

−0.002***
(−2.72)

−0.004**
(−2.53)

−0.556***
(−7.23)

−0.004***
(−5.38)

Obs. 1.5e6 1.5e6 1.5e6 1633 644 989 1672 1672

R-squared 0.887 0.317 0.155 0.419 0.678 0.381 0.720 0.427

*p < 0.10; **p < 0.05; ***p < 0.01; T-statistics in parentheses.
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reveals predominant desert conditions both within and beyond the project
sites (see the subplots in Supplementary Fig. S7).While localwater resources
are scarce, the PDD states that the project site is irrigated by rivers formed
frommountain glaciermelt and springwater.Aplausible explanation is that
increased water consumption by the afforestation project may have exa-
cerbated water scarcity in downstream and surrounding areas. This is
supported by further examination revealing a notable decrease in water
surface area from 3.5% in 2010 to 1.9% in 2020, suggesting intensified
drought conditions and consequently decreased vegetation quality in sur-
rounding areas52. These findings highlight the need to consider the complex
interactions between forestry activities and local ecological contexts when
planning and implementing related projects.

The channels of the forestry spillovers
Overall, our analysis does not provide evidence of substantial leakage from
forest offset projects inChina. To investigate potential leakage,we examined
land use dynamics in buffer zones of projects exhibiting negative spillovers,
including non-effective projects. The leakage hypothesis would predict an
increase in cultivated land use in buffer zones, reflecting a displacement of
forest harvest activities from project sites to surrounding areas. However,
our results contradict this expectation: a mean decrease of 1.8% is observed
in cultivated landuse in 2015 and 2020 compared to the 2000–2010 average,
accompanied by increases in grassland and forest cover of 2.4% and 0.2%,
respectively (Table 1, columns 1–3). These land use changes align closely
with those observed in the full sample (Supplementary Table S7). Further
investigation revealed that projects with negative spillovers were primarily
implemented on degraded and eroded soils. This suggests an alternative
explanation for the observed negative effects: inappropriate afforestation
measures may have exacerbated local ecological stresses. For instance, cer-
tain afforestation practices could potentially degrade local soil conditions,
leading to increased erosion and subsequent decline in vegetation
quality53,54.

Furthermore, we examined the trends in forest loss within buffer zones
during the period 2001–2023, utilizing data from Global Forest Change
dataset55. We used the annual percentage of forest loss relative to the 2000
baseline forest cover in buffer zones as our dependent variable (mean:
0.39%). The DID estimation revealed that in the full sample, forest loss
decreased by 0.1% (about 25% reduction) following policy implementation.
Projects with negative spillovers showed a non-significant 0.04% decrease,
while those with positive spillovers exhibited a significant 0.2% reduction in
forest loss (Table 1, columns 4–6). These findings indicate an absence of
additional forest loss or carbon leakage in the buffer zones, while supporting
the positive spillover effects of forest offset projects in reducing forest loss
beyond their boundaries.

Our study suggests that learning could be one of the drivers of positive
spillovers in forest offset projects. This learning effect operates through
knowledge dissemination and behavioral learning15,27. Forest-friendly
technologies and conservation practices spread through neighboring
communities and social networks, which could reduce forest diseases, pests,
and wildfires beyond the project sites. Our analysis of wildfire frequency,
usingMODIS data fromNASA spanning from 2001 to 2022, demonstrates
a notable reduction in wildfire occurrences. Specifically, we observed an
average decrease in wildfire detection frequency of 11% in the entire buffer
zones and 0.2% per square kilometer, as detailed in Table 1, columns 7–8.
This reinforces the effectiveness of learning in preventing and mitigating
forest-related challenges.

In addition, information flowing among neighbors enhances their
understanding of the costs and benefits of forest-related activities. When
theywitness profitable outcomes innearby forest offsetprojects, they tend to
adopt similar behaviors related to forest conservation and project applica-
tions. This is supported by the fact that 60 out of 100 CCER forest offset
projects received project applications in the same cities during adjacent
years. Over half of the studied projects, and 50% of the projects with evi-
dence of positive spillovers, were located in cities with successive rounds of
project applications (Supplementary Table S10).

Discussion
This study offers insights into the incentives provided by China’s CCER
program for forestry activities and the resulting spillover effects. Using a
quasi-experimental approach with a 23-year panel dataset from 2000 to
2022, we find that forest offset projects induce overall positive forestry
spillovers to their buffer zones, with learning potentially being one of the
contributing channels. Within the scope of our analysis, substantial leakage
is not detected.

Several reasons may contribute to these results. First, land-use reg-
ulations in China are stringent56–58. For example, felling permits, with strict
approval procedures, are required for forest harvesting. This makes it less
likely that forest harvest activities will shift to unprotected areas. Second, the
scattered and limited-scale nature of the offset projectsmakes it challenging
for any single project to exert a substantial influence on the supply and
demanddynamics of global timberor cropmarkets18,59. Forest offset projects
in China are typically characterized by small and disconnected polygons,
mostly due to the land use features and strict site selection criteria. These
include requirements for non-forested land since 2005 and have certified
ownership rights, with the latter complicated by China’s complex forest
property system (see SupplementaryNote 1 for details). These factorsmake
it difficult to yield large fluctuations in the local timber market, as relatively
small polygons are being regulated. Thus, leakage through shifts in market
demand is less likely to occur.

Compared to the existing literature, our findings also show a con-
siderable magnitude. Our study reveals an annual NDVI growth rate of
0.0035 in project areas and 0.0029 in buffer zones from 2000 to 2023,
significantly higher than the range of 0.0006 to 0.0027 observed for China as
a whole during different periods in previous studies60–63. Using a difference-
in-differences approach, we identified additional average NDVI growth of
2.25% in project areas and 0.91% in buffer zones from 2012 to 2022, after
controlling for commontrends.These results arenot only comparable tobut
in some instances surpass the effects found in other conservation programs
and afforestation initiatives63–65, indicating the significant impact of CCER
forest offset projects on vegetation quality.

The study offers insights for the ongoing implementation of China’s
CCER market, particularly since the process of approving applications was
re-started in 2023. The results suggest that forestry offset projects, due to
their potential for additional carbon removal and emissions reduction,
should receive priority consideration in CCER-supported projects, thereby
enhancing their role in achieving carbon neutrality. Additionally, the var-
iation in spillover effects that we found suggests that, while leakagemay not
be a primary concern, it should be addressed on a case-by-case basis, con-
sidering the geo-bio-physical conditions of the project area, especially in
ecologically sensitive regions. Moreover, although not the primary focus of
our study, ourfindings of forestry gains observed from2012bothwithin and
beyond the project sites lend support to the 2023 revision of the adminis-
trative measures for the CCER market. This revision shifted the project
eligibility criterion, changing the initiation date for eligible project activities
from 2005 to 2012, aligning it with the CCER program’s implementation
date66. This adjustment reflects a more targeted approach to capturing the
effects of the CCER initiative.

Although not all projects demonstrate forest gain or spillover effects, this
does not imply that these projects are completely ineffective. The delay in
project approval might be a key factor. Many project applications were sub-
mitted after 2016. However, as noted, the Chinese government suspended
project approvals in 2017, restarting the process in 2023. Therefore, many
potential projects have not been approved or have not yet received carbon
offset credits. Even so, the anticipation of getting credits in the future induced
some forest improvement. As a result, this study may underestimate the
potential ofCCERprojects toprovidefinancial incentives for forestryactivities.

Our study provides avenues for future research on forestry offset
projects. While our focus has been on investigating spillover effects within
the forest context, future research could consider an expanded scope of co-
benefits of these projects. The PDDs for many of the projects suggested co-
benefits such as employment opportunities, poverty alleviation, climate
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adaption, biodiversity conservation, water conservation, air quality, and
other ecological improvements. With the relaunch of the CCER market in
China, it is expected that certain forest offset projects that we studied will
gain approval and start receiving credits in the near future. Future studies
can continue to track the progress of these projects to assess the post-
approval performance, and thus evaluate the effectiveness of carbon credits
in a broader context.

We acknowledge several limitations to this study. First, while we have
some evidence regarding the impact of learning effects, a more compre-
hensive understanding of why and how forestmanagers respond to policies
necessitates more granular data. This could include individual behavioral
data obtained through field investigations and interviews, whichwould also
facilitate exploration of other potential mechanisms, such as social norms.
Second, although our estimation of net spillovers accounts for both aggre-
gate and individual analysis, the spatial influences can occur bidirectionally,
making it challenging to empirically separate these effects in a single
direction within a particular site. We believe that these issues could be
addressed with detailed data and specific research designs in the future.
Additionally, considering the re-launch of CCER program in 2023, further
research across a wider range of forestry projects in China is necessary to
draw more comprehensive insights. Despite the above limitations, this
research highlights the potential of China’s CCER program, and adds evi-
dence on both positive spillover and limited leakage of forest offset projects
in subtropical and temperate regions.

Methods
Figure 5 provides an overview of our methods and variables.

Study sites and offset projects
From 2012 to March 2017, a total of 100 forest-related offset projects were
announced. These 100 projects were distributed across 68 cities in 23 pro-
vinces, with some projects spanning multiple cities and several projects
located within a single city. We collected primary information for all 100
projects and acquired PDD files for 96 of them. Among these, 36 projects

provided vertex coordinates for each forestry sub-compartment, and
became the focus of our study (see details in Supplementary Table S11). The
representativeness of our research sample is further analyzed by comparing
the geographical distribution, socio-economic contexts, forest conditions,
and project characteristics of the sample projects against those lacking
detailed location data (Supplementary Fig. S1). This analysis indicates that
despite some missing sample, the projects we studied offer a broadly
representativeness across multiple dimensions rather than being subject to
sample selection bias (see details in Supplementary Note 2).

We utilized the coordinate data from the PDDs to delineate the
boundaries of forestry sub-compartments for the 36 projects. These
boundaries were further refined using additional information from the
PDDs, including project area maps and satellite images. Remote sensing
imagerywas also used to create amore accurate representationof the project
boundaries, removing non-project areas such as rivers and residential lands,
ultimately generating thefinal project polygons (Fig. 1). Basedon the project
polygons,we created concentric buffer zones at intervals of 0-1, 1-2, 2-3, 3-4,
and 4-5 kilometers and grid each buffer into several 30m × 30m pixels for
data calculation. It is worth noting that these projects typically consist of
multiple small, scattered, and disconnected polygons, with very few large
and independent forest areas. As a result, the 5-kmbuffer zones around each
project are, on average, thirty times larger than the project area. This
characteristic is illustrated in the lower part of the example project shown in
Fig. 1b. Our high-resolution data accurately captures both the project
boundaries and the scattered small polygons. In total, the 36 projects yielded
approximately 2.39 million pixels (Supplementary Table S8).

Reference area construction
To identify control units for each project, we followed two steps to keep
similar socioeconomic and geo-bio-physical conditions between treatment
and control groups. Before matching, we conducted data exclusions and
filtration. First, counties with forest projects supported by other offset
programs were excluded, including those under the Clean Development
Mechanism of the Kyoto Protocol and projects certified by the Verified

Fig. 5 | Flowchart of methods. First, the project
areas were identified and calibrated using remote
sensing imagery. Thus, 5-km buffer zones were
created for each project. Both the project and buffer
polygons were rasterized into about 30 m × 30 m
pixels. Second, the reference areas were constructed
following data exclusion and a two-step statistical
matching process: the control groups were restricted
to the same provinces without other forest offset
projects, and the protected areas were excluded;
county matching was conducted using county-level
socioeconomic covariates; and pixel matching was
conducted using pixel-level geo-biophysical covari-
ates. These steps constructed references areas for
both project sites and buffers, generating the
matching pixels. Third, difference-in-differences
regressions were run for the entire offset portfolio
using pooled data, as well as for each individual
project, to estimate the impact of CCER programs
on additional forestry activities of forest offset
projects.
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Carbon Standard, a widely used greenhouse gas crediting program. Addi-
tionally, counties with other CCER projects were not considered in our
analysis. Second, established protected areas, namely the area involving
conservation, were excluded. Third, control counties were restricted to the
same province as project sites to ensure a same policy environment and
similar climatic conditions. This was done to mitigate potential con-
founding effects from other programs and policies. Forests within other
forest offset projects and established protected areas are under some formof
forest-friendly management and therefore do not represent counterfactual
outcomes for the forest status in the absence of any intervention.

Firstly, we identified counties that were similar to the counties where
the projects were implemented, based on selected conditions and statistical

matching. We focused on socioeconomic covariates, including GDP, gov-
ernment revenue, industrial structure, and land use structure. The Maha-
lanobis distance67,68 was then calculated and compared for each available
county for the year preceding the claimed activities year. For projects
implemented in only one county, 1:2 nearest-neighbor matching with
replacement was applied. For those implemented in more than one county,
1:1 matching was performed (Fig. 6a). We evaluated the quality of the
matching, adjusted the relevant covariates, and iteratively optimized the
control group counties (Fig. 6b). In the first few iterations, we found that
some counties had been funded by other forestry carbon sequestration
projects recently, indicating that our matching results were well repre-
sentative. A total of 86 counties were selected into the matched control

Fig. 6 | Spatial matching and balance assessment. a Delineates the distribution of
project sites and their matched counties, connected by lines to emphasize the geo-
graphic pairing. bCompares the standardizedmean difference of covariates between
treated and control counties before and after matching. The open circles represent
the standardized mean differences before matching, while filled circles (blue) indi-
cate these differences after matching. The vertical dashed lines demarcate standar-
dized mean differences of −0.1, 0, and 0.1, providing reference points for assessing
the quality of covariate balance. The covariates include forest coverage (forest),
industrial structure (1st Ind., 2nd Ind.), and economic indicators (revenue, per_GDP,

GDP). cProvides an example of pinpointing individual project andmatched pixels at
1 km × 1 km resolution (30 m × 30 m resolution is exhibited in Fig. 1c) where the
blue pixels denote the project sites and the purple pixels denote the reference area.
d Compares the standardized mean difference of covariates between treated and
control pixels in buffer zones before and after matching. The covariates include land
use of the pixel and the surrounding pixels (LUCC, LUCC Buffer), landform, where
the proportion of each category is considered, as well as NDVI, precipitation, and
solar radiation (SRAD).
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group after a series of filtration and matching, with 73 being unique. The
repeated matched county mainly occurred in projects in Guangdong and
Hubei provinces, where a number of cities were excluded before matching
for the implementation of forest offset projects. After converting the unique
matched counties into grid cells, we obtained about 350 million pixels to
serve as control pixels.

Secondly, we constructed a reference area, namely a counterfactual
control area for each project and their corresponding buffer zones, based on
biophysical and land-use variables, using a grid-based sampling strategy and
statistical matching. This ensured equal coverage and similar features of
project areas, which had multiple project types and initial land use types
(non-forested, sparse-forested, cultivated, grasslands, unused, or degraded
land). A nationwide 30m× 30m resolution grid (consistent with theNDVI
base data grid) was overlaid on the project area and the matched county,
using the Create Fishnet toll in ArcMap v.10.5. Thus, we performed 1:1
nearest-neighbor matching with replacement on each pixel plot from the
pool of control pixels group, based on NDVI, land use, landform, pre-
cipitation, solar radiation, ecosystem, as well as land use type surrounding
the project pixels (Fig. 6c, d; Supplementary Table S9). Similarly, a Maha-
lanobis distance metric was used to measure the similarity between treated
and control pixels. This process yielding0.6millionunique control pixels for
project sites, indicating that a matched control pixel is used 4 times on
average in the control group.An identicalmatching approachwas applied to
the buffer zones, with more than 70 million pixels within the 5-km buffer
zones. These matched pixels were eventually synthesized into a reference
area. As a result, the matching process has to be carried out individually for
each of the 36 projects and their 5-km buffer zones, about 73million pixels,
which makes the process computationally demanding.

To demonstrate the effectiveness of our matching process, we com-
pared the standardized mean difference of covariates before and after
matching, a crucial step in ensuring the validity of our subsequent causal
analysis. Figures 6b and d demonstrate a substantial reduction in the
standardized mean differences across all covariates after matching, as evi-
denced by the clustering offilledblue circles closer to the zero line compared
to the open circles. These confirm the successful alignment of covariates
between treated and control areas, thereby strengthening the robustness of
our methodological approach in constructing appropriate control groups.

For robustness checks, we expanded the matching process for project
sites to include 1:3 and 1:5 nearest neighbors. Given the computational costs
and the need for rigorous validation stemming from the abundance of
observations in buffer zones, we applied this replacement approach to all 36
project sites. Our findings indicate that this replacement yielded nearly
identical estimates.

Identification of additional forestry activities and spillovers
Quasi-experimental methods are widely used for evaluation of forest con-
servation. These methods can be summarized as matching, before-after
control-impact (difference-in-difference), regression discontinuity, and
synthetic control69,70. Because this study focuses on spillover effects, and the
areas inside and outside the project boundary are correlated to some extent,
regression discontinuity design is not applicable in this case71. Therefore, we
use matching and difference-in-difference (DID) models to evaluate the
spillover effects of forest offset projects. We also need to mitigate con-
founding effects that are contemporaneous with the intervention and could
affect the outcome. To do so, we pooled the data and used two-way fixed
effects panel regression to eliminate historical trends and unobserved
environmental and social characteristics:

NDVIit ¼ αþ β � Treati þ γ � Postt þ δ�ðTreati × PosttÞ þ μi þ θt þ εit ð1Þ

where NDVIit represents vegetation status for project i in year t and is
logarithm-transformed;Postt defines the pre- and post-intervention period;
and γ captures temporal trends; Treati defines treatment and control
groups; β indicates baseline differences between these two groups;
Treati × Postt is the DID estimate term; δ quantifies the causal impact of

the intervention; μi is the individual fixed effect of project i; θt is the fixed
effect of year t; α is the constant term; and εit is the error term. The analysis
initially follows this baseline econometric specification.

The post-intervention period is defined as 2012-2022, since the year
2012 marked the launch of China’s voluntary emission reduction market,
signaling potential financial support and incentivizing early action. Fur-
thermore, project activities often commence before formal submission, and
emission reduction estimations consider pre-application activities. Notably,
Figs. 2a and 3a demonstrate substantial vegetation index growth starting in
2013, indicating a rapid response to the policy announcement. These factors
collectively justify 2012 as the appropriate start year for analyzing theCCER
program’s impact.

TheDIDmodels are also employed to investigate the channels of forestry
spillovers, including changes in land use, forest loss, and wildfire activity:

luccit ¼ αþ β � Treati þ γ � Postt þ δ�ðTreati × PosttÞ þ μi þ θt þ εit ð2Þ

lossit ¼ αþ β � Treati þ γ � Postt þ δ�ðTreati × PosttÞ þ μi þ θt þ εit ð3Þ

fireit ¼ αþ β � Treati þ γ � Postt þ δ�ðTreati × PosttÞ þ þμi þ θt þ εit ð4Þ

where luccit represents the proportion of five types of land use in the buffer
zonesof theproject i in year t, including forest land, residential areas, unused
land, grassland, and water areas; lossit represents the forest loss detected in
the buffer zones of the project i in year t; fireit represents the wildfire
frequency in the entire area or per square kilometer in the buffer zones of the
project i in year t.

Tomanage computational complexity while preserving the integrity of
pixel-level data and maintaining robust statistical inference, we employed
several strategic approaches. The baseline regression for project areas uti-
lized all available pixels, totaling approximately 107 million observations;
however, applying the same regression method to buffer zones would have
increased the number of observations by more than 30 times. To address
this, we implemented a clustering approach for buffer zones. Pixels within
eachproject’s buffer zonewere grouped into afixednumber of parcels based
on proximity, with the mean value of each parcel serving as a single
observation.We set the number of parcels at 10,000 (variations in this value
were tested and found to have negligible impact on estimates), resulting in
approximately 16.5 million observations for the baseline regression. In our
robustness checks,we employed analternative clusteringmethod toaccount
for the size of buffer areas across projects, where every 25 pixels (150m²)
were grouping into a single parcel based on proximity27. This adjustment
enhances the comparability of results across projects with differing spatial
extents, thereby improving the robustness of our analysis against scale-
dependent effects. Furthermore, for placebo tests on both project sites and
buffer zones, we utilized a subsampling technique23. Specifically, for each
iteration, we randomly selected a number of pixels from the control pixels
equivalent to 10% of the treated pixels to construct pseudo-treatment, and
this process was repeated 1000 times in total for each of the two types of
placebo tests, totaling 4000 times, to ensure statistical reliability.

Research data and variables
The study period is 2000–2022. This provides sufficient temporal coverage
to evaluate the changes in outcomes: 12 years before and 10 years after the
implementation of CCER. Data used in this study are the county-level
socioeconomic variables and 1 km× 1 km resolution geo-bio-physical
variables.

NDVI (NormalizedDifferenceVegetation Index) is the key dependent
variable of this study, which is widely used for expressing forest status
including density and health72, forest greening73, forest growth74, and forest
productivity75. It is measured by the difference between the near-infrared
(NIR) and the visible red light reflectance (RED) from satellite imagery.
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Mathematically, NDVI is calculated using the formula:

NDVI ¼ ðNIR� REDÞ=ðNIRþ REDÞ ð5Þ

NDVI values range from−1 to+1. Negative values typically indicate
non-vegetative cover such as water, snow, or clouds. Values near zero
suggest bare soil or rock,while positive values indicate vegetation cover,with
values closer to 1 representing denser and healthier vegetation. As plant
chlorophyll absorbs red light for photosynthesis, greater plant growth leads
to increased red light absorption and NIR reflection. Consequently, higher
NDVI values generally indicate better plant growth andhigher biomass68. In
this study, we utilize two sources ofNDVI data. Our primary source is 30-m
resolution NDVI data derived from all available Landsat 5/7/8/9 remote
sensing imagery. This dataset is processed to remove clouds and shadows,
and the annual NDVI is calculated as the maximum value from all valid
Landsat observations throughout the year. Additionally, we employ 1-km
spatial resolution NDVI data derived from the SPOT/VEGETATION
PROBA-V 1 KM PRODUCTS, which provides an annual perspective on
NDVI across China from 1998 to 2019. This moderate-resolution data is
generated using a maximum value synthesis method, capturing the peak
monthly NDVI values for each year, with values ranging from 0 to 1.
Notably, NDVI can exhibit a saturation effect in dense forest areas, where
the index becomes less sensitive to vegetation changes. This could
lead to underestimation of effects and increased uncertainty in our analysis.
To ensure a more accurate and robust analysis, we also employed
kNDVI, an index proposedbyCamps-Valls et al. that corrects for saturation
effects.

The high-resolution 30-mNDVI dataset is sourced from the National
Ecosystem Science Data Center (nesdc.org.cn)76. The 1-km resolution
NDVI data, land use and the landform dataset come from the Resource and
Environmental Science Data Platform of the Chinese Academy of Sciences
(resdc.cn). The China Multi-temporal Land Use Remote Sensing Mon-
itoring Dataset is based on Landsat satellite imagery, where the available
periods of 2000, 2005, 2010, 2015, and 2020 are used. This dataset employs a
two-tiered classification system. The primary level encompasses categories
including cultivated land, forest land, residential and industrial land,
grassland, water area, and unused land. The secondary level classifies these
into 23 distinct types. The landform dataset, derived from Landsat satellite
imagery, is constructed through fusion of remote sensing products with
classifications based on slope, aspect, and elevation.

The precipitation variable comes from the 1-kmmonthly precipitation
dataset for China (1901–2022)77.We aggregated themonthly data to obtain
the annual precipitation. The downward shortwave radiation is obtained
from the China Meteorological Forcing Dataset (CMFD), which is esti-
mated directly from 2-meter temperature, surface pressure, and specific
humidity78. The nationwide established protected area and ecosystem
dataset is sourced from theGeographic Remote Sensing EcologicalNetwork
Platform (gisrs.cn), which is compiled based on information provided by
relevant authorities. It is worth noting that a minimal number of missing
values may occur, primarily in peripheral areas of the map. To address this
issue, we employed a nearest-neighbor imputation method, replacing any
missing values with data from the closest available pixel.

The forest loss variable is derived from the Global Forest Change
2000–2023 dataset55. In this dataset, forest loss is defined as a stand-
replacement disturbance or a change from forest to non-forest state. Using
2000 as the baseline year, the data detects loss primarily in the year
2001–2023 at a high spatial resolution of 1 arc-second per pixel (approxi-
mately 30 meters per pixel at the equator).

The wildfire data is sourced from the Moderate Resolution Imaging
Spectroradiometer (MODIS) Burned Area Product provided by the U.S.
National Aeronautics and Space Administration (NASA).MODIS, situated
on the Terra and Aqua satellites, captures data across 36 spectral bands or
groups of wavelengths, allowing for daily earth surface observations. The
MODISBurnedArea Product provides daily information on global burning
events at a 1-km spatial resolution from 2001 to 2022, which is extensively

utilized as a data source for analyzing wildfire activities79,80. We organized
the data to pinpoint China’s observations using latitude and longitude
coordinates. Subsequently, we calculated the annual wildfire frequency
within project and reference sites, as well as their associated 5-km buffer
zones, considering the quality of individual hotspot pixels. In our study
sample, an average of 1.12 active fires is detected per project annually, with
an average of 30.38 detections within the buffer zones. The results of log-
transformed total frequencies and frequencies per square kilometer were
utilized to analyze the spillover effect of wildfire prevention.

The socioeconomic variables were obtained from the China Statistical
Yearbook (County-Level) and Statistical Bulletin on National Economic
and Social Development of provinces. We gathered and organized data on
GDP, population, general budget revenue of local governments, and added
value of secondary and tertiary industry. We transformed these data into
log-transformed GDP, per capita GDP, and general budget revenue, and
calculated proportions of secondary and tertiary industry, representing the
industrial structure. We standardized the county using coding provided by
theMinistry of Civil Affairs, unified different units, and corrected data with
noticeable anomalies. For a few missing values, linear trends were used to
impute them. Additionally, the proxy variable for county-level land use was
the proportion of land used for forestry, extracted for each county from the
aforementioned land use dataset.

Data availability
The data used to replicate the findings are publicly accessible at https://doi.
org/10.6084/m9.figshare.2786150181.

Code availability
The code used to produce result figures is accessible at https://doi.org/10.
6084/m9.figshare.2786150181.
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