Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

X-ray absorption spectroscopy

Abstract

X-ray absorption spectroscopy (XAS) is an established experimental technique for studying the electronic and local geometric structures of materials. As a short-range order structural probe, it can be applied to all states of matter: crystalline or amorphous solids, liquids and gases. The method is element selective and highly sensitive, with little compromise required to integrate complex sample environment set-ups. These characteristics make the technique suitable for applications in a range of scientific disciplines, from chemistry and catalysis to environmental science, materials science, physics, biology, medicine and cultural heritage. An XAS spectrum is obtained by measuring the modulation of the sample absorption coefficient as a function of the incident X-ray beam energy. Data are usually collected in transmission detection mode, although fluorescence and electron yield detection modes are often used. The XAS spectrum is divided into two regimes: X-ray absorption near-edge structure and extended X-ray absorption fine structure. In this Primer, an overview of XAS fundamentals is given, together with a description of the experimental set-ups, sample requirements, data analysis and possible applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Processes in X-ray absorption spectroscopy.
Fig. 2: Log–log plots of X-ray mass absorption coefficients versus photon energy.
Fig. 3: Schematic diagram of X-ray absorption fine structure measurements.
Fig. 4: Example normalization and extraction of an extended X-ray absorption fine structure spectrum from the raw X-ray absorption spectroscopy data.
Fig. 5: Data analysis of the extended X-ray absorption fine structure spectrum of the [NiCl(H2O5)]+ cluster.
Fig. 6: Example applications.

Similar content being viewed by others

References

  1. Chantler, C. T. & Creagh, D. C. in International Tables for Crystallography Vol. I, Ch. 2.1 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 21–40 (Kluwer Academic Publishers, 2024). Encyclopaediac introduction to and summary of X-ray absorption spectroscopy and X-ray emission spectroscopy for users and experts.

  2. Chantler, C. T. X in International Tables for Crystallography Vol. I, Ch. 9.1 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 1059–1067 (Kluwer Academic Publishers, 2024).

  3. Ascone, I. & Chantler, C. T. XAFS-related entries in the online dictionary of crystallography. IUCr https://www.iucr.org/resources/commissions/xafs/xafs-related-definitions-for-the-iucr-dictionary (2021).

  4. Chantler, C. T. & IUCr Commission on XAFS. in A Little Dictionary of Crystallography [IUCR Commission on Crystallographic Nomenclature] (eds Authier, A. & Chapuis, G.) 1–286 (Kluwer Academic Publishers, 2019).

  5. Chantler, C. T. Theoretical form factor, attenuation, and scattering tabulation for Z = 1–92 from E = 1–10 eV to E = 0.4–1.0 MeV. J. Phys. Chem. Ref. Data 24, 71–643 (1995).

    Article  ADS  Google Scholar 

  6. Chantler, C. T. et al. X-ray form factor, attenuation and scattering tables (version 2.0). NIST https://physics.nist.gov/PhysRefData/FFast/html/form.html (2000).

  7. Chantler, C. T., Smale, L. F. & Hudson, L. T. in International Tables for Crystallography 4th edn, Vol. C, Ch. 4.2.2 (ed. Welberry, T. R.) (Wiley, in the press). Encyclopaedic explanation of matterphoton, electronmatter and neutronmatter interaction for crystallographers, diffraction, X-ray absorption spectroscopy and X-ray emission spectroscopy researchers.

  8. Creagh, D. C. & Chantler, C. T. in International Tables for Crystallography 4th edn, Vol. C, Ch. 4.2.3 (ed. Welberry, T. R.) (Wiley, in the press).

  9. Creagh, D. C. & Chantler, C. T. in International Tables for Crystallography 4th edn, Vol. C, Ch. 4.2.4 (ed. Welberry, T. R.) (Wiley, in the press).

  10. Kraft, S., Stümpel, J., Becker, P. & Kuetgens, U. High resolution X-ray absorption spectroscopy with absolute energy calibration for the determination of absorption edge energies. Rev. Sci. Instrum. 67, 681–687 (1996).

    Article  ADS  Google Scholar 

  11. Chantler, C. T. & Bourke, J. D. in International Tables for Crystallography Vol. I, Ch. 2.25 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 230–269 (Kluwer Academic Publishers, 2024).

  12. Durham, P. J. in EXAFS and Near Edge Structure (eds Bianconi, A., Incoccia, L. & Stipcich, S.) 37–43 (Springer, 1983). Overview, both introductory and more detailed, of synchrotron techniques and applications.

  13. Durham, P. J. in X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES (eds Koningsberger, D. C. & Prins, R.) 53–84 (Wiley, 1988).

  14. Natoli, C. R., Hatada, K. & Sebilleau, D. in International Tables for Crystallography Vol. I, Ch. 2.3 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 48–54 (Kluwer Academic Publishers, 2024).

  15. Kas, J. J., Rehr, J. J. & Vila, F. D. in International Tables for Crystallography Vol. I, Ch. 2.10 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 107–113 (Kluwer Academic Publishers, 2024).

  16. Crasemann, B. in Atomic, Molecular and Optical Physics Handbook (ed. Drake, G. W. F.) 701–711 (AIP, 1996).

  17. Kissell, L. & Pratt, R. H. in Atomic Inner-Shell Physics (ed. Crasemann, B.) 465–711 (AIP, 1985).

  18. Kane, P. P., Kissell, L., Pratt, R. P. & Roy, S. C. Elastic scattering of gamma rays and X-rays by atoms. Phys. Rep. 140, 75–159 (1986).

    Article  Google Scholar 

  19. Strutt, J. W. On the light from the sky, its polarization and colour. Phil. Mag. 41, 107–120 (1871).

    Article  Google Scholar 

  20. Strutt, J. W. On the scattering of light by small particles. Phil. Mag. 41, 447–447 (1871).

    Article  Google Scholar 

  21. Thomson, J. J. Conduction of Electricity Through Gases 2nd edn (Cambridge Univ. Press, 1906).

  22. Delbruck, M. Note added in proof to L. Meitner and H. Kosters. Z. Phys. 84, 137 (1933).

    Google Scholar 

  23. Papatzacos, P. & Mork, K. Delbruck scattering calculations. Phys. Rev. D 12, 206 (1975).

    Article  ADS  Google Scholar 

  24. Milstein, A. I. & Schumacher, M. Present status of Delbruck scattering. Phys. Rep. 243, 183–214 (1994).

    Article  Google Scholar 

  25. Compton, A. H. The total reflexion of X-rays. Phil. Mag. 45, 1121 (1923).

    Article  Google Scholar 

  26. Compton, A. H. The spectrum of scattered X-rays. Phys. Rev. 22, 409 (1923).

    Article  ADS  Google Scholar 

  27. Lee, P. A. & Pendry, J. B. Theory of the extended X-ray absorption fine structure. Phys. Rev. B 11, 2795–2811 (1975).

    Article  ADS  Google Scholar 

  28. Gurman, S. J., Binstead, N. & Ross, I. A rapid, exact, curved-wave theory for EXAFS calculations: II The multiple-scattering contributions. J. Phys. C 19, 1845–1861 (1986).

    Article  ADS  Google Scholar 

  29. Bunker, G. Application of the ratio method of EXAFS analysis to disordered systems. Nucl. Instrum. Methods Phys. Res. 207, 437–444 (1983).

    Article  ADS  Google Scholar 

  30. Fornasini, P. in International Tables for Crystallography Vol. I, Ch. 2.14 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 139–146 (Kluwer Academic Publishers, 2024).

  31. Lee, P. A., Citrin, P. H., Eisenberger, P. & Kincaid, B. M. Extended X-ray absorption fine structure — its strengths and limitations as a structural tool. Rev. Modern Phys. 53, 769–806 (1981). One of the first major overviews of extended X-ray absorption fine structure analysis and value.

    Article  ADS  Google Scholar 

  32. Stern, E. A. in X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES (eds Koningsberger, D. C. & Prins, R.) 3–51 (Wiley, 1988).

  33. Jaklevic, J. et al. Fluorescence detection of EXAFS: sensitivity enhancement for dilute species and thin films. Solid State Commun. 23, 679–682 (1977).

    Article  ADS  Google Scholar 

  34. Chantler, C. T. et al. Stereochemical analysis of ferrocene and the uncertainty of fluorescence XAFS data. J. Synchrotron Radiat. 19, 145–158 (2012).

    Article  Google Scholar 

  35. Trevorah, R. M., Chantler, C. T. & Schalken, M. J. Solving self-absorption in fluorescence. IUCrJ 6, 586–602 (2019).

    Article  Google Scholar 

  36. Trevorah, R. M., Chantler, C. T. & Schalken, M. J. New features observed in self-absorption-corrected X-ray fluorescence spectra for Ni complexes with uncertainties. J. Phys. Chem. A 124, 1634–1647 (2020).

    Article  Google Scholar 

  37. Troger, L., Arvanitis, D. & Baberschke, K. Full correction of the absorption in soft-fluorescence extended X-ray absorption fine structure. Phys. Rev. B 46, 3283–3289 (1992).

    Article  ADS  Google Scholar 

  38. Pfalzer, P. et al. Elimination of self-absorption in fluorescence hard-X-ray absorption spectra. Phys. Rev. B 60, 9335–9339 (1999).

    Article  ADS  Google Scholar 

  39. Booth, C. H. & Bridges, F. Improved self-absorption correction for fluorescence measurements of extended X-ray absorption fine-structure. Phys. Scr. T115, 202–204 (2005).

    Article  Google Scholar 

  40. Bunker, G. Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy (Cambridge Univ. Press, 2010). Excellent introduction to X-ray absorption spectroscopy theory, experiment and analysis.

  41. van Bokhoven, J. & Lamberti, A. C. X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications (Willey, 2017).

  42. Evans, J. Absorption Spectroscopy for the Chemical and Materials Sciences (Willey, 2017).

  43. Chantler, C. T., Bunker, B. A. & Boscherini, F. (eds) International Tables for Crystallography Vol. I (Kluwer Academic Publishers, 2024).

  44. Glatzel, P., Juhin, A. & Moretti, M. in International Tables for Crystallography Vol. I, Ch. 2.19 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 177–189 (Kluwer Academic Publishers, 2024).

  45. Glatzel, P. & Ghiringhelli, G. in International Tables for Crystallography Vol. I, Ch. 3.49 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 586–591 (Kluwer Academic Publishers, 2024).

  46. Chantler, C. T. in International Tables for Crystallography Vol. I, Ch. 2.8 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 88–99 (Kluwer Academic Publishers, 2024).

  47. d’Acapito, F. in International Tables for Crystallography Vol. I, Ch. 3.32 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 504–507 (Kluwer Academic Publishers, 2024).

  48. d’Acapito, F. in International Tables for Crystallography Vol. I, Ch. 4.5 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 613–616 (Kluwer Academic Publishers, 2024).

  49. Stern, E. A. Theory of the extended X-ray-absorption fine structure. Phys. Rev. B 10, 3027–3037 (1974).

    Article  ADS  Google Scholar 

  50. Lytle, F. W., Sayers, D. E. & Stern, E. A. Extended X-ray-absorption fine-structure technique. II. Experimental practice and selected results. Phys. Rev. B 11, 4825–4835 (1975).

    Article  ADS  Google Scholar 

  51. Stern, E. A., Sayers, D. E. & Lytle, F. W. Extended X-ray-absorption fine-structure technique. III. Determination of physical parameters. Phys. Rev. B 11, 4836 (1975).

    Article  ADS  Google Scholar 

  52. Stern, E. A. & Heald, S. M. in Handbook of Synchrotron Radiation Vol. 1b (ed. Koch, E. E.) (North Holland Publishing Company, 1983).

  53. Koningsberger, D. C. & Prins, R. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES (John Wiley and Sons Inc., 1987). Excellent overview of different X-ray absorption spectroscopy developments.

  54. Boscherini, F. in International Tables for Crystallography Vol. I, Ch. 1.2 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 10–12 (Kluwer Academic Publishers, 2024).

  55. Einfeld, D., Plesko, M. & Schaper, J. First multi-bend achromat lattice consideration. J. Synchrotron Radiat. 21, 856–861 (2014).

    Article  Google Scholar 

  56. Shin, S. New era of synchrotron radiation: fourth-generation storage ring. AAPPS Bull. 31, 1–16 (2021).

    Article  Google Scholar 

  57. Diaz-Moreno, S. in International Tables for Crystallography Vol. I, Ch. 3.48 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 581–585 (Kluwer Academic Publishers, 2024).

  58. Bès, R. et al. Laboratory-scale X-ray absorption spectroscopy approach for actinide research: experiment at the uranium L3-edge. J. Nucl. Mater. 507, 50–53 (2018).

    Article  ADS  Google Scholar 

  59. Geloni, G. et al. Coherence properties of the European XFEL. N. J. Phys. 12, 035021 (2010).

    Article  Google Scholar 

  60. Pandey, S. et al. Time-resolved serial femtosecond crystallography at the European XFEL. Nat. Methods 3, 73–78 (2020).

    Article  Google Scholar 

  61. Lindroth, E. et al. Challenges and opportunities in attosecond and XFEL science. Nat. Rev. Phys. 1, 107–111 (2019).

    Article  Google Scholar 

  62. Cauchois, Y. Spectrographie des rayons X par transmission d’un faisceau non canalisé à travers un cristal courbé-i. J. Phys. Rad. 3, 320–336 (1932).

    Article  Google Scholar 

  63. Ekanayake, R. S. K. et al. High-accuracy mass attenuation coefficients and X-ray absorption spectroscopy of zinc — the first X-ray extended range technique-like experiment in Australia. J. Synchrotron Radiat. 28, 1476–1491 (2021).

    Article  Google Scholar 

  64. Chantler, C. T. in International Tables for Crystallography Vol. I, Ch. 3.43 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 558–563 (Kluwer Academic Publishers, 2024).

  65. Best, S. P. & Chantler, C. T. in International Tables for Crystallography Vol. I, Ch. 3.14 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 375–394 (Kluwer Academic Publishers, 2024).

  66. John, M. W. et al. High accuracy transmission and fluorescence XAFS of zinc at 10 K, 50 K, 100 K and 150 K using the Hybrid technique. J. Synchrotron Radiat. 30, 147–168 (2023).

    Article  Google Scholar 

  67. Schalken, M. J. & Chantler, C. T. Propagation of uncertainty in experiment: structures of Ni (II) coordination complexes. J. Synchrotron Radiat. 25, 920–934 (2018).

    Article  Google Scholar 

  68. Chantler, C. T. in International Tables for Crystallography Vol. I, Ch. 4.6 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 617–623 (Kluwer Academic Publishers, 2024).

  69. Chantler, C. T. in International Tables for Crystallography Vol. I, Ch. 4.7 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 624–630 (Kluwer Academic Publishers, 2024).

  70. Chantler, C. T. in International Tables for Crystallography Vol. I, Ch. 5.7 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 664–671 (Kluwer Academic Publishers, 2024).

  71. Bunker, G. in International Tables for Crystallography Vol. I, Ch. 3.12 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 365–369 (Kluwer Academic Publishers, 2024).

  72. Parratt, L. G., Hempstead, C. F. & Jossem, E. L. ‘Thickness effect’ in absorption spectra near absorption edges. Phys. Rev. 105, 1228–1232 (1957).

    Article  ADS  Google Scholar 

  73. Stern, E. A. & Kim, K. Thickness effect on the extended-X-ray-absorption-fine-structure amplitude. Phys. Rev. B 23, 3781–3787 (1981).

    Article  ADS  Google Scholar 

  74. Bridges, F. in International Tables for Crystallography Vol. I, Ch. 3.13 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 370–374 (Kluwer Academic Publishers, 2024).

  75. Bridges, F. & Booth, C. H. in International Tables for Crystallography Vol. I, Ch. 3.44 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 564–566 (Kluwer Academic Publishers, 2024).

  76. Achkar, A. et al. Bulk sensitive X-ray absorption spectroscopy free of self-absorption effects. Phys. Rev. B 83, 081106 (2011).

    Article  ADS  Google Scholar 

  77. Bunker, G. B. A X-Ray Absorption Study of Transition Metal Oxides. PhD thesis (1984).

  78. Zhang, K., Rosenbaum, G. & Bunker, G. The correction of the dead time loss of the Ge detector in X-ray absorption spectroscopy. Jpn. J. Appl. Phys. 32, 147 (1993).

    Article  ADS  Google Scholar 

  79. Fister, T. et al. Multielement spectrometer for efficient measurement of the momentum transfer dependence of inelastic X-ray scattering. Rev. Sci. Instrum. 77, 063901 (2006).

    Article  ADS  Google Scholar 

  80. Gog, T. et al. Momentum-resolved resonant and nonresonant inelastic X-ray scattering at the advanced photon source. Synchrotron Radiat. News 22, 12–21 (2009).

    Article  ADS  Google Scholar 

  81. Zhong, Z. et al. A bent Laue analyzer for fluorescence EXAFS detection. J. Synchrotron Radiat. 6, 212–214 (1999).

    Article  Google Scholar 

  82. Natoli, C. R. in EXAFS and Near Edge Structure (eds Bianconi, A., Inoccia, L. & Stipcich, S.) 43–56 (Springer-Verlag, 1983).

  83. Shadle, E. et al. X-ray absorption spectroscopic studies of the blue copper site: metal and ligand K-edge studies to probe the origin of the EPR hyperfine splitting in plastocyanin. J. Am. Chem. Soc. 115, 767–776 (1993).

    Article  Google Scholar 

  84. Dubois, J. L. et al. A systematic K-edge X-ray absorption spectroscopic study of Cu(III) sites. J. Am. Chem. Soc. 122, 5775–5787 (2000).

    Article  Google Scholar 

  85. George, S. D. et al. Spectroscopic investigation of stellacyanin mutants: axial ligand interactions at the blue copper site. J. Am. Chem. Soc. 125, 11314–11328 (2003).

    Article  Google Scholar 

  86. Baker, M. L. et al. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites. Coord. Chem. Rev. 345, 182–208 (2017).

    Article  Google Scholar 

  87. Shulman, R. G., Yafet, Y., Eisenberger, P. & Blumberg, W. E. Observation and interpretation of X-ray absorption edges in iron compounds and proteins. Proc. Natl Acad. Sci. USA 73, 1384–1388 (1976).

    Article  ADS  Google Scholar 

  88. Hahn, J. E. et al. Observation of an electric quadrupole transition in the X-ray absorption spectrum of a Cu(II) complex. Chem. Phys. Lett. 88, 595–598 (1982).

    Article  ADS  Google Scholar 

  89. Sarangi, R. et al. X-ray absorption edge spectroscopy and computational studies on LCuO2 species: superoxide-CuII versus peroxide-CuIII bonding. J. Am. Chem. Soc. 128, 8286–8296 (2006).

    Article  Google Scholar 

  90. Yamamoto, T. in International Tables for Crystallography Vol. I, Ch. 2.7 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 80–87 (Kluwer Academic Publishers, 2024).

  91. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes: The Art of Scientific Computing Vol. 1, 3rd edn (Cambridge Univ. Press, 2007).

  92. Webb, S. M. in International Tables for Crystallography Vol. I, Ch. 5.17 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 709–715 (Kluwer Academic Publishers, 2024).

  93. Wasserman, S. R. The analysis of mixtures: application of principal component analysis to XAS spectra. J. Phys. IV 7, C2–C203 (1997).

    Google Scholar 

  94. Wasserman, S. R., Allen, P. G., Shuh, K., Bucher, J. J. & Edelstein, N. M. EXAFS and principal component analysis: a new shell game. J. Synchrotron Radiat. 6, 284–286 (1999).

    Article  Google Scholar 

  95. Tauler, R. Multivariate curve resolution applied to second order data. Chemom. Intell. Lab. Syst. 30, 133–146 (1995).

    Article  Google Scholar 

  96. de Juan, A. & Tauler, R. Multivariate curve resolution (MCR) from 2000: progress in concepts and applications. Crit. Rev. Anal. Chem. 36, 163–176 (2007).

    Article  Google Scholar 

  97. Conti, P., Zamponi, S., Giorgetti, M., Berrettoni, M. & Smyrl, W. H. Multivariate curve resolution analysis for interpretation of dynamic Cu k-edge X-ray absorption spectroscopy spectra for a Cu doped V2O5 lithium battery. Anal. Chem. 82, 3629–3635 (2010).

    Article  Google Scholar 

  98. Bourke, J. D., Chantler, C. T. & Joly, Y. FDMX: extended X-ray absorption fine structure calculations using the finite difference method. J. Synchrotron Radiat. 23, 551–559 (2016). Discussion of merging the X-ray absorption near-edge structure and extended X-ray absorption fine structure regions with a single theoretical model.

    Article  Google Scholar 

  99. de Groot, F. in International Tables for Crystallography Vol. I, Ch. 2.4 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 55–59 (Kluwer Academic Publishers, 2024).

  100. Haverkort, M. W., Zwierzycki, M. & Andersen, O. K. Multiplet ligand-field theory using Wannier orbitals. Phys. Rev. B 85, 165113 (2012).

    Article  ADS  Google Scholar 

  101. Bianconi, A. et al. Multielectron excitations in the K-edge X-ray-absorption near-edge spectra of V, Cr, and Mn 3d0 compounds with tetrahedral coordination. Phys. Rev. B 43, 6885–6892 (1991).

    Article  ADS  Google Scholar 

  102. Rehr, J. J. & Ankudinov, A. L. Progress in the theory and interpretation of XANES. Coord. Chem. Rev. 249, 131–140 (2005).

    Article  Google Scholar 

  103. Benfatto, M. & Della Longa, S. Geometrical fitting of experimental XANES spectra by a full multiple-scattering procedure. J. Synchrotron Radiat. 8, 1087–1094 (2001).

    Article  Google Scholar 

  104. Benfatto, M., Della Longa, S. & Natoli, C. R. The MXAN procedure: a new method for analysing the XANES spectra of metalloproteins to obtain structural quantitative information. J. Synchrotron Radiat. 10, 51–57 (2003).

    Article  Google Scholar 

  105. Joly, Y., Cabaret, D., Renevier, H. & Natoli, C. R. Electron population analysis by full-potential X-ray absorption simulations. Phys. Rev. Lett. 82, 1–4 (1999).

    Article  Google Scholar 

  106. Joly, Y. X-ray absorption near-edge structure calculations beyond the muffin-tin approximation. Phys. Rev. B 63, 125120–125130 (2001).

    Article  ADS  Google Scholar 

  107. Scandolo, S. et al. First-principles codes for computational crystallography in the Quantum-ESPRESSO package. Z. Kristallog. 220, 574–579 (2005).

    Article  Google Scholar 

  108. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  Google Scholar 

  109. Kresse, G. Ab initio molecular-dynamics simulation of the liquid–metal–amorphous–semiconductor transition in germanium. Phys. Rev. B 48, 15 (1994).

    Google Scholar 

  110. Blaha, P. in International Tables for Crystallography Vol. I, Ch. 2.12 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 121–129 (Kluwer Academic Publishers, 2024).

  111. Joly, Y., Ramos, A. Y. & Bunau, O. in International Tables for Crystallography Vol. I, Ch. 2.11 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 114–120 (Kluwer Academic Publishers, 2024).

  112. Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012).

    Article  Google Scholar 

  113. te Veide, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).

    Article  Google Scholar 

  114. Bourke, J. D. et al. Conformation analysis of ferrocene and decamethylferrocene via full-potential modeling of XANES and XAFS spectra. J. Phys. Chem. Lett. 7, 2792–2796 (2016).

    Article  Google Scholar 

  115. Shirley, E. L. Ab initio inclusion of electron–hole attraction: application to X-ray absorption and resonant inelastic X-ray scattering. Phys. Rev. Lett. 80, 794–797 (1998).

    Article  ADS  Google Scholar 

  116. Vinson, J., Rehr, J. J., Kas, J. J. & Shirley, E. L. Bethe–Salpeter equation calculations of core excitation spectra. Phys. Rev. B 83, 115106 (2011).

    Article  ADS  Google Scholar 

  117. Shirley, E. L., Pettersson, L. G. M. & Prendergast, D. in International Tables for Crystallography Vol. I, Ch. 2.13 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 130–138 (Kluwer Academic Publishers, 2024).

  118. Sagmeister, S. & Ambrosch-Draxl, C. Time-dependent density functional theory versus Bethe–Salpeter equation: an all-electron study. Phys. Chem. Chem. Phys. 11, 4451–4457 (2009).

    Article  Google Scholar 

  119. Elliott, J. D. et al. Web-CONEXS: an inroad to theoretical X-ray absorption spectroscopy. J. Synchrotron Radiat. 31, 1276–1284 (2024).

    Article  Google Scholar 

  120. Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C. & Eller, M. J. Multiple-scattering calculations of X-ray-absorption spectra. Phys. Rev. B 52, 2995–3009 (1995).

    Article  ADS  Google Scholar 

  121. Filipponi, A. & Di Cicco, A. X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. II. Data analysis and applications. Phys. Rev. B 52, 15135–15149 (1995).

    Article  ADS  Google Scholar 

  122. Binsted, N., Norman, D. & Gurman, S. J. A rapid, exact, curved-wave theory for EXAFS calculations. II. The multiple-scattering contributions. J. Phys. C 19, 1845–1861 (1986).

    Article  ADS  Google Scholar 

  123. Bourke, J. D. & Chantler, C. T. Finite difference method calculations of long-range X-ray absorption fine structure for copper over k 20 Å−1. Nucl. Instrum. Meth. A 619, 33–36 (2010).

    Article  ADS  Google Scholar 

  124. Rehr, J. J., de Leon, J. M., Zabinsky, S. I. & Albers, R. C. Theoretical approaches to X-ray absorption fine-structure standards. J. Am. Chem. Soc. 113, 5135–5140 (1991).

    Article  Google Scholar 

  125. Koningsberger, D. C., Mojet, B. L., van Dorssen, G. E. & Ramaker, D. E. XAFS spectroscopy; fundamental principles and data analysis. Top. Catal. 10, 143–155 (2000).

    Article  Google Scholar 

  126. Cook, J. W. & Sayers, D. E. Criteria for automatic X-ray absorption fine structure background removal. J. Appl. Phys. 52, 5024 (1998).

    Article  ADS  Google Scholar 

  127. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  Google Scholar 

  128. Chantler, C. T. in International Tables for Crystallography Vol. I, Ch. 5.6 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 659–663 (Kluwer Academic Publishers, 2024).

  129. Chantler, C. T., Barnea, Z., Tran, C. Q. & Rae, N. A. A step toward standardization: development of accurate measurements of X-ray absorption and fluorescence. J. Synchrotron Radiat. 19, 851–862 (2012).

    Article  Google Scholar 

  130. Rehr, J. J., Stern, E. A., Martin, R. L. & Davidson, E. R. Extended X-ray-absorption fine-structure amplitudes — wave-function relaxation and chemical effects. Phys. Rev. B 17, 560 (1978).

    Article  ADS  Google Scholar 

  131. Newville, M. Fundamentals of XAFS (CARS, University of Chicago, 2004).

  132. Michalowicz, A. & Vlaic, G. Multiple solutions in data fitting: a trap in EXAFS structural analysis and some ideas to avoid it. J. Synchrotron Radiat. 5, 1317–1320 (1998).

    Article  Google Scholar 

  133. Tran, C. Q., Chantler, C. T. & de Jonge, M. D. in International Tables for Crystallography Vol. I, Ch. 3.42 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 549–557 (Kluwer Academic Publishers, 2024).

  134. Yevick, A. & Frenkel, A. I. Effects of surface disorder on EXAFS modeling of metallic clusters. Phys. Rev. B 81, 115451 (2010).

    Article  ADS  Google Scholar 

  135. Filipponi, A. & D’Angelo, P. XAS in Liquid Systems 745–771 (John Wiley & Sons, 2016).

  136. D’Angelo, P., Di Nola, A., Filipponi, A., Pavel, N. V. & Roccatano, D. An extended X-ray absorption fine structure study of aqueous solutions by employing molecular dynamics simulations. J. Chem. Phys. 100, 985 (1994).

    Article  ADS  Google Scholar 

  137. Filipponi, A. EXAFS for liquids. J. Phys. Condens. Matter 13, R23 (2001).

    Article  ADS  Google Scholar 

  138. Timoshenko, J. & Frenkel, A. I. Probing structural relaxation in nanosized catalysts by combining EXAFS and reverse Monte Carlo methods. Catal. Today 280, 274–282 (2017).

    Article  Google Scholar 

  139. Chantler, C. T., Bunker, B. A. & Boscherini, F. (eds) in International Tables for Crystallography Vol. I, Part 8 (Kluwer Academic Publishers, 2024).

  140. Snyder, B. E. R. et al. Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane. Proc. Natl Acad. Sci. USA 115, 4565–4570 (2018).

    Article  ADS  Google Scholar 

  141. Pappas, D. K. et al. Methane to methanol: structure–activity relationships for Cu-CHA. J. Am. Chem. Soc. 139, 14961–14975 (2017).

    Article  Google Scholar 

  142. Lu, Y. et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2, 149–156 (2019).

    Article  Google Scholar 

  143. Fracchia, M. et al. Stabilization by configurational entropy of the Cu(ii) active site during CO oxidation on Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O. J. Phys. Chem. Lett. 11, 3589–3593 (2020).

    Article  Google Scholar 

  144. Kulkarni, A. R., Zhao, Z.-J., Siahrostami, S., Nørskov, J. K. & Studt, F. Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites. ACS Catal. 6, 6531–6536 (2016).

    Article  Google Scholar 

  145. Alayon, E. M. C., Nachtegaal, M., Bodi, A. & van Bokhoven, J. A. Reaction conditions of methane-to-methanol conversion affect the structure of active copper sites. ACS Catal. 4, 16–22 (2014).

    Article  Google Scholar 

  146. Grundner, S. et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6, 7546 (2015).

    Article  ADS  Google Scholar 

  147. Tomkins, P., Ranocchiari, M. & van Bokhoven, J. A. Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. Acc. Chem. Res. 50, 418–425 (2017).

    Article  Google Scholar 

  148. Narsimhan, K., Iyoki, K., Dinh, K. & Román-Leshkov, Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2, 424–429 (2016).

    Article  Google Scholar 

  149. Pappas, D. K. et al. The nuclearity of the active site for methane to methanol conversion in Cu-mordenite: a quantitative assessment. J. Am. Chem. Soc. 140, 15270–15278 (2018).

    Article  Google Scholar 

  150. Deka, U., Lezcano-Gonzalez, I., Weckhuysen, B. M. & Beale, A. M. Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NOx. ACS Catal. 3, 413–427 (2013).

    Article  Google Scholar 

  151. Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. F. & Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 44, 7371–7405 (2015).

    Article  Google Scholar 

  152. Paolucci, C. et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357, 898–903 (2017).

    Article  ADS  Google Scholar 

  153. Paolucci, C. et al. Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites. J. Am. Chem. Soc. 138, 6028–6048 (2016).

    Article  Google Scholar 

  154. Lomachenko, K. A. et al. The Cu-CHA denox catalyst in action: temperature-dependent NH3-assisted selective catalytic reduction monitored by operando XAS and XES. J. Am. Chem. Soc. 138, 12025–12028 (2016).

    Article  Google Scholar 

  155. Capocasa, G. et al. Coupled X-ray absorption/UV–Vis monitoring of fast oxidation reactions involving a nonheme iron-Oxo complex. J. Am. Chem. Soc. 141, 2299–2304 (2019).

    Article  Google Scholar 

  156. Tavani, F. et al. Direct mechanistic evidence for a non-heme complex reaction through a multivariate XAS analysis. Inorg. Chem. 59, 9979–9989 (2020).

    Article  Google Scholar 

  157. Tavani, F. et al. Direct structural and mechanistic insights into fast bimolecular chemical reactions in solution through a coupled XAS/UV–Vis multivariate statistical analysis. Dalton Trans. 50, 131–142 (2021).

    Article  Google Scholar 

  158. Tavani, F. et al. Activation of C–H bonds by a nonheme iron(iv)–oxo complex: mechanistic evidence through a coupled EDXAS/UV–Vis multivariate analysis. Phys. Chem. Chem. Phys. 23, 1188–1196 (2021).

    Article  ADS  Google Scholar 

  159. Del Giudice, D. et al. Two faces of the same coin: coupling X-ray absorption and NMR spectroscopies to investigate the exchange reaction between prototypical Cu coordination complexes. Chem. Eur. J. 28, e202103825 (2022).

    Article  Google Scholar 

  160. Frateloreto, F. et al. Following a silent metal ion: a combined X-ray absorption and nuclear magnetic resonance spectroscopic study of the Zn2+ cation dissipative translocation between two different ligands. J. Phys. Chem. Lett. 13, 5522–5529 (2022).

    Article  Google Scholar 

  161. Kornienko, N. et al. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 137, 7448–7455 (2015).

    Article  Google Scholar 

  162. Gil-Sepulcre, M. et al. Surface-promoted evolution of Ru-bda coordination oligomers boosts the efficiency of water oxidation molecular anodes. J. Am. Chem. Soc. 143, 11651–11661 (2021).

    Article  Google Scholar 

  163. Levin, N. et al. XAS and EPR in situ observation of Ru(v) oxo intermediate in a Ru water oxidation complex. ChemElectroChem 9, e202101271 (2022).

    Article  Google Scholar 

  164. Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

    Article  Google Scholar 

  165. Timoshenko, J. et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat. Catal. 5, 259–267 (2022).

    Article  Google Scholar 

  166. Sun, H. & Zhou, W. Progress on X-ray absorption spectroscopy for the characterization of perovskite-type oxide electrocatalysts. Energy Fuels 35, 5716–5737 (2021).

    Article  Google Scholar 

  167. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  ADS  Google Scholar 

  168. Zhang, S. et al. The latest development of CoOOH two-dimensional materials used as OER catalysts. Chem. Commun. 56, 15387–15405 (2020).

    Article  Google Scholar 

  169. Feng, C. et al. Fe-based electrocatalysts for oxygen evolution reaction: progress and perspectives. ACS Catal. 10, 4019–4047 (2020).

    Article  Google Scholar 

  170. Kim, B.-J. et al. Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction. J. Am. Chem. Soc. 141, 5231–5240 (2019).

    Article  Google Scholar 

  171. Cerantola, V. et al. New frontiers in extreme conditions science at synchrotrons and free electron lasers. J. Condens. Matter Phys. 33, 274003 (2021).

    Article  Google Scholar 

  172. Aprilis, G. et al. Portable double-sided pulsed laser heating system for time-resolved geoscience and materials science applications. Rev. Sci. Instrum. 88, 084501 (2017).

    Article  ADS  Google Scholar 

  173. Kantor, I., Marini, C., Mathon, O. & Pascarelli, S. A laser heating facility for energy-dispersive X-ray absorption spectroscopy. Rev. Sci. Instrum. 89, 013111 (2018).

    Article  ADS  Google Scholar 

  174. Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P. & Morard, G. Melting of iron at earth’s inner core boundary based on fast X-ray diffraction. Science 340, 464–466 (2013).

    Article  ADS  Google Scholar 

  175. Boccato, S. et al. The melting curve of nickel up to 100 GPa explored by XAS. J. Geophys. Res. Solid 122, 9921–9930 (2017).

    Article  ADS  Google Scholar 

  176. Lord, O. T. et al. The melting curve of Ni to 1 mbar. Earth Planet. Sci. Lett. 408, 226–236 (2014).

    Article  ADS  Google Scholar 

  177. Morard, G. et al. Fe-FeO and Fe-Fe3C melting relations at earth’s core–mantle boundary conditions: implications for a volatile-rich or oxygen-rich core. Earth Planet. Sci. Lett. 473, 94–103 (2017).

    Article  ADS  Google Scholar 

  178. Boccato, S. et al. Compression of liquid Ni and Co under extreme conditions explored by X-ray absorption spectroscopy. Phys. Rev. B 100, 180101 (2019).

    Article  ADS  Google Scholar 

  179. Morard, G. et al. Solving controversies on the iron phase diagram under high pressure. Geophys. Res. Lett. 45, 11074–11082 (2018).

    Article  ADS  Google Scholar 

  180. D’Angelo, P., Benfatto, M., Della Longa, S. & Pavel, N. V. Combined XANES and EXAFS analysis of Co2+, Ni2+, and Zn2+ aqueous solutions. Phys. Rev. B 66, 064209 (2002). An example of good practice.

    Article  ADS  Google Scholar 

  181. Merkling, P. J., Muñoz Páez, A., Martínez, J. M., Pappalardo, R. R. & Sánchez Marcos, E. Molecular-dynamics-based investigation of scattering path contributions to the EXAFS spectrum: the Cr3+ aqueous solution case. Phys. Rev. B 64, 012201 (2001).

    Article  ADS  Google Scholar 

  182. Persson, I., D’Angelo, P., De Panfilis, S., Sandström, M. & Eriksson, L. Hydration of lanthanoid (iii) ions in aqueous solution and crystalline hydrates studied by EXAFS spectroscopy and crystallography: the myth of the ‘gadolinium break’. Chem. Eur. J. 14, 3056–3066 (2008).

    Article  Google Scholar 

  183. D’Angelo, P., De Panfilis, S., Filipponi, A. & Persson, I. High-energy X-ray absorption spectroscopy: a new tool for structural investigations of lanthanoids and third-row transition elements. Chem. Eur. J. 14, 3045–3055 (2008).

    Article  Google Scholar 

  184. Tanida, H., Sakane, H. & Watanabe, I. Solvation structures for bromide ion in various solvents by extended X-ray absorption fine structure. J. Chem. Soc. Dalton Trans. 15, 2321–2326 (1994).

    Article  Google Scholar 

  185. D’Angelo, P. & Pavel, N. V. Complete spectrum of multielectron excitations at the Br K edge X-ray absorption spectra. Phys. Rev. B 64, 233112 (2001).

    Article  ADS  Google Scholar 

  186. D’Angelo, P., Di Cicco, A., Filipponi, A. & Pavel, N. V. Double-electron excitation channels at the Br K edge of HBr and Br2. Phys. Rev. A 47, 2055–2063 (1993).

    Article  ADS  Google Scholar 

  187. D’Angelo, P. et al. Revised ionic radii of lanthanoid(iii) ions in aqueous solution. Inorg. Chem. 50, 4572–4579 (2011).

    Article  Google Scholar 

  188. D’Angelo, P., Martelli, F., Spezia, R., Filipponi, A. & Denecke, M. Hydration properties and ionic radii of actinide(iii) ions in aqueous solution. Inorg. Chem. 52, 10318–10324 (2013).

    Article  Google Scholar 

  189. Eisenberger, P. & Kincaid, B. M. EXAFS: new horizons in structure determinations. Science 200, 1441–1447 (1978).

    Article  ADS  Google Scholar 

  190. Andreini, C., Bertini, I., Cavallaro, G., Holliday, G. & Thornton, J. M. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 13, 1205–1218 (2008).

    Article  Google Scholar 

  191. Ortega, R., Carmona, A., Llorens, I. & Solari, P. L. X-ray absorption spectroscopy of biological samples. A tutorial. J. Anal. At. Spectrom. 27, 2054–2065 (2012).

    Article  Google Scholar 

  192. Giachini, L., Veronesi, G., Francia, F., Venturoli, G. & Boscherini, F. Synergic approach to XAFS analysis for the identification of most probable binding motifs for mononuclear zinc sites in metalloproteins. J. Synchrotron Radiat. 17, 41–52 (2010).

    Article  Google Scholar 

  193. D’Angelo, P. et al. Dynamic investigation of protein metal active sites: interplay of XANES and molecular dynamics simulations. J. Am. Chem. Soc. 132, 14901–14909 (2010).

    Article  Google Scholar 

  194. Cheung, K.-C., Strange, R. W. & Hasnain, S. S. 3D EXAFS refinement of the Cu site of azurin sheds light on the nature of structural change at the metal centre in an oxidation–reduction process: an integrated approach combining EXAFS and crystallography. Acta Crystallogr. D 56, 697–704 (2000).

    Article  ADS  Google Scholar 

  195. Streltsov, V. A., Ekanayake, R. S., Drew, S. C., Chantler, C. T. & Best, S. P. Structural insight into redox dynamics of copper bound N-truncated amyloid-β peptides from in situ X-ray absorption spectroscopy. Inorg. Chem. 57, 11422–11435 (2018).

    Article  Google Scholar 

  196. Ekanayake, R. S. K., Streltsov, V. A., Best, S. P. & Chantler, C. T. Nanostructure and dynamics of N-truncated copper amyloid-β peptides from advanced X-ray absorption fine structure. IUCr J. 11, 325–346 (2024).

    Article  Google Scholar 

  197. Ekanayake, R. S. K., Streltsov, V. A., Best, S. P. & Chantler, C. T. Using XAS to monitor radiation damage in real time and post-analysis and investigation of systematics of fluorescence X-ray absorption spectroscopy for Cu-bound amyloid-β. J. Appl. Crystallogr. 57, 125–139 (2024).

    Article  ADS  Google Scholar 

  198. Cutsail, G. E. I. et al. High-resolution extended X-ray absorption fine structure analysis provides evidence for a longer Fe  Fe distance in the q intermediate of methane monooxygenase. J. Am. Chem. Soc. 140, 16807–16820 (2018).

    Article  Google Scholar 

  199. Cutsail, G. E., Ross, M. O., Rosenzweig, A. C. & DeBeer, S. Towards a unified understanding of the copper sites in particulate methane monooxygenase: an X-ray absorption spectroscopic investigation. Chem. Sci. 12, 6194–6209 (2021).

    Article  Google Scholar 

  200. Curis, E. et al. Carboplatin and oxaliplatin decomposition in chloride medium, monitored by XAS. J. Synchrotron Radiat. 8, 716–718 (2001).

    Article  Google Scholar 

  201. Nicolis, I., Curis, E., Deschamps, P. & Bezaneth, S. X-ray absorption spectroscopy of low-molar-mass metallic complexes in pharmacy. J. Synchrotron Radiat. 10, 96–102 (2003).

    Article  Google Scholar 

  202. Messori, L. et al. X-ray absorption spectroscopy studies of the adducts formed between cytotoxic gold compounds and two major serum proteins. J. Biol. Inorg. Chem. 16, 491–499 (2011).

    Article  Google Scholar 

  203. Weekley, C. M. et al. Metabolism of selenite in human lung cancer cells: X-ray absorption and fluorescence studies. J. Am. Chem. Soc. 133, 18272–18279 (2011).

    Article  Google Scholar 

  204. Sindhupakorn, B. & Kidkhunthod, P. Structural investigation in subchondral bone of osteoarthritic knee: phosphorous k-edge XAS. Radiat. Phys. Chem. 187, 109584 (2021).

    Article  Google Scholar 

  205. Coker, V. S. et al. Probing the site occupancies of Co-, Ni-, and Mn-substituted biogenic magnetite using XAS and XMCD. Am. Min. 93, 1119–1132 (2008).

    Article  ADS  Google Scholar 

  206. Refait, P. et al. Mossbauer and XAS study of a green rust mineral; the partial substitution of Fe2+ by Mg2+. Am. Min. 86, 731–739 (2001).

    Article  ADS  Google Scholar 

  207. Liu, W. et al. Revisiting the hydrothermal geochemistry of europium(ii/iii) in light of new in-situ XAS spectroscopy results. Chem. Geol. 459, 61–74 (2017).

    Article  ADS  Google Scholar 

  208. Tian, Y. et al. Speciation of nickel(ii) chloride complexes in hydrothermal fluids: in situ XAS study. Chem. Geol. 334, 345–363 (2012).

    Article  ADS  Google Scholar 

  209. Liu, W. et al. Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35–440 °C and 600 bar: an in-situ XAS study. Geochim. Cosmochim. Acta 75, 1227–1248 (2011).

    Article  ADS  Google Scholar 

  210. Baker, L. L., Strawn, D. G., Vaughan, K. L. & McDaniel, P. A. XAS study of Fe mineralogy in a chronosequence of soil clays formed in basaltic cinders. Clays Clay Miner. 58, 772–782 (2010).

    Article  ADS  Google Scholar 

  211. Giuli, G., Paris, E., Mungall, J., Romano, C. & Dingwell, D. V oxidation state and coordination number in silicate glasses by XAS. Am. Min. 89, 1640–1646 (2004).

    Article  ADS  Google Scholar 

  212. Morales-Pérez, A. et al. Geochemical changes of Mn in contaminated agricultural soils nearby historical mine tailings: Insights from XAS, SRD and SEP. Chem. Geol. 573, 120217 (2021).

    Article  Google Scholar 

  213. Castorina, E., Ingall, E. D., Morton, P. L., Tavakoli, D. A. & Lai, B. Zinc k-edge XANES spectroscopy of mineral and organic standards. J. Synchrotron Radiat. 26, 1302–1309 (2019).

    Article  Google Scholar 

  214. Ingall, E. D. et al. Phosphorus k-edge XANES spectroscopy of mineral standards. J. Synchrotron Radiat. 18, 189–197 (2011).

    Article  Google Scholar 

  215. Oakes, M. et al. Iron solubility related to particle sulfur content in source emission and ambient fine particles. Environ. Sci. Technol. 46, 6637–6644 (2012).

    Article  ADS  Google Scholar 

  216. Siebecker, M. G., Chaney, R. L. & Sparks, D. L. Natural speciation of nickel at the micrometer scale in serpentine (ultramafic) topsoils using microfocused X-ray fluorescence, diffraction, and absorption. Geochem. Trans. 19, 1–16 (2018).

    Article  Google Scholar 

  217. McDaniel, M. F. M. et al. Relationship between atmospheric aerosol mineral surface area and iron solubility. ACS Earth Space Chem. 3, 2443–2451 (2019).

    Article  ADS  Google Scholar 

  218. Negassa, W. et al. Phosphorus speciation in agro-industrial byproducts: sequential fractionation, solution 31P NMR, and P K- and L2,3-edge XANES spectroscopy. Environ. Sci. Technol. 44, 2092–2097 (2010).

    Article  ADS  Google Scholar 

  219. Struis, R. P., Ludwig, C., Lutz, H. & Scheidegger, A. M. Speciation of zinc in municipal solid waste incineration fly ash after heat treatment: an X-ray absorption spectroscopy study. Environ. Sci. Technol. 38, 3760–3767 (2004).

    Article  ADS  Google Scholar 

  220. Oakes, M., Weber, R., Lai, B., Russell, A. & Ingall, E. Characterization of iron speciation in urban and rural single particles using XANES spectroscopy and micro X-ray fluorescence measurements: investigating the relationship between speciation and fractional iron solubility. Atmos. Chem. Phys. 12, 745–756 (2012).

    Article  ADS  Google Scholar 

  221. Brandes, J. A., Ingall, E. & Paterson, D. Characterization of minerals and organic phosphorus species in marine sediments using soft X-ray fluorescence spectromicroscopy. Mar. Chem. 103, 250–265 (2007).

    Article  Google Scholar 

  222. McCanta, M. C. et al. In situ measurement of ferric iron in lunar glass beads using Fe-XAS. Icarus 285, 95–102 (2017).

    Article  ADS  Google Scholar 

  223. Sier, D. et al. High accuracy mass attenuation measurement and atomic structure determination of zinc selenide through the X-ray extended range technique. J. Synchrotron Radiat. 27, 1262–1277 (2020).

    Article  Google Scholar 

  224. Chantler, C. T. & Bourke, J. D. Low-energy electron properties: electron inelastic mean free path, energy loss function and the dielectric function. Recent measurements, applications, and the plasmon-coupling theory. Ultramicroscopy 201, 38–48 (2019).

    Article  Google Scholar 

  225. Tran, N. T. T. et al. A new satellite of manganese revealed by extended-range high-energy-resolution fluorescence detection. J. Synchrotron Radiat. 30, 605–612 (2023).

    Article  Google Scholar 

  226. Frahm, R. Quick scanning EXAFS: first experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equipment 270, 578–581 (1988).

    Article  ADS  Google Scholar 

  227. Fonda, E. et al. The SAMBA quick-EXAFS monochromator: XAS with edge jumping. J. Synchrotron Radiat. 19, 417–424 (2012).

    Article  Google Scholar 

  228. Nordfors, B. The statistical error in X-ray absorption measurements. Arkiv Fysik 18, 37–47 (1960).

    Google Scholar 

  229. Creagh, D. C. & Hubbell, J. H. Problems associated with the measurement of X-ray attenuation coefficients. I. Silicon. Report of the International Union of Crystallography X-ray Attenuation Project. Acta Crystallogr. A 43, 102–112 (1987). One of the first detailed reports of reproducibility, portability and transferability for X-ray absorption spectroscopy.

    Article  ADS  Google Scholar 

  230. Stern, E. A. Number of relevant independent points in X-ray-absorption fine-structure spectra. Phys. Rev. B 48, 9825–9827 (1993).

    Article  ADS  Google Scholar 

  231. Newville, M., Boyanov, B. I. & Sayers, D. E. Estimation of measurement uncertainties in XAFS data. J. Synchrotron Radiat. 6, 264–265 (1999).

    Article  Google Scholar 

  232. Sayers, D. E. Report of the International XAFS Society Standards and Criteria Committee. IXS Standards and Criteria Subcommittee http://ixs.iit.edu/subcommittee_reports/sc/ (2000).

  233. Chantler, C. T., Barnea, Z., Tran, C. Q., Tiller, J. B. & Paterson, D. Precision X-ray optics for fundamental interactions in atomic physics, resolving discrepancies in the X-ray regime. Opt. Quantum Electron. 31, 495–505 (1999).

    Article  Google Scholar 

  234. Chantler, C. T., Tran, C. Q., Paterson, D., Barnea, Z. & Cookson, D. J. Monitoring fluctuations at a synchrotron beamline using matched ion chambers: 1. modelling, data collection, and deduction of simple measures of association. X-Ray Spectrom. 29, 449–458 (2000).

    Article  ADS  Google Scholar 

  235. Chantler, C. T., Tran, C. Q., Paterson, D., Cookson, D. & Barnea, Z. X-ray extended-range technique for precision measurement of the X-ray mass attenuation coefficient and Im(f) for copper using synchrotron radiation. Phys. Lett. A 286, 338–346 (2001).

    Article  ADS  Google Scholar 

  236. Chantler, C. T. et al. High-accuracy X-ray absorption spectra from mM solutions of nickel (II) complexes with multiple solutions using transmission XAS. J. Synchrotron Radiat. 22, 1008–1021 (2015).

    Article  Google Scholar 

  237. Chantler, C. T. in International Tables for Crystallography Vol. I. Ch. 7.4 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 867–925 (Kluwer Academic Publishers, 2024).

  238. Diaz-Moreno, S. XAFS data collection: an integrated approach to delivering good data. J. Synchrotron Radiat. 19, 863–868 (2012).

    Article  Google Scholar 

  239. Abe, H. et al. Improving the quality of XAFS data. J. Synchrotron Radiat. 25, 972–980 (2018).

    Article  Google Scholar 

  240. Chantler, C. T. et al. A call for a round robin study of XAFS stability and platform dependence at synchrotron beamlines on well defined samples. J. Synchrotron Radiat. 25, 935–943 (2018).

    Article  Google Scholar 

  241. Mika, J. F., Martin, L. J. & Barnea, Z. X-ray attenuation of silicon in the energy range 25–50 keV. J. Phys. C 18, 5215–5223 (1985).

    Article  ADS  Google Scholar 

  242. Creagh, D. C. & Hubbell, J. H. Problems associated with the measurement of X-ray attenuation coefficients. III. Carbon. Report on the International Union of Crystallography X-ray Attenuation Project. Acta Crystallogr. A 46, 402–408 (1990).

    Article  ADS  Google Scholar 

  243. Kelly, S. D. et al. Comparison of EXAFS foil spectra from around the world. J. Phys. Conf. Ser. 190, 012032 (2009).

    Article  Google Scholar 

  244. Newton, M. A. Operando catalysis using synchrotron methods. Catal. Struct. React. 3, 2–4 (2017).

    Google Scholar 

  245. Catlow, C. R. A. Operando structural science of functional materials. IUCrJ 8, 703–704 (2021).

    Article  Google Scholar 

  246. Favaro, M., Artiglia, L. & Mun, B. S. In situ/operando investigation of catalytic and electrocatalytic interfaces. J. Phys. D Appl. Phys. 55, 060201 (2021).

    Article  Google Scholar 

  247. Newton, M. A. & van Beek, W. Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: a view from a bridge. Chem. Soc. Rev. 39, 4845–4863 (2010).

    Article  Google Scholar 

  248. Bentrup, U. Combining in situ characterization methods in one set-up: looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts. Chem. Soc. Rev. 39, 4718–4730 (2010).

    Article  Google Scholar 

  249. Povia, M. et al. Combining SAXS and XAS to study the operando degradation of carbon-supported Pt-nanoparticle fuel cell catalysts. ACS Catal. 8, 7000–7015 (2018).

    Article  Google Scholar 

  250. Gaur, A. et al. Structural dynamics of an iron molybdate catalyst under redox cycling conditions studied with in situ multi edge XAS and XRD. Phys. Chem. Chem. Phys. 22, 11713–11723 (2020).

    Article  Google Scholar 

  251. Sun, H. et al. XAS/DRIFTS/MS spectroscopy for time-resolved operando study of integrated carbon capture and utilisation process. Sep. Purif. Technol. 298, 121622 (2022).

    Article  Google Scholar 

  252. Glatzel, P. et al. Reflections on hard X-ray photon-in/photon-out spectroscopy for electronic structure studies. J. Electron Spectrosc. Relat. Phenom. 188, 17–25 (2013).

    Article  ADS  Google Scholar 

  253. Hayama, S. et al. Photon-in/photon-out spectroscopy at the I20-scanning beamline at diamond light source. J. Condens. Matter Phys. 33, 284003 (2021).

    Article  Google Scholar 

  254. Kas, J. J., Rehr, J. J., Glover, J. L. & Chantler, C. T. Comparison of theoretical and experimental Cu and Mo K-edge XAS. Nucl. Instrum. Methods A 619, 28–32 (2010).

    Article  ADS  Google Scholar 

  255. Joly, Y. et al. Self-consistency, spin–orbit and other advances in the FDMNES code to simulate XANES and RXD experiments. J. Phys. Conf. Ser. 190, 012007 (2009).

    Article  Google Scholar 

  256. Gilmore, K. et al. Efficient implementation of core-excitation Bethe–Salpeter equation calculations. Comput. Phys. Commun. 197, 109–117 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  257. Dean, J. W., Pushkarna, P., Melia, H. A., Nguyen, T. V. B. & Chantler, C. T. Theoretical calculation of characteristic radiation: multiconfiguration Dirac–Hartree–Fock calculations in scandium K α and K β. J. Phys. B 55, 075002-1–13 (2022).

    Article  ADS  Google Scholar 

  258. Timoshenko, J., Lu, D., Lin, Y. & Frenkel, A. I. Supervised machine-leaming-based determination of three-dimensional structure of metallic nanoparticles. J. Phys. Chem. Lett. 8, 5091–5098 (2017).

    Article  Google Scholar 

  259. Rankine, C. D., Madkhali, M. M. M. & Penfold, T. J. A deep neural network for the rapid prediction of X-ray absorption spectra. J. Phys. Chem. A 124, 4263–4270 (2020).

    Article  Google Scholar 

  260. Zimmermann, P. et al. Modern X-ray spectroscopy: XAS and XES in the laboratory. Coord. Chem. Rev. 423, 213466 (2020).

    Article  Google Scholar 

  261. Chantler, C. T., Bunker, B. A. & Boscherini, F. in International Tables for Crystallography Vol. I, Ch. 1.4 (eds Chantler, C. T., Bunker, B. A. & Boscherini, F.) 16–20 (Kluwer Academic Publishers, 2024).

  262. Ghigna, P. et al. Lithiation mechanism in high-entropy oxides as anode materials for li-ion batteries: an operando XAS study. ACS Appl. Mater. Interfaces 12, 50344–50354 (2020).

    Article  Google Scholar 

  263. Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013).

    Article  ADS  Google Scholar 

  264. Xie, Y. et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136, 6385–6394 (2014).

    Article  Google Scholar 

  265. Zhuo, Z. et al. Breathing and oscillating growth of solid–electrolyte-interphase upon electrochemical cycling. Chem. Commun. 54, 814–817 (2018).

    Article  Google Scholar 

  266. Dietrich, C. et al. Spectroscopic characterization of lithium thiophosphates by XPS and XAS — a model to help monitor interfacial reactions in all-solid-state batteries. Phys. Chem. Chem. Phys. 20, 20088–20095 (2018).

    Article  Google Scholar 

  267. Cui, Y. et al. (De)lithiation mechanism of Li/SeSx (x = 0–7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. J. Am. Chem. Soc. 135, 8047–8056 (2013).

    Article  Google Scholar 

  268. Torchio, R., Mathon, O. & Pascarelli, S. XAS and XMCD spectroscopies to study matter at high pressure: probing the correlation between structure and magnetism in the 3d metals. Coord. Chem. Rev. 277, 80–94 (2014).

    Article  Google Scholar 

  269. Roe, A. et al. X-ray absorption spectroscopy of iron-tyrosinate proteins. J. Am. Chem. Soc. 106, 1676–1681 (1984).

    Article  Google Scholar 

  270. Mölders, N., Schilling, P. J., Wong, J., Roos, J. W. & Smith, I. L. X-ray fluorescence mapping and micro-XANES spectroscopic characterization of exhaust particulates emitted from auto engines burning MMT-added gasoline. Environ. Sci. Technol. 35, 3122–3129 (2001).

    Article  ADS  Google Scholar 

  271. Werner, F. & Prietzel, J. Standard protocol and quality assessment of soil phosphorus speciation by P k-edge XANES spectroscopy. Environ. Sci. Technol. 49, 10521–10528 (2015).

    Article  ADS  Google Scholar 

  272. Moseley, H. G. J. The high frequency spectra of the elements. Phil. Mag. 26, 1024–1034 (1913).

    Article  Google Scholar 

  273. de Broglie, M. Sur une nouveau procédé permettant d’obtenir la photographie des spectres de raies des rayons Röntgen. Comptes Rendus 157, 924–926 (1913).

    Google Scholar 

  274. Fricke, H. The K-characteristic absorption frequencies for the chemical elements magnesium to chromium. Phys. Rev. 16, 202–215 (1920).

    Article  ADS  Google Scholar 

  275. Sayers, D. E., Stern, E. A. & Lytle, F. W. New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray-absorption fine structure. Phys. Rev. Lett. 27, 1204–1207 (1971).

    Article  ADS  Google Scholar 

  276. Sayers, D. E., Lytle, F. W. & Stern, E. A. Structure determination of amorphous Ge, GeO2 and GeSe by Fourier analysis of extended X-ray absorption fine structure (EXAFS). J. Non-Cryst. Solids 810, 401–407 (1972).

    Article  ADS  Google Scholar 

  277. Barton, J. J. & Shirley, D. A. Curved-wave-front corrections for photoelectron scattering. Phys. Rev. B 32, 1892–1905 (1985).

    Article  ADS  Google Scholar 

  278. Gurman, S. J., Binsted, N. & Ross, I. A rapid, exact curved-wave theory for EXAFS calculations. J. Phys. C 17, 143–151 (1984).

    Article  ADS  Google Scholar 

  279. Lee, P. A. & Beni, G. New method for the calculation of atomic phase shifts: application to extended X-ray absorption fine structure (EXAFS) in molecules and crystals. Phys. Rev. B 15, 2862–2883 (1977).

    Article  Google Scholar 

  280. Deslattes, R. D. & Henins, A. X-ray to visible wavelength ratios. Phys. Rev. Lett. 31, 972 (1973).

    Article  ADS  Google Scholar 

  281. Cohen, E. & Taylor, B. The 1986 adjustment of the fundamental physical constants. Rev. Modern Phys. 59, 1121 (1987).

    Article  ADS  Google Scholar 

  282. Westre, T. E. et al. GNXAS, a multiple-scattering approach to EXAFS analysis: methodology and applications to iron complexes. J. Am. Chem. Soc. 117, 1566–1583 (1995).

    Article  Google Scholar 

  283. Rehr, J. J. & Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000). Popular review of approaches to X-ray absorption fine structure theory, for 2000.

    Article  ADS  Google Scholar 

  284. Bourke, J. D., Chantler, C. T. & Witte, C. Finite difference method calculations of X-ray absorption fine structure for copper. Phys. Lett. A 360, 702–706 (2007).

    Article  ADS  Google Scholar 

  285. Chantler, C. T. & Bourke, J. D. X-ray spectroscopic measurement of photoelectron inelastic mean free paths in molybdenum. J. Phys. Chem. Lett. 1, 2422–2427 (2010).

    Article  Google Scholar 

  286. Guda, A. A. et al. Quantitative structural determination of active sites from in situ and operando XANES spectra: from standard ab initio simulations to chemometric and machine learning approaches. Catal. Today 336, 3–21 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (C.T.C., G.B., P.D. and S.D.-M.); Experimentation (C.T.C., G.B., P.D. and S.D.-M.); Results (C.T.C., G.B., P.D. and S.D.-M.); Applications (C.T.C., G.B., P.D. and S.D.-M.); Reproducibility and data deposition (C.T.C., G.B., P.D. and S.D.-M.); Limitations and optimizations (C.T.C., G.B., P.D. and S.D.-M.); Outlook (C.T.C., G.B., P.D. and S.D.-M.); overview of the Primer (all authors).

Corresponding authors

Correspondence to Christopher T. Chantler, Grant Bunker, Paola D’Angelo or Sofia Diaz-Moreno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

lightsources.org: https://lightsources.org/

Mucal periodic table: http://www.csrri.iit.edu/periodic-table.html

X-ray data booklet: http://xdb.lbl.gov

Supplementary information

Glossary

χ

It is either the photoabsorption coefficient for an isolated atom with no electron interference or a semi-empirical spline or other background subtraction to approximate what this might be; or an estimated edge-jump amplitude.

Extended XAFS

(EXAFS). Refers to the region of the absorption spectrum from about 30 eV above the absorbing edge, which shows complex oscillations that explain the local order of any material, bonding and radial distances.

Fluorescence detection mode

The intensity of a particular fluorescence line emitted by the sample is measured as a function of energy. The ratio of the intensity of the fluorescence line and the intensity of the incident radiation is proportional to the absorption coefficient.

High-energy resolution fluorescence detection

The intensity of the emitted line of interest is recorded with a very narrow bandwidth as a function of the incident energy. The ratio to the incident intensity results in an X-ray absorption spectroscopy spectrum with sharper spectral features. Usually, this 1D spectrum is taken along the peak of the 1 or 1,3 ridge to optimize flux and statistics.

k

k-space represents the spectrum in terms of the effective photoelectron wavenumber above the absorption edge E0 rather than versus energy.

Photoelectron

An electron emitted into the continuum from a bound state in the atom or material when the incident energy of the photon is above the energy of the absorption edge.

Self-absorption

Also called over-absorption. The incident photon (X-ray) field is absorbed in the material and when it emits a fluorescent photon on relaxation, the fluorescent photon is absorbed as it passes through the material to the surface.

Transmission detection mode

The absorption spectrum is obtained by taking the natural logarithm of the ratio of the intensity of the radiation before and after the sample as a function of the incident energy. The measurement obtained is equal to the absorption coefficient.

X-ray absorption fine structure

(XAFS). The modulation of the absorption coefficient at and above an absorption edge of an element owing to its chemical state and the structure of its immediate surroundings. XAFS is commonly divided into the near-edge region (X-ray absorption near-edge structure or near-edge X-ray absorption fine structure), which extends to ~30 eV above the absorption edge, and the extended region that displays oscillations in the absorption coefficient extending from 30 eV above the absorption edge.

X-ray absorption near-edge structure

(XANES); also called NEXAFS (near-edge X-ray absorption fine structure). The region of the absorption spectrum that extends from below the edge to about 30 eV above the edge. It gives insight into local coordination, molecular bonding, oxidation state, geometry and Fermi level. Sometimes referred to as the X-ray absorption main edge structure region.

X-ray absorption spectroscopy

For a solid, liquid or disordered material, the measurement of the X-ray linear absorption coefficient μpe(E) or the mass absorption coefficient as a function of incident energy E.

X-ray emission spectroscopy

The measurement of the X-ray emission from a sample irradiated by X-rays.

X-ray mass absorption coefficient

Follows the Beer–Lambert law for a beam of photons of energy E in which the transmitted photon intensity I(t) is related to the incoming photon intensity I0.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chantler, C.T., Bunker, G., D’Angelo, P. et al. X-ray absorption spectroscopy. Nat Rev Methods Primers 4, 89 (2024). https://doi.org/10.1038/s43586-024-00366-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00366-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing