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Endometrial agingis accompanied by
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Whether and how endometrial aging affects fertility remains unclear.

In ourin-house clinical cohort at the Center for Reproductive Medicine

of Peking University Third Hospital (n =1,149), we observed adverse
pregnancy outcomes in the middle-aged group after excluding aneuploid
embryos, implying the negative impact of endometrial aging on fertility.
To understand endometrial aging, we performed comprehensive
transcriptomic profiling of the mid-secretory endometrium of young

(<35 years) and middle-aged (=35 years) patients. This analysis revealed
that H3K27acloss is linked to impaired endometrial receptivity in the
middle-aged group. We eliminated H3K27ac in young human endometrial
stromal cells and observed reduced progesterone receptor (PGR), a critical
regulator of endometrial receptivity. Lastly, we validated the association
between H3K27ac/PGR loss and uterine aging in a mouse model. Our
findings establish H3K27ac as a critical regulator of PGR and demonstrate
thatendometrial H3K27ac loss is associated with aging-related fertility
decline. This work provides valuable insights into enhancing the safety and
efficacy of assisted reproductive technologies in future clinical practices.

Due to the social advancement and lifestyle changes, there has been
ariseinthe number of persons conceivingin their late 30s, leading to
frequent concerns about theimpact of advanced maternal age (AMA) on
pregnancies' ™. Agingis associated with adverse pregnancy outcomes,
including fertility decline, miscarriage, fetal growth restriction, still-
birth and preeclampsia®®. Although the aging-related decline in the
quality of oocytes and embryos is amajor causal factor of infertility™°,
the effect of the aging endometrium remains controversial® >, Under-
standing the underlying mechanisms of endometrial aging and its
impactonfertility is crucial for the effective treatment of aging-related
female-factor infertility.

Embryo implantation is the most critical step of the reproduc-
tive process in many species, requiring the sophisticated cross-
talk between the implantation-competent blastocyst and receptive
endometrium®', Endometrial receptivity is a complex process that
allows the embryo to attach, invade and develop in a specific period
known as the window of implantation (WOI) or mid-secretory phase'” .
The endometrium undergoes considerable structural and functional
changes during the WOI*°. Growth factors, hormones, prostaglandins,
adhesion molecules, nuclear receptors and epigenetic modifications
tightly regulate endometrial receptivity?**. In addition to classical
nuclear receptors, such as progesterone receptor (PGR) and estrogen
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receptor (ERa)”, accurate histone modifications are also necessary for
embryo implantation, enabling essential gene expression for decidu-
alization, such as WNT4, ZBTB16, PROKI and GREBI (refs. 24,26). As a
histone modification linked to transcriptional activation, H3K27ac
increases in human endometrial stromal cells during decidualization
withtheaccumulationin the distalupstream region of IGFBPI1, activat-
ingits expression”?, Nevertheless, the impact of H3K27ac on endome-
trial receptivity andits relevance to endometrial aging remain elusive.

Inthis study, we first confirmed the aging-related adverse impact
of the endometrium on fertility based on pregnancy outcomes of a
clinical cohort at the Center for Reproductive Medicine of Peking
University Third Hospital (n =1,149). Next, we characterized H3K27ac
patternsin the mid-secretory endometrium of middle-aged patients,
illustrating that H3K27ac loss is closely associated with PGR depletion
andimpaired endometrial receptivity, which was validated inamouse
model. Eliminating H3K27ac in young human endometrial stromal cells
and young murine uterireduced PGR expression. However, PGR inhibi-
tiondid not affect H3K27ac inthe mouse, indicating that H3K27acis the
upstream regulator of PGR. In summary, we identify H3K27ac loss as
one of the hallmarks of endometrial aging, confirm the cooperatively
regulatory roles of H3K27ac and PGR on genes and pathways relevant
to endometrial receptivity and provide potential treatment strategies
toimprove reproductive outcomes in AMA pregnancies.

Results
Aging endometrium exhibits impaired endometrial receptivity
Toinvestigate theimpact of endometrial aging on pregnancy outcomes,
we collected the clinical information of 1,149 patients who had under-
gone pre-implantation genetic testing for aneuploidy (PGT-A) screening
atthe Center for Reproductive Medicine of Peking University Third Hos-
pital (Fig. 1a and Supplementary Table 1). After excluding embryonic
aneuploidy, therates of biochemical pregnancy, clinical pregnancy and
live birth were significantly lower in the middle-aged group (Fig. 1b),
implying the adverse impact of endometrial aging on fertility.

Impaired endometrial receptivity is one of the hallmarks of endo-
metrial disorder, featuring extensive morphological and molecular
changes'. Changes in epithelial and stromal cells are necessary to
establish endometrial receptivity and synchronize the endometrium
with embryo implantation®’. We observed the abnormal proliferation
of epithelial cells and dysregulated decidual function of stromal cells
in middle-aged patients (Fig. 1c-f, Extended Data Fig. 1a,b and Sup-
plementary Tables 2 and 3). Aging stromal cells failed to develop the
typical morphology of decidual cells upon cyclicadenosine monophos-
phate (cAMP) and medroxyprogesterone acetate (MPA) treatment
(Fig. 1d). Decidual markers, including PRL and IGFBP1, were signifi-
cantly decreased in the middle-aged group during decidualization
(Fig.1e,fand Extended Data Fig. 1b).

We next focused on classic steroid hormone receptors PGR and
ERa, whichare central regulators of endometrial receptivity. PGR and

ERa were significantly reduced in the mid-secretory endometrium of
middle-aged patients (Fig. 1g-j and Extended Data Fig. 1c-e). Their
reductions in the middle-aged group were also confirmed in isolated
endometrial epithelial and stromal cells (Extended Data Fig. 1f-k).
To determine the transcriptional signature of endometrial aging, we
applied RNA sequencing (RNA-seq) to the mid-secretory endometrium
of young (n=10) and middle-aged (n = 8) patients (Supplementary
Table 2). The endometrium of the middle-aged group showed a dis-
tinct gene expression profile compared to young participants, with
asubstantial downregulation of PGR and other positive regulators of
endometrial receptivity (Fig. 1k,| and Extended Data Fig. 11-p). Down-
regulated differentially expressed genes (DEGs) in the endometrium of
middle-aged patients were enriched in the pathways of the mitotic cell
cycle, cellcycleand G1/S transition (Fig. 11). We also applied RNA-seq to
isolated epithelial and stromal cells of the mid-secretory endometrium
(n=4 for each group) to characterize transcriptomic changes along
with aging in the cell-type-specific manner (Supplementary Table 4).
Gene expression profiles differed between the young and middle-aged
groupsinboth epithelial and stromal cells (Extended Data Fig.2). How-
ever, aging-related transcriptional changes varied between epithelial
and stromal cells. Changes in stromal cells were more similar to the
endometrium, including the downregulation of genes in the path-
ways of the mitotic cell cycle and cell cycle in the middle-aged group
(Extended DataFig. 2d), considering that most endometrial cells were
stromal cells (>60%, estimated by CIBERSORTXx)*". Genes related to cell
proliferation were upregulated in endometrial epithelial cells of the
middle-aged group (Extended Data Fig. 2j), consistent with excessive
epithelial proliferation.

Our observations revealed abnormal cell morphologies, hormonal
responses and cell proliferation in the endometrium of middle-aged
patients, which are associated with impaired endometrial receptivity.

Aging-related H3K27ac loss is associated with PGR reduction
We evaluated the overlap between aging-related DEGs and genes
marked by different histone modifications toidentify upstreamregula-
tors. Endometrial DEGs were significantly enriched in genes marked
by H3K27ac or H3K27me3 (Fig. 2a). Unlike H3K27me3, the impact
of H3K27ac on endometrial receptivity remains unclear™. Of note,
genes encoding H3K27ac writers and readers were downregulated
inthe mid-secretory endometrium of middle-aged patients, whereas
genes encoding erasers were upregulated (Fig. 2b), consistent with
the reduced H3K27ac level in both aging epithelial and stromal cells
(Fig. 2c-e). Asignificantly lower level of H3K27ac in the proliferative
phase reassured that H3K27ac may primarily exert its function in the
mid-secretory phase (Extended Data Fig. 3a-c). We, thus, speculate
that H3K27ac loss is relevant to impaired endometrial receptivity in
middle-aged patients.

We next conducted CUT&Tag to explore the genomic distribution
of H3K27ac in endometrial epithelial and stromal cells of young and

Fig.1| Aging endometrium exhibits impaired endometrial receptivity.

a, Schematic design to assess pregnancy outcomes of young and middle-aged
patients undergoing PGT-A. b, The impact of age on pregnancy outcomes

in patients undergoing PGT-A. ¢, Representative images showing Ki67
immunohistochemistry (IHC) staining in the human mid-secretory endometrium
(n=3).d, Immunofluorescence (IF) staining of cellmorphologies in human
endometrial stromal cells during induced decidualization. Decidualization
wasinduced by the treatment of 0.5 pM cAMP and 1 uM MPA. The F-actin
cytoskeleton was visualized by rhodamine phalloidin staining. e, Relative mRNA
levels of IGFBPI and PRL in human endometrial stromal cells during induced
decidualization (n = 3).f, Representative images illustrating protein levels of
IGFBP1in human endometrial stromal cells during induced decidualization
(n=3).g,Representative images showing PGRIHC staining in the human
mid-secretory endometrium (n = 3). h, Representative images showing ERa

IHC staining in the human mid-secretory endometrium (n = 3).1i, Protein levels

of PGR and ERa in the human mid-secretory endometrium (n =5). j, Relative
mRNA levels of PGR and ESR1 in the human mid-secretory endometrium (n =5).
k, FPKM of PGR and ESRI in the human mid-secretory endometrium (n =10 and
n=_8fortheyoungand middle-aged groups, respectively). The adjusted P value
was determined by DESeq2 (ref. 79). The median, upper and lower quartiles

are shown. Whiskers represent upper quartile + 1.5 interquartile range (IQR)
and lower quartile - 1.51QR. 1, Pathway enrichment analysis of downregulated
DEGs in the aging mid-secretory endometrium. The adjusted Pvalue was
determined by Metascape®. Inc,d, gand h, scale bar, 50 pm. The nuclei were
stained with hematoxylinin the IHC staining and with DAPIin the IF staining.Ine
andj, statistical analysis was performed by two-sided unpaired Student’s ¢-test.
Dataare presented as mean + s.d. All replicates were biological replicates. D,
day; FPKM, fragments per kilobase of transcript per million mapped reads; ge,
glandular epithelium; le, luminal epithelium; M or mid-aged, middle-aged; na,
not applicable; ns, not significant; P.adj, adjusted Pvalue; s, stroma; Y, young.

Nature Aging | Volume 5 | May 2025 | 816-830

817


http://www.nature.com/nataging

Article https://doi.org/10.1038/s43587-025-00859-5

a b The impact of age on pregnancy outcomes in patients undergoing PGT-A
Young (n = 576) Mid-aged (n = 573) P value
2 S S
& b Young Maternal age (years) 31.04 +2.440 38.17 £ 2.419 <0.0001
n=576
No. of FET cycles 1.479 + 0.7777 1.469 + 0.8180 0.3855
<35 years
Repeated transfers 205/576 (35.59) 182/573 (31.76) 0.1899
@ — Biochemical pregnancy 363/576 (63.02) 324/573 (56.54) 0.0261
& Clinical pregnancy 324/576 (56.25) 285/573 (49.74) 0.0288
= AWs  Mid-aged Ectopic pregnancy 2/576 (0.35) 1/573 (0.17) na
& n=573
Early pregnancy loss 50/576 (8.68) 50/573 (8.73) na
>35 years . .
Live birth 269/576 (46.70) 231/573 (40.31) 0.0322
Data are shown as no. (%)
c Young Mid-aged d Young Mid-aged e PRL IGFBPT
® 1M Young p-0.017 208 7 P=0004
4-|MMidaged o P=0.087 1551 1
o T J H
2 S E
a < 2] | E
& o
[ 0 £
& g 1 i Ba 2
< & 001 T e
< &
o
© o L=
F DO D2 D4 D6 DO D2 D4 D6
a
f Day O Day 2 Day 4 Day 6
M Y M Y M Y M (kba)
h - - 35
g Young Mid-aged
GAPOH | s -
. 2 35
i Endometrium
Youn Mid-aged
9 o (kDa)
[+4
e PCR ‘ ‘ B n = | 100
ERa - - - 70
CADH | e S . |

i Endometrium l
Downregulated pathways during endometrial aging
PGR(p- 0.001) ESR1) (endometrium)
Eal &
<} o o
% 15 % 10 Mitotic cell cycle 4 _
= e = .
g g
< 1.0 4 =< ol®
P4 Z 5
e 0.5 (] o -log,(P.adj)
kS g DNA damage response -| 20
s s [ ]
x O0- o 0- " 20
Young Mid-aged Young Mid-aged G1/S transition -
20
k Endometrium DNA repair -
[
PGR(p.ad < 0.001) ESR1(rg) Cell-cell adhesion -| -
100 50
80 - 40 PI3K-Akt signaling pathway | -
S 60 = 30 Blood vessel development - -
& &
20 4 10 4 T T T T T T
L 0 1 2 3 4 5
o . ! 0 . . Enrichment
Young Mid-aged Young Mid-aged

Nature Aging | Volume 5 | May 2025 | 816-830 818


http://www.nature.com/nataging

Article

https://doi.org/10.1038/s43587-025-00859-5

b

Enrichment of DEGs in genes marked
by different histone modifications (endometrium)

Endometrium

Hakz7ac | I Mid-aged
Hakz7mes -|
H3K9me3 - ” KATEA
H3K23ac + E L EP300 G X
H3K1dac . g HaT] Gene expression
H3K4me2 - -log,o(P-adj) ] CREBBP
H3K23me2 | 5
H3kame3 - 4 " [ | HDACT
H4K5ac 3 g HDAC6 1
H3K4ac - 2 & HDAC7 0
n’ w
H3K56ac o HDAC10
H4K8ac - — — -1
H3K9ac o [] || TAFIA l
HaK79me3 | g ] TAFIB 2
H3K4me1 - NN 3 CTBP2
HaK36me3 | @ u BRD4
o’ 1
0 05 1.0
Odds ratio
(A Young Mid-aged d (kDa) Young Mid-aged e
a
@
3 AP e o |H3K2T20 2 Tmvong  P-0.083
2 . W Mid-aged
g 2.0 9ec o
2 lm‘% z peocor |
o =
o s ® g 15 . H
S ~ 'I .
8 Young Mid-aged <0
3 o (kDa) @ .
+ 8 l‘- S— -‘ H3K27ac 05
=
© 0
< H3 ) .
o 15J ‘ Stromal Epithelial
w
f _ Stromalcells 9  Mid-aged versus young h
Young Mld -aged " .
. 10 © Down 11,579 Young Mid-aged B Promoter
s s = o Upsd @ M 5UTR
£S5 T s |8 3UTR
= %g 6 < o 3 Exon
308 & 21 ,Jj‘} g M Intron
oS 4 k) = M Downstream
g S 1 14 12 . D . .
N >= istal intergenic
o4 2
7] 0
e - - . -
0 2 4 0 1
Center 0 O Center \- log,(FC)
oD
o o
1 GO analysis of genes with H3K27ac depletion ) KEGG analysis of genes with H3K27ac depletion
(stromal cells) (stromal cells)
Wnt signaling pathway - [N Hippo signaling pathway -| [N
Mitotic cell cycle - Adherens junction —
Mitotic cell cycle process - Focal adhesion -
Chromatin remodeling - -log,(P.adj) Wnt signaling pathway -log(P.adj)
Cell division - » TGF-B signaling pathway | 5
Blood vessel morphogenesis 1 PI3K-Akt signaling pathway — 4
Extracellular matrix organization Rap1 signaling pathway 3
Protein processing - [N K MAPK signaling pathway - [ 2
Nuclear export - [N Cell cycle - [ 1
Progesterone receptor signaling pathway - [N GnRH signaling pathway - [N
Histone mRNA catabolic process - [ NN Oxytocin signaling pathway | [N
Negative regulation of cell junction assembly - [ NN FoxO signaling pathway -| [N
T T T T T T T
0 2 4 o 1 2 3
Enrichment Enrichment
k PGR ESR1
-+ +
(0-70) (0-32)
o Rep_1 H ' I
< T
3
= Rep_2
P_ e "
el
% Rep_1 -
2
s Rep_2 -
chr11:101,102,772-101,135,658 chr6:151,654,821-151,693,568
l m H3K27ac
A485(uM) 0 0.5 1 2 (kDa) P=0.012
PGR 100

GAPDH ‘------------L%

Stromal cells

H3K27ac b— ———

PGR/GAPDH

o

H3 \m}» 15

0

05 1 2
A485 (M)

05 1 2
A485 (M)

Nature Aging | Volume 5 | May 2025 | 816-830

819


http://www.nature.com/nataging

Article

https://doi.org/10.1038/s43587-025-00859-5

Fig.2|Aging-related H3K27acloss is associated with PGR reduction.

a, Enrichment of aging-related endometrial DEGs in genes marked by different
histone modifications. b, Heatmaps showing endometrial gene expression of
H3K27ac writers, erasers and readers. Red and blue gene symbols represent
aging-related upregulated and downregulated DEGs separately. ¢, H3K27ac
immunofluorescence (IF) staining in the human mid-secretory endometrium.
Scale bar, 50 pum. The nuclei were stained with DAPI. d, The H3K27ac level in
human mid-secretory endometrial stromal and epithelial cells (n = 4).

e, Therelative H3K27ac level in human mid-secretory endometrial stromal and
epithelial cells (n = 4). f, Heatmaps of the H3K27ac signal in human mid-secretory
endometrial stromal cells at H3K27ac peaks in the young group. g, Volcano
plotillustrating H3K27ac differences between young and aging mid-secretory
endometrial stromal cells. Red and blue points represent peaks that gain and lose
H3K27acin aging stromal cells. h, The genomic distribution of H3K27ac peaks

inhuman mid-secretory endometrial stromal cells. i, GO enrichment analysis of
genes with H3K27ac loss in aging mid-secretory endometrial stromal cells.

J, KEGG enrichment analysis of genes with H3K27ac loss in aging mid-secretory
endometrial stromal cells. k, The H3K27ac signal in mid-secretory endometrial
stromal cells at selected genes. hg38 coordinates are shown. The blue shading
indicates the specific region with H3K27ac loss in the middle-aged group.

1, H3K27ac and PGR levels in mid-secretory endometrial stromal cells after
treatment with A485 (n =3).m, Relative H3K27ac and PGR levels in mid-secretory
endometrial stromal cells after treatment with A485 (n =3).In e and m, statistical
analysis was performed by two-sided unpaired Student’s t-test or Mann-Whitney
Urank-sum test (when data did not follow a normal distribution). Data are
presented as mean + s.d. All replicates were biological replicates. FC, fold change;
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; mid-aged,
middle-aged; ns, not significant; P.adj, adjusted Pvalue; UTR, untranslated region.

middle-aged patients (n =3 for each group) and to understand the
association between H3K27ac loss and impaired endometrial receptiv-
ity (Extended DataFig.3d and Supplementary Table 4). H3K27ac peaks
of biological replicates were merged, considering their consistency
witheach other (Extended DataFig. 3e,f). In stromal cells, we observed
thousands of differentially binding peaks, with H3K27ac loss in most
peaks and genes in the middle-aged group (Fig. 2f,g and Extended
Data Fig. 3g). As an important transcriptional activator’**, H3K27ac
was prevalent at the transcription start site (TSS) compared to other
genomic regions (Fig. 2h and Extended Data Fig. 3g). We observed
fewer H3K27ac peaks in epithelial cells, and there were almost no dif-
ferentially binding peaks between the two groups (Extended Data
Fig.3h-j). Therefore, we only focused on stromal cells for downstream
analysis. Instromal cells, genes marked by H3K27ac exhibited enrich-
ment inthe Wnt and BMP signaling pathways (Extended Data Fig. 3k),
which are crucial for stromal cell proliferation and differentiation
during implantation®¥. Aging-related H3K27ac loss happened
around genes involved in signaling pathways relevant to endometrial
receptivity (Fig. 2i,j). For instance, we observed eliminated H3K27ac
in the promoter region of PGR and ESRI (not the representative tran-
script of ESRI) in the middle-aged group (Fig. 2k). Compared to ERa,
aging-related expression changesin PGRin endometrial stromal cells
showed a greater magnitude (log, fold change, PGR versus ERa: qRT-
PCR, -1.00 versus —0.70; RNA-seq, —1.99 versus —0.42; western blot,
-0.48versus—0.29). Thus, PGR was selected as the downstream target
of H3K27ac for further exploration. To validate the causal relationship
between H3K27ac and PGR, we applied different concentrations of
A485 (aninhibitor of p300, a writer of H3K27ac) after 24 h of culture
to eliminate H3K27ac in young endometrial stromal cells (n =3 for
each group). When treated with 2 uM A485, PGR was significantly
downregulated upon H3K27ac reduction (Fig. 2I,m), confirming that
eliminating H3K27ac inyoung endometrial stromal cells reduces PGR.

H3K27ac and PGR regulate endometrial receptivity together

We further explored the genomic distribution of PGR in human endo-
metrial stromal cells. PGR CUT&Tag was applied to endometrial stro-
mal cells of young and middle-aged patients (n =3 for each group;
Supplementary Table 4). PGR binding peaks of biological replicates

were merged, considering their consistency with each other (Extended
DataFig. 4a). Consistent with lower PGR expression in aging endo-
metrial stromal cells, we observed genome-wide depletion of PGR
binding (Fig. 3a,b and Extended Data Fig. 4b). As animportant tran-
scription factor, PGR binding in the young group and PGR depletion
in the middle-aged group were both prevalent around promoters
(Fig. 3c and Extended Data Fig. 4b). Genes with PGR depletion in
aging stromal cells were primarily enriched in pathways associated
with endometrial receptivity, such as the Wnt signaling pathway***
(Fig. 3d,e and Extended Data Fig. 4c,d). These observations revealed
thataging-related abnormal PGR recruitment was relevant to impaired
endometrial receptivity. To further investigate associations among
PGRdepletion, generepression and impaired endometrial receptivity,
we selected downregulated genes with simultaneous PGR depletion
in aging stromal cells and performed pathway enrichment analysis
(Fig. 3f,g). These genes were prevalent in pathways relevant to cell
proliferation, differentiation and endometrial receptivity, such as the
ECM-receptor interaction, and the Wnt, BMP and Hippo signaling
pathways***** (Fig.3g). Dysregulated Wnt and ECM signaling pathways
were reported tolead to abnormal proliferation and differentiation of
endometrial cells**~*2, Representative genes of these pathways, such as
FGF1,50X4,PRC1, WNT2, WNT5A and ALDHIA1, showed gene repression
and PGR depletion at the same time (Fig. 3h,i).

Given that H3K27ac loss was associated with PGR depletion and
abnormal endometrial receptivity, anew questionis whether H3K27ac
and PGR cooperatively regulate genes relevant to endometrial receptiv-
ity. We observed correlative genomic occupancies between PGR and
H3K27ac (Fig. 4a-d). This co-localization was consistent along gene
bodies and the entire genome (Fig. 4c,d), which was further confirmed
by motifanalysis and the co-immunoprecipitation (co-IP) experiment
between PGRand p300 (Fig. 4e,f). Aging-related H3K27ac lossand PGR
depletionalso occurred at similar genomic regions (Fig. 4g), affecting
key regulators of endometrial receptivity together, such as FOXOI,
HOXA10 and HAND2 (Fig. 4h,i). These genes were significantly down-
regulatedinthe middle-aged group, along with H3K27ac and PGR loss
(Fig.4j,kand Extended DataFig. 4e). Genes that exhibited simultaneous
depletion of both PGR and H3K27ac in the middle-aged group were
enrichedin the Wntand MAPK signaling pathways, revealing abnormal

Fig. 3| Aging endometrium shows genome-wide PGR depletion. a, Heatmaps
ofthe PGR signal in human mid-secretory endometrial stromal cells at PGR peaks
inthe younggroup.b, Volcano plotillustrating PGR differences between young
and aging mid-secretory endometrial stromal cells. Red and blue points
represent peaks that gain and lose the PGR signal in aging stromal cells.

¢, The genomic distribution of PGR peaks in human mid-secretory endometrial
stromal cells. d, GO enrichment analysis of genes with PGR depletion in aging
mid-secretory endometrial stromal cells. e, KEGG enrichment analysis of genes
with PGR depletion in aging mid-secretory endometrial stromal cells. f, Venn
diagramillustrating the overlap between downregulated DEGs and genes with

PGR depletion in aging mid-secretory endometrial stromal cells. g, Pathway
enrichment analysis of 708 common genes indicated inf. h, The PGR signal in
mid-secretory endometrial stromal cells at selected genes. hg38 coordinates

are shown. The blue shading indicates the specific region with PGR depletion
inthe middle-aged group. i, FPKM of selected genes in human mid-secretory
endometrial stromal cells (n=4). The adjusted Pvalue was determined by DESeq2
(ref.79). Dataare presented as mean =+ s.d. All replicates were biological replicates.
FC, fold change; FPKM, fragments per kilobase of transcript per million mapped
reads; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;
mid-aged, middle-aged; P.adj, adjusted Pvalue; UTR, untranslated region.
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Fig.4|H3K27ac and PGR exhibit correlated genomic occupancies and
coordinated aging-related depletion. a, Heatmaps of H3K27ac and PGR signals
inyoung mid-secretory endometrial stromal cells at H3K27ac and PGR peaksin
the young group. b, Venn diagramiillustrating the overlap between genes marked
by H3K37ac and PGR. ¢, The H3K27ac and PGR signals in young mid-secretory
endometrial stromal cells at the euchromosome and X chromosome. d, One-
kilobase plots showing the correlation between H3K27ac and PGR signalsin
human mid-secretory endometrial stromal cells. e, Motif analysis of H3K27ac
peaks in young mid-secretory endometrial stromal cells. f, Co-IP assays showing
theinteraction between p300 and PGRin the human endometrium. g, Heatmaps
of H3K27ac and PGR signals in human mid-secretory endometrial stromal cells
at differentially binding peaks of H3K27ac and PGR between the two groups.

h, Venn diagramillustrating the overlap between genes with H3K27ac and PGR
loss. i, H3K27ac and PGR signals in mid-secretory endometrial stromal cells at
selected genes. hg38 coordinates are shown. j, Protein levels of FoxO1, HOXA10
and HAND2 in mid-secretory endometrial stromal cells (n = 4). k, Relative protein
levels of FoxO1, HOXA10 and HAND2 in mid-secretory endometrial stromal
cells (n=4). Statistical analysis was performed by two-sided unpaired Student’s
t-test. Data are presented as mean + s.d. 1, GO enrichment analysis of genes with
H3K27ac and PGR loss. m, KEGG enrichment analysis of genes with H3K27ac
and PGR loss. All replicates were biological replicates. GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; mid-aged, middle-aged;
P.adj, adjusted Pvalue; Pro, proliferative phase; Sec, secretory phase; TES,
transcription end site; WB, western blot.

endometrial receptivity*** (Fig. 41,m). Our resultsindicated a collabo-
rative relationship between H3K27ac and PGR, regulating genes related
to endometrial receptivity cooperatively. This finding is unlikely due
totechnical artifacts because we also identified genomicregions that
gain H3K27acbut lose PGR (Extended Data Fig. 4f).

Eliminating H3K27ac impairs murine uterine receptivity

To functionally validate that aging-related endometrial H3K27ac loss
impairs fertility by reducing PGR, we used an aging mouse model
(10-month-old C57BL/6) mice). It was reported that the total number
of pups and the average number of pups per litter in aging mice were
significantly lower thaninyoung mice**~*¢, indicating impaired uterine
receptivity. Consistently, our aging mice exhibited abnormal uterine
receptivity with excessive proliferation of uterine luminal epithelial
cellsand decreased uterine H3K27ac on day 4 (Fig. 5a—c and Extended
Data Fig. 5a,b). Aging murine uteri also showed distinct gene expres-
sion patterns compared to the young group (Fig. 5d and Extended
DataFig.5c-f). Aging-related transcriptional changes were consistent
between the human endometrium and the murine uterus (Fig. 5d-f).
Forinstance, several pathways, including the cell cycle, G1/S transition
and mitotic cell cycle, were enriched with aging-related downregulated
genes in both humans and mice (Figs. 1l and 5d,e). Genes downregu-
lated in the endometrium of middle-aged patients tended to be also
downregulatedinthe aging murine uterus (Fig. 5f). These observations
confirmed the reliability of using mice as the validation model.

We observed high H3K27ac inboth uterine epithelial and stromal
cells during the peri-implantation stage (day 4), when the uterus isin
thereceptive state, suggesting that H3K27ac is closely associated with
endometrial receptivity and embryo implantation (Fig. 5g). To inves-
tigate whether H3K27ac loss impairs uterine receptivity, we injected
5l of 100 pM A485 into the uterine horn on day 3 of the pregnancy,
and H3K27ac was effectively eliminated on day 4 (Fig. 5h,i). A485 mice
exhibited implantation failure on day 5, along with abnormal prolif-
eration of epithelial cells and uterine dysfunction (a defective luminal
closure characterized by increased luminal epithelial branches), but
without observed blastocyst alterations (Fig. 5j—m and Extended Data

Fig. 6a-e). Blastocysts that failed toimplant were observedin the uter-
ine lumen in the A485 group (Fig. 5j). PGR expression was decreased
in the A485 group, whereas ERa remained unaffected (Fig. 5n-p and
Extended DataFig. 6f,g). Next, RNA-seq was performed on the control
and A485 uterine samples on day 4. We observed distinct transcrip-
tional profiles between the control and A485 groups, resembling the
aging process (Extended Data Fig. 6h-I). Progesterone-responsive
genes, such as Hoxal0, Hand2 and Ihh, were downregulated in the
A485group along with PGR depletion (Fig. 5p,q). Estrogen-responsive
genes Ltfand Mucl were upregulated even though ERa was unaffected
(Fig. 5p,q), which might be due to the imbalance between progesterone
and estrogen caused by PGR depletion. Theimpact of H3K27acloss on
PGR was further evaluated in uterine stromal cells specifically. Upon
A485 treatment, murine uterine stromal cells showed decreased Pgr
expression, increased apoptosis rate and defective decidualization
(Fig.5r—t).Itwas reported that abnormal stromal cell proliferationand
apoptosisimpair endometrial receptivity*~*°. Of note, decidualization
is different between humans and mice. The human deciduais formed
routinely and is shed off in the absence of an embryo®. However, in
mice, decidualization of stromal cells occurs after successful embryo
implantation®*”'. Nonetheless, we still identified a conserved mecha-
nism between humans and mice: H3K27ac regulates PGR expression
instromal cells and, thus, affects endometrial/uterine receptivity.

To further characterize the relationship between PGR and
H3K27ac, antiprogesterone RU486 was injected into the uterine horn
on day 3, whereas the control group was administered with DPBS.
Progesterone-responsive genes, suchas Hand2, Hoxal0O and Ihh, were
significantly decreased in the RU486 group, confirming the effec-
tive interference of PGR (Extended Data Fig. 7a). PGR disruption also
resulted indramatic transcriptional changes (Extended DataFig. 7b-f),
similar to the aging process. However, those aging-like changes were
not accompanied by H3K27ac loss or significant expression changes
of H3K27ac writers and erasers (Fig. 5u,v and Extended Data Fig. 7g,h).
Thus, we conclude that H3K27acis an upstream factor regulating PGR
in the receptive murine uterus, whereas PGR cannot affect H3K27ac
reversely.

Fig. 5| Eliminating H3K27ac impairs murine uterine receptivity. a, Ki67
immunohistochemistry (IHC) and MUCI immunofluorescence (IF) staining in
the murine uterus on day 4. b, H3K27ac in the murine uterus on day 4 (n = 5).

¢, H3K27ac IF staining in the murine uterus on day 4. d, Pathway enrichment
analysis of downregulated DEGs in the aging murine uterus. e, Heatmaps showing
expression changes of selected genes in the human endometrium and murine
uterus (aging versus young). f, GSEA of gene expression changes in the murine
uterus (aging versus young) against aging-related downregulated DEGs in the
human endometrium. g, H3K27ac IF staining in the murine uterus. h, Schematic
diagram of the A485 injection. i, H3K27ac IF staining in the uterus on day 4.

Jj, Implantation sites visualized by the blue dye and unimplanted embryos
obtained in A485.k, The number of implantation sites on day 5.1, Cytokeratin IF
stainingin the uterus on day 4. m, Ki67 IHC and MUCL IF staining in the uterus on
day 4.n, PGR/ERa IHC staining in the uterus on day 4 (n = 3). o, PGR/ERa protein

levels in the uterus on day 4. p,q, Relative mRNA levels of Pgrand Esr1 (p) and

Ltf, Mucl, HoxalO, Hand2 and Ihh (q) in the uterus onday 4 (n=5).r, The relative
mRNA level of Pgrin uterine stromal cells on day 4 (n = 3).s, The apoptosis rate
of uterine stromal cells (n = 3). t, Images of the uterus on the fifth day after
deciduogenic stimulus. u, The H3K27ac level in the uterus on day 4 (n = 3).

v, H3K27ac IF staining in the uterus on day 4. w, PCA plot of uterine RNA-seq data
from all groups of mice. Scale bar, 50 pm (except t). Nuclei were stained with
hematoxylinin IHC staining and with DAPIin IF staining. Statistical analysis was
performed by two-sided unpaired Student’s t-test or Mann-Whitney

Urank-sum test. Data are presented as mean + s.d. All replicates were biological
replicates. CON, control; FC, fold change; FDR, false discovery rate; ge, glandular
epithelium; GSEA, gene set enrichment analysis; le, luminal epithelium;

NES, normalized enrichment score; ns, not significant; P.adj, adjusted Pvalue;
PC, principal component; PCA, principal component analysis; s, stroma.
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Lastly, we comprehensively compared transcriptional changes
amongaging, H3K27acloss and PGRinhibition by anintegrated analysis
ofallthe RNA-seq data. Uterine samplesinthe aging, A485and RU486
groups shared similar transcriptional signatures, which were distinct
from the young and control groups (Fig. 5w). Inhibition of either
H3K27ac or PGR would result in aging-like transcriptional changes
(Extended Data Fig. 8a-f), dysregulating genes and pathways closely
related to uterine receptivity (Extended Data Fig. 8g,h). Our findings
suggest that eliminating H3K27ac resembles the aging process and
has similar transcriptional effects as PGR inhibition, although some
genes and pathways were regulated by H3K27ac only (Extended Data
Fig. 8f,g). These results collectively demonstrate that H3K27ac can
regulate genes and pathways related to endometrial receptivity by
itself or viaPGR (Supplementary Fig.1).

Discussion

In1983, the association between AMA and potential adverse pregnancy
outcomes was reported*. Fertility heavily declines with increasing
reproductive age**>*, accompanied by elevated risks of certain dis-
eases, including early miscarriages, late miscarriages, diabetes and
chromosomal abnormalities®>***’, Retrospective cohort studies have
suggested that donor age is crucial to successful pregnancy in oocyte
donation'®*®, Unlike comprehensive studies focusing on theimpact of
aging-related abnormalitiesin oocytes and embryos, the effect of endo-
metrial aging on pregnancy outcomes remains controversial > 3¢,
These studies were limited by either small sample sizes or the interfer-
ence of potential confounders. Itis critical to understand the relation-
ship between endometrial disorders and adverse pregnancy outcomes
in middle-aged patients. To address this challenge, we characterized
pregnancy outcomes of patients over and under 35 years of age who
underwent PGT-A at our hospital. This PGT-A cohort presumably con-
trolled the potential impacts of embryonic aneuploidy. We observed
significantly lower pregnancy rates in the middle-aged group, imply-
ing thatendometrial aging adversely affects pregnancy. Our in-house
cohort study provides several advantages that support the reliability
of our findings: (1) alarge cohort (n=1,149) in the same reproductive
center; (2) matched oocyte and endometrium age while using PGT-A
to control the embryonic aneuploidy; and (3) exclusion of diseases and
factors that could interfere with endometrial receptivity. Even though
PGT-A cannot rule out anon-aneuploidy aging effect on embryos, our
results still represent a concrete effort to confirm the endometrial fac-
tor contributing to aging-related infertility, as embryonic aneuploidy
is the leading cause of AMA pregnancy loss®"*2,

To further understand endometrial aging, we systematically char-
acterized aging human endometrial epithelial and stromal cells at
molecular, cellular and histological levels. We identified that H3K27ac
loss is closely associated with aging-related transcriptional changes
and PGR depletion. Using RNA-seqand CUT&Tag data, we determined
H3K27actargets and correlated aging-related H3K27acloss to impaired
endometrial receptivity. We confirmed H3K27ac as an upstream regula-
tor of PGR because eliminating H3K27ac in young human endometrial
stromal cells substantially reduced PGR. Moreover, H3K27acand PGR
exhibited correlated genomic occupancies, and their simultaneous
depletion was prevalent in genes relevant to endometrial receptivity.
We extended our investigation using an aging mouse model to validate
initial observations. Inhibiting H3K27ac in the uterus of young mice
induced aging-like phenotypes, including decreased PGR, extensive
transcriptional changes, excessive epithelial proliferation, increased
stromal apoptosis and impaired stromal decidualization, indicat-
ing defective uterine receptivity. We also compared transcriptional
changesinduced by H3K27ac and PGR inhibitors. H3K27ac inhibition
resembled transcriptional changes caused by PGR inhibition but with
hundreds of genes affected by H3K27ac loss only. Therefore, H3K27ac
may function as acritical epigenetic regulator of uterine gene expres-
sionin mice through PGR-dependent and PGR-independent manners.

H3K27acis awell-established chromatin marker of active enhanc-
ersand promoters. Itis critical to reproductive events, such as zygotic
genomeactivationand early embryonic development® %, However, the
associationbetween H3K27ac and endometrial aging has not beenclari-
fied yet.Inthe present study, weidentified H3K27ac loss as a hallmark
of endometrial/uterine aging in humans and mice. Further studies are
needed to elucidate the causal factors of aging-related H3K27ac loss.
Acetyl-CoA is a substrate of histone acetyltransferases®®. The consist-
ent ACSS5 expression in the endometrial epithelium throughout the
menstrual cycle suggests the functional role of acyl-CoA synthesis®. In
aging mice, acetyl-CoA declines in the brain®, Increasing acetyl-CoAin
the brain may help maintain mitochondrial homeostasis and mitigate
aging-related metabolic deficits in Alzheimer’s disease®®. We, thus,
speculate that aging-related disruptionin acetyl-CoA metabolism may
lead to H3K27ac loss.

PGR dysfunction was previously identified in the aging murine
uterus®. Our work contributes to determining and characteriz-
ing an upstream regulator of PGR. However, due to the lack of the
region-specificinhibitor of H3K27ac, our conclusions about the impact
of H3K27ac and PGR loss on endometrial receptivity have not been
fully confirmed’®. It has been reported that H3K27ac regulates chro-
matin state and affects the expression and binding of transcription
factors” 7>, We cannot distinguish the direct regulatory function of
H3K27ac from its effects mediated through PGR. Whether H3K27ac
could affect endometrial receptivity independent of PGR remains an
open question. Moreover, H3K27ac is not the only epigenetic regulator
of PGR and genes relevant to endometrial receptivity. For instance, the
causalrelationship between DNA methylation and reproductive aging
was also reported in mice”. DNA methylation, RNA methylation and
histone modifications may collectively regulate PGR and endometrial
receptivity. The dynamic interactions and regulatory functions of
these epigenetic factors are worthy of extra explorationin the future.

Inthe present study, we confirmed that endometrial aging is one
of the critical factors leading to adverse pregnancy outcomes. We
further elaborate onrelationships among H3K27ac loss, PGR depletion
and endometrial aging. H3K27ac extends beyond direct modulation
of PGR expression to cooperatively interact with PGR in coordinat-
ing the transcriptional network of endometrial receptivity. Our work
provides a new theoretical basis for the underlying mechanism of
impaired endometrial receptivity in middle-aged patients. H3K27ac
and PGR loss could serve as potential biomarkers and therapeutic
targets for endometrial aging, potentially improving the fertility of
middle-aged patients.

Methods

Clinical data collection

The current study was conducted at the Center for Reproductive Medi-
cine of Peking University Third Hospital. A real-world retrospective
PGT-A cohort study was performed to evaluate the effects of AMA on
endometrial receptivity and pregnancy outcomes. Subfertile couples
who were referred to the Center for Reproductive Medicine of Peking
University Third Hospital for a PGT-A procedure from January 2018
to December 2022 were potentially eligible if they had at least one
autologous euploid blastocyst (no mosaics) destined for frozen-thawed
embryo transfer (FET). None of the participants had been diagnosed
withuterine adhesion,immune system disease, hyperprolactinemiaor
thyroid dysfunction before the recruitment. Additional exclusion crite-
riawere as follows: (1) couples either did not have adeveloped embryo
for biopsy or did not have a euploid blastocyst for transfer; and (2)
couples had any disease that would interfere with endometrial recep-
tivity, including endometriosis, adenomyosis, fibroids, polyps and
polycystic ovary syndrome. Single blastocyst FET was performed each
time until a live birth or exhaustion of all euploid embryos occurred.
Some patients experienced repeated transfers using surplus euploids.
Reproductive outcomes were compared between patients who were
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younger than 35 years of age or 35 years of age or older at their last
transfer. Biochemical pregnancy was determined by a positive serum
B-hCGtestresult. The clinical pregnancy was defined as an ultrasono-
graphic visible gestational sac inside the uterine cavity, and ectopic
pregnancy was defined as outside the uterus. Early pregnancy loss was
defined as pregnancy loss that occurred during the first trimester. Live
birth was defined as the delivery of any viable neonate with gestational
age >24 weeks. The sex of the newborn was counted after delivery.

Clinical sample collection

Allendometrial samples were obtained from normally cycling patients
undergoing endometrial biopsy in our center due to infertility com-
bined with an uneven internal echo of the uterine cavity detected by
transvaginal ultrasound. All patients of the well-characterized samples
were normo-ovulatory, with regular cycles (21-35d), and had not been
onsteroid hormone medications within 3 months before the sampling.
The endometrium was collected 7-10 d after the serum luteinizing
hormone (LH) peak, or the endometrium was paraffinembedded and
stained with hematoxylin and eosin (H&E), and the mid-secretory
phase was determined by two senior pathologists. Patients with any
pathological findings that invade the endometrial cavity, as previ-
ously detected by transvaginal ultrasound, pelvic magnetic resonance
imaging, endometrial biopsy or serum cancer antigen (CA) 125 deter-
mination, such as endometriosis, submucosal myomas, intramural
myomas >4 cm and hydrosalpinx, were further excluded. The defini-
tion of middle-aged patients in thisstudyis older than 35 years of age.
Specimens of patients aged 24-32 and 38-45 were eventually selected
for tissue collection. The menstrual cycle was mainly categorized into
proliferative, mid-secretory or other phases based on histopathologic
criteriaand were retrospectively assigned back to samples.

This study was approved by the Ethics Committee of Reproductive
Medicine of the Peking University Third Hospital (no. 20195Z-067).
All procedures were performed following the principles stated in the
Declaration of Helsinki. Written informed consent was obtained from
all patients.

Human primary endometrial stromal cell isolation, culture and
treatment

Endometrial tissues of young and middle-aged patients were rinsed
with DPBS to remove mucus and blood contaminants and then minced
into 8-10-mm? fragments. The remaining tissues were digested with
collagenase I and DNase I for 1 h, and cell suspensions were filtered
through100-pm and 40-pm wire gauze in sequence to remove excess
epithelial cells. Thefiltered cell suspension was centrifuged to collect
stromal cells. Approximately 8 x 10° viable stromal cells were seeded
into six-well plates and cultured in phenol red-free DMEM/F-12 (Gibco)
with10% charcoal-stripped FBS (CS-FBS; Vistech). After 4 h, the culture
medium was changed to remove the floating cells.

After being passaged once, isolated stromal cells were used to
induce decidualization. When the cell density reached 50-60%, the
medium was replaced by phenol red-free DMEM/F-12 with 1% CS-FBS
supplemented with10 nM estradiol (Sigma-Aldrich, 613967) and 1 uM
progesterone (Sigma-Aldrich, P0130) for different days.

Animal feeding and treatments
This study involves the use of animals and was reviewed and approved
by our institutional animal ethics committee (A2023030). The experi-
ments adhere to the guidelines set by the committee and are con-
ducted following the principles of the 3Rs (Replacement, Reduction
and Refinement) to ensure the ethical treatment of animalsin research.
All efforts have been made to minimize animal suffering and to use
the minimum number of animals necessary to achieve the scientific
objectives of the study.

Eight-week-old and 10-month-old C57BL/6) mice were acquired
from Beijing Vital River Laboratory Animal Technology. All mice were

keptin a controlled environment with a 12-h light/dark cycle, aroom
temperature of 20-25 °C and humidity of 55% + 10% and had access to
food and water at all times.

Female mice were mated with male mice, and the day of detection
of'vaginal plug was considered day 1 of the pregnancy. On day 3 of the
pregnancy, miceinthe case group received injections of 5 1 of 100 pM
A485 (Selleck Chemicals, S8740) or RU486 (Selleck Chemicals, S2606)
on each side of the uterine horn, whereas mice in the control group
weregiven 5 il of DPBS on each side of the uterine horn. Onday 4 of the
pregnancy, endometrial samples were obtained for molecular testing.
On day 5 of the pregnancy, implantation sites were identified with an
intravenous injection of Chicago blue dye solution (Sigma-Aldrich,
C8679), and the number ofimplantation sites, marked by distinct blue
bands, was recorded.

Western blotting

Western blotting was performed as previously described”. Samples
were homogenized in the lysis buffer, followed by the separation of
proteins ona12% SDS-PAGE gel. After this, the proteins were transferred
to PVDF membranes (Millipore) and blocked with 5% non-fat dry milk.
Specific primary and secondary antibodies were thenincubated on the
membranes in sequence. Antibodies against H3K27ac, IGFBP1, PGR,
ERq, p300, FoxO1, HOXA10 and HAND2 were used. GAPDH served
as control. Detailed information for antibodies is provided in Sup-
plementary Table 5.

qRT-PCR

Total RNA was extracted from uterine tissues or cells using TRIzol
reagent (Thermo Fisher Scientific). cDNA was made by HiScript 11 Q
RT SuperMix for qPCR (+gDNA wiper) (Vazyme Biotech, R323-01).
qRT-PCRwas performed using SsoFast EvaGreen Supermix (Bio-Rad,
172-5201) on a QuantStudio 12K Flex (Applied Biosystems). Each PCR
experiment was repeated at least three times, and relative expression
levels were determined by the ACT method with normalization to
GAPDH. All PCR primers are listed in Supplementary Table 6.

Immunostaining

Human endometrial and mouse uterine tissues were fixed in 4% para-
formaldehyde. Five-micrometer paraffin-embedded sections were
used for immunohistochemistry staining. Rehydrated sections were
microwaved insodium citrate buffer for 20 minto repair antigens and
thenblocked with 0.5% BSA-PBS for 1 h. After this, the primary antibod-
ies PGR, ERa and Ki67 were incubated at 4 °C overnight. Signals were
visualized by horseradish peroxidase (HRP)-conjugated secondary
antibodies. Inimmunofluorescence experiments, paraffin-embedded
sections and cells were incubated with H3K27ac, MUC1 and phalloidin
primary antibodies. Signals were visualized by secondary antibodies
labeled with Alexa Fluor 488 (anti-rabbit; Invitrogen), and the cell
nuclei were stained with DAPI. Detailed information for antibodies is
provided in Supplementary Table 5.

Co-IP

The human endometrium was used for co-IP. Diluted p300 and IgG
antibodies were added to magnetic beads, which were then fully sus-
pended and incubated in a flip mixer for 30 min at room tempera-
ture, followed by 2 h at 4 °C. After rinsing the magnetic beads (MCE,
HY-K0202) with PBST, samples were added and incubated overnight
at 4 °Cin a flip mixer. The magnetic beads were then separated and
resolved by SDS-PAGE. Magnetic beads were isolated and redissolved by
1xSDS-PAGE loading buffer, and subsequentimmunoblot experiments
were performed using antibodies against PGR and ERa.

RNA isolation and library preparation
Total RNA was extracted from human endometrium and mouse
uteri using TRIzol reagent (Invitrogen) according to the manufac-
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turer’s protocol. RNA purity and quantification were evaluated using a
NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific). RNA
integrity was checked using an Agilent 2100 Bioanalyzer (Agilent Tech-
nologies). Then, the libraries were constructed using the VAHTS Uni-
versal V6 RNA-seq Library Prep Kit according to the manufacturer’s
instructions. The transcriptome sequencing and analysis were con-
ducted by OE Biotech Co., Ltd. Each group was performed with at least
threebiological replicates.

RNA-seq and analysis

Thelibraries were sequenced on anlllumina NovaSeq 6000 platform,
and 150-bp paired-end reads were generated. Approximately 50 mil-
lion raw reads were generated for each sample. Raw reads in FASTQ
format were first processed using fastp’®, and low-quality reads were
removed to obtain clean reads. Approximately 48 million clean reads
were retained for each sample. Clean reads were then mapped to the
reference genome using HISAT2 (ref. 77). Human reference genome
hg38 was used for the human data, and mouse reference genome mm39
was used for the murine data. Read counts of each gene were obtained
by HTSeq-count’®. Differential expression analysis was performed
by DESeq2 (ref. 79). DEGs were determined by adjusted P< 0.05 and
absolutelog, fold change > 1. The enrichment analysis was performed
by Metascape®®. Aging-related DEGs in the human endometrium were
compared to published chromatinimmunoprecipitation sequencing
(ChIP-seq) data of histone modifications®*°,

CUT&Tag library construction

Cell nuclei extracted from the mid-secretory endometrium of young
and middle-aged groups were used for CUT&Tag assay after being
isolated using a cell nuclear isolation kit (Bioyou, 52201-10). CUT&Tag
assay was performed using a Hyperactive Universal CUT&Tag Assay Kit
for lllumina (Vazyme Biotech, TD903) according to the manufacturer’s
instructions®. Initially, concanavalin A-coated magnetic beads (ConA
beads) were added to resuspended cell nuclei and incubated at room
temperature to bind the cell nuclei. Cellmembrane permeabilization
was achieved using the non-ionic detergent Digitonin. The cell nuclei
were then bound by ConA beads. Subsequently, primary antibod-
ies for H3K27ac and PGR, along with secondary antibodies and the
Hyperactive pA-Tn5 Transposase, were incubated with the nuclei. The
Hyperactive pA-Tn5 Transposase precisely cleaved the DNA fragments
boundtothetarget proteins. The cut DNA fragments were ligated with
P5andP7 adaptors by Tn5transposase, and the libraries were amplified
by PCR using the P5 and P7 primers. The purified PCR products were
assessed using the Agilent 2100 Bioanalyzer. Finally, the libraries were
sequenced on the Illumina NovaSeq 6000 platform, generating 150-bp
paired-end reads for subsequent analysis. Each group was performed
with three biological replicates.

CUT&Tag analysis

The raw sequence data were first trimmed by fastp’® to obtain clean
reads. Cleanreads were aligned to the human reference genome hg38
using Bowtie 2 (ref. 88). Peak calling was performed by MACS2 with
the ‘narrowPeak’ parameter®’. Normalization was performed with the
RPGC method. Peak annotation was performed by ChlPseeker®. The
motifanalysis was conducted by Homer?'. Differentially binding peaks
were determined by DiffBind®?, with adjusted P < 0.05 and absolute
log, fold change > 0.75.

Statistics and reproducibility

For the cohort study, categorical variables were shown in ratio and
percentage, and differences between groups were compared by Fisher’s
exacttestor chi-square test, as specified in the legend. Continuous vari-
ableswerereported asmean + s.d.and compared by the Mann-Whitney
Urank-sum test owing to the non-normality of data. All experiments
wererepeated atleast three times. Data are presented asmean +s.d. in

acombo chartwith columns and scatter plots. Statistical analysis was
performed by two-sided unpaired Student’s t-test or Mann-Whitney U
rank-sum test (when datadid not follow anormal distribution). Statisti-
calanalysis and visualization were performed using Prism for Windows
(version 9.5.1; GraphPad Software). A two-tailed Pvalue less than 0.05
was considered statistically significant. No statistical methods were
used to predetermine sample sizes, but our sample sizes are similar
to those reported in previous publications® ™,

No datawere excluded from the analyses. Data collection and anal-
ysiswere not performed blinded to the conditions of the experiments.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data supporting the study’s findings are provided in the Source
Dataand Supplementary Information. Human RNA-seq and CUT&Tag
datahavebeenuploadedtothe Genome Sequence Archive (accession
number HRA007501). Murine RNA-seq datahave been uploaded to the
Genome Sequence Archive (accession number CRA022502). BEDfiles
of CUT&Tag data have been uploaded to the Open Archive for Miscel-
laneous Data (accession number OMIX008964). The human reference
genome hg38 can be accessed in the National Center for Biotechnol-
ogy Information (NCBI) (https://ftp.ncbi.nlm.nih.gov/genomes/all/
GCF/000/001/405/GCF_000001405.39_GRCh38.p13/). The mouse
reference genome mm39 canbe accessed in the NCBI (https://ftp.ncbi.
nlm.nih.gov/genomes/all/GCF/000/001/635/GCF_000001635.27_
GRCm39/). Source data are provided with this paper.
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Extended Data Fig. 1| The mid-secretory endometrium exhibits different
phenotypes and gene expression between young and middle-aged patients.
a, The percentage of Ki67-positive cells inendometrial luminal epithelial and
stromal cells in the mid-secretory phase (n = 3). b, Relative protein levels of
IGFBP1in human endometrial stromal cells during induced decidualization
(n=3).c,d, Histochemical scoring assessment (H-score) of PGR and ERa in the
mid-secretory endometrium (n = 3). e, Relative protein levels of PGR and ERa
inthe mid-secretory endometrium (n = 5).f,g, Protein levels of PGR and ERa in
human mid-secretory endometrial stromal cells (n = 4). h, Relative mRNA levels
of PGR and ESRIin human mid-secretory endometrial stromal cells (n = 4).

ij, Protein levels of PGR and ERa in human mid-secretory endometrial epithelial
cells (n=4).k, Relative mRNA levels of PGR and ESRIin human mid-secretory
endometrial epithelial cells (n = 4).1, PCA plot of human mid-secretory
endometrial RNA-seq data. m, Volcano plot illustrating gene expression changes

between the young and aging mid-secretory endometrium (|log2FC| >1, P.adj
<0.05).n, Heatmap showing gene expression of differentially expressed genes
(DEGs) between the young and aging mid-secretory endometrium. o, FPKM of
LIF,SOX4,FGF1, WNT2,IL7,IHH in the human mid-secretory endometrium (n =10
and n =8 for the young and middle-aged groups, respectively). The adjusted
Pvalue was determined by DESeq2. Whiskers represent upper quartile +1.5
interquartile range (IQR) and lower quartile —1.51QR. p, Pathway enrichment
analysis of upregulated DEGs in the aging mid-secretory endometrium.
Statistical analysis was performed by two-sided unpaired Student’s ¢-test or
Mann-Whitney Urank-sum test. Data are presented as mean + s.d. All replicates
were biological replicates. FC, fold change; mid-aged, middle-aged; ns, not
significant; P.adj, adjusted Pvalue; PC, principal component; PCA, principal
component analysis.
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Extended DataFig. 2| Mid-secretory endometrial stromal and epithelial cells
show different gene expression between young and middle-aged patients.
a,PCA plot of RNA-seq data of mid-secretory endometrial stromal cells (n = 4).

b, Volcano plotillustrating gene expression changes between young and aging mid-
secretory endometrial stromal cells ([log2FC| > 1, P.adj < 0.05). ¢, Heatmap showing
gene expression of DEGs between young and aging mid-secretory endometrial
stromal cells. d, Pathway enrichment analysis of downregulated DEGs in aging mid-
secretory endometrial stromal cells. e, Pathway enrichment analysis of upregulated
DEGs inaging mid-secretory endometrial stromal cells. f, PCA plot of RNA-seq data

of mid-secretory endometrial epithelial cells (n = 4). g, Volcano plotillustrating
gene expression changes between young and aging mid-secretory endometrial
epithelial cells (|log2FC| >1, P.adj < 0.05). h, Heatmap showing gene expression
of DEGs between young and aging mid-secretory endometrial epithelial cells.

i, Pathway enrichment analysis of downregulated DEGs in aging mid-secretory
endometrial epithelial cells. j, Pathway enrichment analysis of upregulated DEGs
inaging mid-secretory endometrial epithelial cells. All replicates were biological
replicates. FC, fold change; mid-aged, middle-aged; P.adj, adjusted Pvalue;

PC, principal component; PCA, principal component analysis.

Nature Aging


http://www.nature.com/nataging

Article

https://doi.org/10.10

38/s43587-025-00859-5

a

b C SILAN
. . . . . SN2 ),
Proliferative Mid-secreto H3K27ac Peak identification PR .
y (kDa) 207 pooon ' | DNA extraction
rooqs BOCCOER ypa.0,
2, | =% - N
H3K27ac -.. 15 3 —_ | PCR
oti ot —_— —
5 1.0 Sequence analysis and CUT&Tag
H3 ’ ®05 motif identification library preparation
A5 T
0.0
Pro  Sec
H3K27ac (Stromal cells) f H3K27ac (Epithelial cells)
e n=30420 peaks n=8476 peaks
r=0.76 r=0.80 r=091 r=0.94 r=0.82 » r=0.74 “|
Ol p<22e-16 Ol p<22e-16 Ol p<22e-16 Ol p<22e-16 Ol p<22e-16 Ol p<22e-16
o N N N N N
2lao ©o ©o 2lao 0o Y | ao "
S|gai i Fai S| g S S .
Llxw xw xw N W xw
o o o ol o o
1.0 1.5 2.0 25 1.0 1.5 2.0 25 1.0 1.5 2025 1.0 1.5 2.0 25 1.0 1.5 2.0 25 1.0 1.5 2.0 25
Rep1 Rep1 Rep2 Rep1 Rep1 Rep2
n=14256 peaks n=2152 peaks
=091 =0.94 =0.94 =0.96 L =0.95 =0.93
& P<20-16 & P<26-16 & P<22e-16 & Pe22e16 & P<s2e16 e & P<s2e16 -
B | o 0o 0o B | o . ® o 4 © o e
2|5 g g 2| g " g “e
dlee o w o w R @ @w
5| o = = 5| o ol = "y
1.0 1.5 2.0 25 1.0 1.5 2.0 25 1.0 1.5 2.0 25 1.0 1.5 2.0 25 1.0 1.5 2.0 25 1.0 1.5 2.0 25
Rep1 Rep1 Rep2 Rep1 Rep1 Rep2
g Stromal cells Epithelial cells I
Young Mid-aged Young Mid-aged .
6 ] — genes = i Mid-aged versus Young
n ] g -
<] 3 v-,\ ® Down115
21 7 ; 8 € * eUp1
10.0 TSSTES 10.0-10.0 TSSTES 10.0kb 3 = :_"_ m
= > 8 2 =
5 2 6 Ly \{t‘ o
c S g
“ ® o
3 5 4 o1 o
o 3 0 ; =
> o
2 ©
S 2 0
1 5 -75 -50 -25 00 25
. T 0 log2(FC)

Proliferative

Early secretory Mid-secretory

Late secretory Decidual

d

% ; (C\ )
% Stromal cells i—}.i
T b5
© ™S ‘0
Epithelial cells
Reads
H3K27ac

Nuclear extraction

-3.0 center 3.0-3.0 center 3.0kb

-10.0 TSSTES

10.0 -10.0 TSSTES 10.0kb

Pathway analysis of genes marked by H3K27ac

Young

Mid-aged

Extended Data Fig. 3 | See next page for caption.

k

Promoter

Downstream
Distal intergenic

PI3K-Akt signaling pathway

(Stromal cells)
cell morphogenesis
cell-cell adhesion
mitotic cell cycle
cell junction organization
cell cycle
Hippo signaling pathway
regulation of growth

p53 signaling pathway
female pregnancy
ECM-receptor interaction
BMP signaling pathway
response to BMP

Wnt signaling pathway
tight junction

o

1 2 3 4
Enrichment

-10g10(P.ad))
Miso0

100
Kso

Nature Aging


http://www.nature.com/nataging

Article https://doi.org/10.1038/s43587-025-00859-5

Extended DataFig. 3| Genome-wide H3K27ac signals in mid-secretory mid-secretory endometrial epithelial cells at H3K27ac peaks in the young
endometrial stromal and epithelial cells of young and middle-aged patients. group.i, Volcano plotillustrating H3K27ac differences between young and

a, H3K27acimmunofluorescence (IF) staining in the endometrium of different aging mid-secretory endometrial epithelial cells. Red and blue points represent
hormonal stages. Scale bar: 50 pm. b,¢, H3K27ac in the human proliferative and peaks that gain and lose H3K27ac in aging epithelial cells. j, The genomic
mid-secretory endometrium (n = 5). Statistical analysis was performed distribution of H3K27ac peaks in human mid-secretory endometrial epithelial

by two-sided unpaired Student’s ¢-test. Data are presented as mean +s.d. cells. k, Pathway enrichment analysis of genes marked by H3K27ac in young

d, Schematic design of H3K27ac CUT&Tag in mid-secretory endometrial stromal mid-secretory endometrial stromal cells. All replicates were biological replicates.
and epithelial cells. e,f, Consistent H3K27ac signals between biological replicates FC, fold change; mid-aged, middle-aged; P.adj, adjusted P value; PC, principal
(n=3).g,Heatmaps of the H3K27ac signal in human mid-secretory endometrial component; PCA, principal component analysis; Pro, proliferative phase;
stromal cells around gene bodies. h, Heatmaps of the H3K27ac signal in human Sec, secretory phase; TES, transcription end site; UTR, untranslated region.
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Extended Data Fig. 4| Genome-wide PGR signals in mid-secretory endometrial

stromal cells of young and middle-aged patients. a, Consistent PGR signals
between biological replicates (n = 3). b, Heatmaps of the PGR signal in human

mid-secretory stromal cells around gene bodies. ¢, Pathway enrichment analysis

of genes with PGR gain in aging mid-secretory endometrial stromal cells.
d, Pathway enrichment analysis of genes with PGR loss in aging mid-secretory

endometrial stromal cells. e, Relative mRNA levels of FOXO1, HOXA10 and HAND2

Young Mid-aged Chr5: 101,957,108 - 101,971,765

inhuman mid-secretory endometrial stromal cells (n = 4). Statistical analysis
was performed by two-sided unpaired Student’s ¢-test. Data are presented as
mean +s.d. f, H3K27ac and PGR signals in mid-secretory endometrial stromal
cells at the selected region. hg38 coordinates are shown. All replicates were
biological replicates. P.adj, adjusted Pvalue; mid-aged, middle-aged;

TES, transcription end site.
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Extended DataFig. 5| The uterus exhibits different gene expression between
young and aging mice. a, H3K27ac in the murine uterus (n = 5). b, The percentage
of Ki67-positive cells in uterine epithelial and stromal cells (n = 3). ¢, PCA Plot of
murine uterine RNA-seq data (n=4).d, Volcano plotillustrating gene expression
changes between young and aging mice (|log2FC| >1, P.adj < 0.05). e, Heatmap
showing gene expression of DEGs between the young and aging murine uterus.

f, Pathway enrichment analysis of upregulated DEGs in the aging murine uterus.
Inaand b, statistical analysis was performed by two-sided Student’s t-test or

Mann-Whitney Urank-sum test. Data are presented as mean + s.d. All replicates
were biological replicates. FC, fold change; P.adj, adjusted P value; PC, principal

component; PCA, principal component analysis.
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Extended Data Fig. 6 | Eliminating H3K27ac impairs murine uterine
receptivity. a, Blastocysts retrieved from the CON and A485 groups. b, NANOG
(inner cell mass marker) and CDX2 (trophectoderm marker) IF staining in
blastocysts. ¢, The number of cells per blastocyst and the percentage of inner
cellmass cells. d, Blastocysts were transplanted into sham pregnant mice and the
number of implantation sites were measured on day 5. e, The percentage of Ki67-
positive cells in uterine epithelial and stromal cells (n = 3). f, The H-score of PGR
and ERain the uterus on day 4 (n = 3). g, Relative protein levels of PGR and ERx
inthe uterusonday 4 (n =3). h, PCA plot of murine uterine RNA-seq data (n = 4).

i, Volcano plotillustrating gene expression changes between the CON and A485
murine uterus (Jlog2FC| >1, P.adj < 0.05). j, Heatmap showing gene expression of
DEGs between the CON and A485 murine uterus. k, Pathway enrichment analysis
of downregulated DEGs in the A485 murine uterus. I, Pathway enrichment
analysis of upregulated DEGs in the A485 murine uterus. Statistical analysis was
performed by two-sided unpaired Student’s t-test or Mann-Whitney Urank-sum
test. Data are presented as mean + s.d. All replicates were biological replicates.
CON, control; FC, fold change; ns, not significant; P.adj, adjusted P value;

PC, principal component; PCA, principal component analysis.
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Extended Data Fig. 7 | Inhibiting PGR induces murine uterine transcriptional
changes without affecting H3K27ac. a, Relative mRNA levels of Ihh, Hand2 and
HoxalOinthe uterusonday4 (n=3and n=>5forthe CON and RU486 groups,
respectively). b, PCA plot of murine uterine RNA-seq data (n = 3). ¢, Volcano
plotillustrating gene expression changes between the CON and RU486 murine
uterus (Jlog2FC| >1, P.adj < 0.05).d, Heatmap showing gene expression of DEGs
between the CON and RU486 murine uterus. e, Pathway enrichment analysis of
downregulated DEGs in the RU486 murine uterus. f, Pathway enrichment analysis
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Software and code

Policy information about availability of computer code

Data collection  Immunofluorescence results were obtained by ZEISS LSM710-LASER SCANNING CONFOCAL. The H&E and immunohistochemistry results were
collected by NIS-Elements 3.2. CUT&Tag and RNA-seq data were collected by the Illumina NovaSeq 6000 platform.

Data analysis fastp (version 0.20.1), HISAT2 (version 2.1.0), HTSeg-count (version 0.11.2), DESeq2 (version 1.22.2), python (version 3.10.8), Bowtie2 (version
2.5.1), MACS2 (version 2.2.9.1), ChIPseeker (version 1.36.0), Homer (version 4.11), R (version 4.3.1), Diffbind (version 3.12.0), GraphPad Prism
(version 9.5.1), GSEA (version 4.3.2).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Human RNA-seq and CUT&Tag data have been uploaded to the Genome Sequence Archive (accession number: HRAO07501).
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Murine RNA-seq data have been uploaded to the Genome Sequence Archive (accession number: CRA022502).

BED files of CUT&Tag data have been uploaded to the Open Archive for Miscellaneous Data (accession number: OMIX008964).

The human reference genome hg38 can be accessed in NCBI (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh38.p13/).
The mouse reference genome mm39 can be accessed in NCBI (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/635/GCF_000001635.27_GRCm39/).
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and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Endometrial samples of both young and aging women.

Reporting on race, ethnicity, or  No socially relevant groupings were included.
other socially relevant

groupings

Population characteristics Human endometrial tissues were collected from women aged 24-32 and 38-45. Endometrial tissues in the proliferative, mid-
secretory, or other phases of the menstrual cycle were collected. The phases were determined based on histopathologic
criteria and were retrospectively assigned to samples.

Recruitment All participants were norm-ovulatory, with the regular cycle (21-35 days), and had not been on the steroid hormone
medication within 3 months before sampling. Patients with any pathological finding invading the endometrial cavity
previously detected by transvaginal ultrasound, such as adenomyosis, submucosal myomas or intramural myomas > 4 cm,
and hydrosalpinx, were further excluded.

Ethics oversight This study was approved by the Ethics Committee of Reproductive Medicine, Peking University Third Hospital (No.

201957-067).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes, but our sample sizes were similar to those reported in previous publications
(PMCID: PMC11186790, PM(C8923662, PMC9371708).

Data exclusions  No data were excluded in this study.
Replication Each experiment was repeated at least three times and all attempts at replication were successful.

Randomization  We ensured comparable baseline characteristics between selected samples of the young and aging groups in both human and mice. Human
and murine samples were evenly and randomly assigned to the control and treatment groups.

Blinding Blinding design was not necessary in this study since the sequencing and evaluation processes were equally for all the human endometrial
samples and murine uterine samples.

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description n/a
Research sample n/a
Sampling strategy n/a
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Data exclusions n/a
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Randomization n/a
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Study description n/a
Research sample n/a
Sampling strategy n/a
Data collection n/a

Timing and spatial scale n/a

Data exclusions n/a
Reproducibility n/a
Randomization n/a
Blinding n/a

Did the study involve field work? []ves X No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
n/a | Involved in the study n/a | Involved in the study
[]IDX Antibodies ] ChiP-seq
|:| g Eukaryotic cell lines |:| Flow cytometry
|:| Palaeontology and archaeology |:| MRI-based neuroimaging
|:| |Z Animals and other organisms
|:| |Z Clinical data
X |:| Dual use research of concern
XI|[] Plants
Antibodies
Antibodies used Progesterone Receptor A/B (D8Q2J) XP® Rabbit mAb, Cell signaling Technology, USA, Cat#8757T, 1:1000 dilution.

Acetyl-Histone H3 (Lys27) (D5E4) XP® Rabbit mAb, Cell signaling Technology, USA, Cat#8173S, 1:1000 dilution.
IGFBP1 (D4E9T) XP ® Rabbit mAb, Cell signaling Technology, USA, Cat#31025T, 1:1000 dilution.
Anti-Estrogen Receptor alpha antibody [E115] - ChIP Grade, Abcam, UK, Cat#ab32063, 1:1000 dilution.
Anti-Histone H3 Marker and ChIP Grade, Abcam, UK, Cat#ab1791, 1:1000 dilution.

Anti-Estrogen Receptor alpha antibody, Abcam, UK, Cat#ab75635, 1:200 dilution.

Rabbit monoclonal [EPR1023] to MUC1, Abcam, UK, Cat#ab109185, 1:200 dilution.

Mouse monoclonal [6C5] to GAPDH - Loading Control, Abcam, UK, Cat#ab8245, 1:1000 dilution.

Rabbit polyclonal to Ki67, Abcam, UK, Cat#ab15580, 1:200 dilution.

Rabbit monoclonal [EPR2764Y] to CDX2, Abcam, UK, Cat#ab76541,1:50 dilution.

Nanog Antibody (A-11), SANTA CRUZ, USA, Cat#tsc-374001, 1:50 dilution.

Phalloidin-iFluor 555 Abcam, UK, Cat#ab176756, 1:200 dilution.

Rabbit monoclonal [EPR1619Y] to Cytokeratin 7 - Cytoskeleton Marker,UK, Cat#ab68459, 1:200 dilution.
p300 (D8Z4E) Rabbit mAb, Cell signaling Technology, USA, Cat#86377S, 1:1000 dilution.

FoxO1 (C29H4) Rabbit mAb, Cell signaling Technology, USA, Cat#2880T, 1:1000 dilution.




Rabbit monoclonal [EPR27317-76] to HOXA10, Abcam, UK, Cat#ab308516, 1:1000 dilution.

Rabbit monoclonal [EPR19451] to HAND2, Abcam, UK, Cat#ab200040, 1:1000 dilution.

Invitrogen Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 555, Thermo Fisher Scientific, USA,
Cat#A32732, 1:1000 dilution.

Validation Progesterone Receptor https://www.cellsignal.com/products/primary-antibodies/progesterone-receptor-a-b-d8q2j-xp-rabbit-
mab/8757
Acetyl-Histone H3 (Lys27) https://www.cellsignal.com/products/primary-antibodies/acetyl-histone-h3-lys27-d5e4-xp-rabbit-
mab/8173
IGFBP1 https://www.cellsignal.com/products/primary-antibodies/igfbp1-d4e9t-xp-rabbit-mab/31025
Anti-Estrogen Receptor alpha https://www.abcam.cn/products/primary-antibodies/estrogen-receptor-alpha-antibody-e115-chip-
grade-ab32063.html
Anti-Histone H3 https://www.abcam.cn/products/primary-antibodies/histone-h3-antibody-nuclear-marker-and-chip-grade-
ab1791.html
Anti-Estrogen Receptor alpha antibody https://www.abcam.cn/products/primary-antibodies/estrogen-receptor-alpha-antibody-
ab75635.html
MUC1 https://www.abcam.cn/products/primary-antibodies/mucl-antibody-epr1023-ab109185.html
GAPDH https://www.abcam.cn/products/primary-antibodies/gapdh-antibody-6c5-loading-control-ab8245.html
Ki67 https://www.abcam.cn/products/primary-antibodies/ki67-antibody-ab15580.html
CDX2 https://www.abcam.cn/products/primary-antibodies/cdx2-antibody-epr2764y-ab76541.html
Nanog https://www.scbt.com/p/nanog-antibody-a-11
Phalloidin-iFluor 555 https://www.abcam.cn/products/assay-kits/phalloidin-ifluor-555-reagent-ab176756.html
Cytokeratin 7 https://www.abcam.cn/products/primary-antibodies/cytokeratin-7-antibody-epr1619y-cytoskeleton-marker-
ab68459.html
p300 https://www.cellsignal.com/products/primary-antibodies/p300-d8z4e-rabbit-mab/86377
FoxO1https://www.cellsignal.com/products/primary-antibodies/foxo1-c29h4-rabbit-mab/2880
HOXA10 https://www.abcam.cn/products/primary-antibodies/hoxal0-antibody-epr27317-76-ab308516.html
HAND?2 https://www.abcam.cn/products/primary-antibodies/hand2-antibody-epr19451-ab200040.html
Goat anti-Rabbit 1gG (H+L) Highly Cross-Adsorbed Secondary Antibody https://www.thermofisher.cn/cn/zh/antibody/product/Goat-
anti-Rabbit-1gG-H-L-Highly-Cross-Adsorbed-Secondary-Antibody-Polyclonal/A32732
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Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Human primary stromal cells were extracted from the endometrium of both young and aging women using collagenase-I and
DNase | treatment. Stromal cells were then cultured for one generation in preparation for artificial decidualization induction.

Authentication Isolated stromal cells were identified by vimentin staining.
Mycoplasma contamination Isolated stromal cells were not tested for mycoplasma contamination.

Commonly misidentified lines  No commonly misidentified lines exist.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance n/a
Specimen deposition n/a
Dating methods n/a
|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals 8-week-old and 10-month-old C57BL/6J mice were acquired from Beijing Vital River Laboratory Animal Technology (Beijing, China).
All mice were kept in a controlled environment with a 12-hour light/dark cycle, a room temperature of 20-25°C, humidity of 55%+
10%, and had access to food and water at all times.

Wild animals No wild animals were used in this study.




Reporting on sex All the mice were female.
Field-collected samples  No field-collected samples were used in this study.

Ethics oversight All of the experimental procedures followed the guidelines of NIH for the Care and Use of Laboratory Animals. This study was
approved by the Ethics Committee of Reproductive Medicine, Peking University Third Hospital.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  As a retrospective study, no clinical trial registration was performed.
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Study protocol The clinical data used in this study was from a retrospective observational study design. We collected the clinical information of
1,149 patients who had undergone preimplantation genetic testing for aneuploidy (PGT-A) screening at the Center for Reproductive
Medicine of Peking University Third Hospital. After excluding possible impacts of abnormal embryos, the rates of biochemical
pregnancy, clinical pregnancy, and live birth were significantly lower in women over 35 years old compared to those under 35.

Data collection Baseline and pregnancy outcome data were collected from patients undergoing PGT-A screening at the Center for Reproductive
Medicine, Peking University Third Hospital.

Outcomes The primary outcome was full-term pregnancy. The secondary outcomes were biochemical pregnancy, clinical pregnancy,
intrauterine pregnancy, pregnancy loss, and ongoing pregnancy.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:
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[ ] Public health

|:| National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area

XX X

X

X

Experiments of concern

Does the work involve any of these experiments of concern:

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Plants

Seed stocks n/a

Novel plant genotypes  n/a

Authentication n/a
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Data deposition
g Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links CUT&Tag data have been uploaded to the Genome Sequence Archive (accession number: HRAO07501).
May remain private before publication.  BED files of CUT&Tag data have been uploaded to the Open Archive for Miscellaneous Data (accession number:
OMIX008964).

Files in database submission Stromal-H3K27ac-aging-1.R1.fq.gz
Stromal-H3K27ac-aging-1.R2.fq.gz
Stromal-H3K27ac-aging-2.R1.fq.gz
Stromal-H3K27ac-aging-2.R2.fq.gz
Stromal-H3K27ac-aging-3.R1.fq.gz
Stromal-H3K27ac-aging-3.R2.fq.gz
Stromal-H3K27ac-young-1.R1.fq.gz
Stromal-H3K27ac-young-1.R2.fq.gz
Stromal-H3K27ac-young-2.R1.fq.gz
Stromal-H3K27ac-young-2.R2.fq.gz
Stromal-H3K27ac-young-3.R1.fq.gz
Stromal-H3K27ac-young-3.R2.fq.gz
Epithelial-H3K27ac-aging-1.R1.fq.gz
Epithelial-H3K27ac-aging-1.R2.fq.gz
Epithelial-H3K27ac-aging-2.R1.fq.gz
Epithelial-H3K27ac-aging-2.R2.fq.gz
Epithelial-H3K27ac-aging-3.R1.fq.gz
Epithelial-H3K27ac-aging-3.R2.fq.gz
Epithelial-H3K27ac-young-1.R1.fq.gz
Epithelial-H3K27ac-young-1.R2.fq.gz
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Epithelial-H3K27ac-young-3.R2.fq.gz
Stromal-PR-aging-1.R1.fq.gz
Stromal-PR-aging-1.R2.fq.gz
Stromal-PR-aging-2.R1.fq.gz
Stromal-PR-aging-2.R2.fq.gz
Stromal-PR-aging-3.R1.fq.gz
Stromal-PR-aging-3.R2.fq.gz
Stromal-PR-young-1.R1.fq.gz
Stromal-PR-young-1.R2.fq.gz
Stromal-PR-young-2.R1.fq.gz
Stromal-PR-young-2.R2.fq.gz
Stromal-PR-young-3.R1.fq.gz
Stromal-PR-young-3.R2.fq.gz
H3K27ac-stromal-agingl.bed
H3K27ac-stromal-aging2.bed
H3K27ac-stromal-aging3.bed
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H3K27ac-stromal-young2.bed
H3K27ac-stromal-young3.bed
PGR-stromal-aging1.bed
PGR-stromal-aging2.bed
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Genome browser session
(e.g. UCSC)

Methodology

Replicates

Sequencing depth
Antibodies

Peak calling parameters

Data quality

Software

PGR-stromal-young2.bed
PGR-stromal-young3.bed

No genome browser session was available.

Each experiment was repeated three times.

Purified PCR products were assessed using the Agilent 2100 Bioanalyzer. Libraries were sequenced on the lllumina NovaSeq 6000
platform, generating 150 bp paired-end reads. The total number of reads was from 37,949,441 to 47,994,878.

Acetyl-Histone H3 (Lys27) (D5E4) XP® Rabbit mAb, Cell signaling Technology, USA, Cat#8173S, 1:50 dilution.
Progesterone Receptor A/B (D8Q2J) XP® Rabbit mAb, Cell signaling Technology, USA, Cat#8757T, 1:50 dilution.

MACS2 was used to call the 'narrowPeak' using parameters -q 0.01 --nomodel --keep-dup auto. Sequences located within 400 bp of
the peak summit were extracted, with any sequences containing significant repeat elements (as reported by RepeatMask) being
excluded.

The raw data was trimmed by fatsp. Trimmed reads were aligned to the human reference genome hg38 using Bowtie2. After peak
calling and merging, we obtained 30,420 H3K27ac peaks and 28,137 PGR peaks in young stromal cells, 14,256 H3K27ac peaks and
3,404 PGR peaks in aging stromal cells, 8,476 H3K27ac peaks in young epithelial cells, 2,152 H3K27ac peaks in aging epithelial cells.

fastp (version 0.20.1), Bowtie2 (version 2.5.1), MACS2 (version 2.2.9.1), ChIPseeker (version 1.36.0), Homer (version 4.11), Diffbind
(version 3.12.0).

>
Q
]
(e
(D
1®)
(@)
=
S
c
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<




	Endometrial aging is accompanied by H3K27ac and PGR loss

	Results

	Aging endometrium exhibits impaired endometrial receptivity

	Aging-related H3K27ac loss is associated with PGR reduction

	H3K27ac and PGR regulate endometrial receptivity together

	Eliminating H3K27ac impairs murine uterine receptivity


	Discussion

	Methods

	Clinical data collection

	Clinical sample collection

	Human primary endometrial stromal cell isolation, culture and treatment

	Animal feeding and treatments

	Western blotting

	qRT–PCR

	Immunostaining

	Co-IP

	RNA isolation and library preparation

	RNA-seq and analysis

	CUT&Tag library construction

	CUT&Tag analysis

	Statistics and reproducibility

	Reporting summary


	Acknowledgements

	Fig. 1 Aging endometrium exhibits impaired endometrial receptivity.
	Fig. 2 Aging-related H3K27ac loss is associated with PGR reduction.
	Fig. 3 Aging endometrium shows genome-wide PGR depletion.
	Fig. 4 H3K27ac and PGR exhibit correlated genomic occupancies and coordinated aging-related depletion.
	Fig. 5 Eliminating H3K27ac impairs murine uterine receptivity.
	Extended Data Fig. 1 The mid-secretory endometrium exhibits different phenotypes and gene expression between young and middle-aged patients.
	Extended Data Fig. 2 Mid-secretory endometrial stromal and epithelial cells show different gene expression between young and middle-aged patients.
	Extended Data Fig. 3 Genome-wide H3K27ac signals in mid-secretory endometrial stromal and epithelial cells of young and middle-aged patients.
	Extended Data Fig. 4 Genome-wide PGR signals in mid-secretory endometrial stromal cells of young and middle-aged patients.
	Extended Data Fig. 5 The uterus exhibits different gene expression between young and aging mice.
	Extended Data Fig. 6 Eliminating H3K27ac impairs murine uterine receptivity.
	Extended Data Fig. 7 Inhibiting PGR induces murine uterine transcriptional changes without affecting H3K27ac.
	Extended Data Fig. 8 Inhibiting H3K27ac or PGR resembles aging-related transcriptomic changes in the murine uterus.




