Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Probabilistic photonic computing for AI

Abstract

Probabilistic computing excels in approximating combinatorial problems and modeling uncertainty. However, using conventional deterministic hardware for probabilistic models is challenging: (pseudo) random number generation introduces computational overhead and additional data shuffling. Therefore, there is a pressing need for different probabilistic computing architectures that achieve low latencies with reasonable energy consumption. Physical computing offers a promising solution, as these systems do not rely on an abstract deterministic representation of data but directly encode the information in physical quantities, enabling inherent probabilistic architectures utilizing entropy sources. Photonic computing is a prominent variant of physical computing due to the large available bandwidth, several orthogonal degrees of freedom for data encoding and optimal properties for in-memory computing and parallel data transfer. Here, we highlight key developments in physical photonic computing and photonic random number generation. We further provide insights into the realization of probabilistic photonic processors and their impact on artificial intelligence systems and future challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Route towards probabilistic computing.
Fig. 2: Optical random number generation.
Fig. 3: Photonic probabilistic computing.
Fig. 4: Hardware–software co-design.

Similar content being viewed by others

References

  1. Rao, Q. & Frtunikj, J. Deep learning for self-driving cars: chances and challenges. In 2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS) 35–38 (IEEE, 2018).

  2. Ker, J. & Wang, L. Deep learning applications in medical image analysis. IEEE Access 6, 9375–9389 (2018).

    Article  Google Scholar 

  3. Arkhangelskaya, E. O. & Nikolenko, S. I. Deep learning for natural language processing: a survey. J. Math. Sci. 273, 533–582 (2023).

    Article  MathSciNet  Google Scholar 

  4. Kendall, A. & Gal, Y. What uncertainties do we need in Bayesian deep learning for computer vision? In Advances in Neural Information Processing Systems 30, 5575–5585 (NIPS, 2017).

  5. Le Gallo, M. et al. A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference. Nat. Electron. 6, 680–693 (2023).

    Article  Google Scholar 

  6. Friston, K. et al. The free energy principle made simpler but not too simple. Phys. Rep. 1024, 1–29 (2023).

    Article  MathSciNet  Google Scholar 

  7. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    Article  Google Scholar 

  8. Liu, S. et al. Bayesian neural networks using magnetic tunnel junction-based probabilistic in-memory computing. Front. Nanotechnol. 4, 1021943 (2022).

    Article  Google Scholar 

  9. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article  Google Scholar 

  10. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    Article  Google Scholar 

  11. Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article  Google Scholar 

  12. Brückerhoff-Plückelmann, F. et al. Broadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexers. Nanophotonics 11, 4063–4072 (2022).

  13. Wu, C. et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 12, 96 (2021).

    Article  Google Scholar 

  14. Cao, G., Zhang, L., Huang, X., Hu, W. & Yang, X. 16.8 Tb/s true random number generator based on amplified spontaneous emission. IEEE Photon. Technol. Lett. 33, 699–702 (2021).

    Article  Google Scholar 

  15. Huang, M., Chen, Z., Zhang, Y. & Guo, H. A phase fluctuation based practical quantum random number generator scheme with delay-free structure. Appl. Sci. 10, 7 (2020).

    Google Scholar 

  16. Brückerhoff-Plückelmann, F. et al. Probabilistic photonic computing with chaotic light. Nat. Commun. 15, 10445 (2024).

  17. Wu, C. et al. Harnessing optoelectronic noises in a photonic generative network. Sci. Adv. 8, eabm2956 (2022).

    Article  Google Scholar 

  18. Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).

    Article  Google Scholar 

  19. Zhou, H. et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 11, 30 (2022).

    Article  Google Scholar 

  20. Schuman, C. D. et al. Opportunities for neuromorphic computing algorithms and applications. Nat. Comput Sci. 2, 10–19 (2022).

    Article  Google Scholar 

  21. Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).

    Article  Google Scholar 

  22. Wang, T. et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).

    Article  Google Scholar 

  23. Sludds, A. et al. Delocalized photonic deep learning on the internet’s edge. Science 378, 270–276 (2022).

    Article  Google Scholar 

  24. Ma, S.-Y., Wang, T., Laydevant, J., Wright, L. G. & McMahon, P. L. Quantum-noise-limited optical neural networks operating at a few quanta per activation. Nat. Commun. 16, 359 (2025).

    Article  Google Scholar 

  25. Chowdhury, S. et al. A full-stack view of probabilistic computing with p-bits: devices, architectures, and algorithms. IEEE J. Explor. Solid-State Comput. Devices Circuits 9, 1–11 (2023).

    Article  Google Scholar 

  26. Brückerhoff-Plückelmann, F. et al. Event-driven adaptive optical neural network. Sci. Adv. 9, eadi9127 (2023).

    Article  Google Scholar 

  27. Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7, 7430 (2017).

    Article  Google Scholar 

  28. Li, G. H. Y. et al. All-optical, ultrafast energy-efficient ReLU function for nanophotonic neural networks. Nanophotonics 12, 847–855 (2022).

    Article  Google Scholar 

  29. Grottke, T., Hartmann, W., Schuck, C. & Pernice, W. H. P. Optoelectromechanical phase shifter with low insertion loss and a 13π tuning range. Opt. Express 29, 5525–5537 (2021).

    Article  Google Scholar 

  30. Ríos, C. et al. In-memory computing on a photonic platform. Sci. Adv. 5, eaau5759 (2019).

    Article  Google Scholar 

  31. Xu, R. et al. Mode conversion trimming in asymmetric directional couplers enabled by silicon ion implantation. Nano Lett. 24, 10813–10819 (2024).

  32. Dong, B. et al. Partial coherence enhances parallelized photonic computing. Nature 632, 55–62 (2024).

    Article  Google Scholar 

  33. Hamerly, R., Bandyopadhyay, S. & Englund, D. Asymptotically fault-tolerant programmable photonics. Nat. Commun. 13, 6831 (2022).

    Article  Google Scholar 

  34. Tait, A. N. et al. Microring weight banks. IEEE J. Sel. Top. Quantum Electron. 22, 312–325 (2016).

    Article  Google Scholar 

  35. Hu, J. et al. Diffractive optical computing in free space. Nat. Commun. 15, 1525 (2024).

    Article  Google Scholar 

  36. Farhat, N. H., Psaltis, D., Prata, A. & Paek, E. Optical implementations of the Hopfield model. Appl. Opt. 24, WB3 (1985).

    Article  Google Scholar 

  37. Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    Article  Google Scholar 

  38. Bogaerts, W. et al. Silicon microring resonators. Laser Photon Rev. 6, 47–73 (2012).

    Article  Google Scholar 

  39. Messner, A. et al. Plasmonic, photonic, or hybrid? Reviewing waveguide geometries for electro-optic modulators. APL Photon. 8, 10 (2023).

    Article  Google Scholar 

  40. Bose, D. et al. Anneal-free ultra-low loss silicon nitride integrated photonics. Light Sci. Appl. 13, 156 (2024).

    Article  Google Scholar 

  41. Sebastian, A. et al. Two-dimensional materials-based probabilistic synapses and reconfigurable neurons for measuring inference uncertainty using Bayesian neural networks. Nat. Commun. 13, 6139 (2022).

    Article  Google Scholar 

  42. Dutta, S. et al. Neural sampling machine with stochastic synapse allows brain-like learning and inference. Nat. Commun. 13, 2571 (2022).

    Article  Google Scholar 

  43. Wu, C., Yang, X., Chen, Y. & Li, M. Photonic Bayesian neural network using programmed optical noises. IEEE J. Sel. Top. Quantum Electron. https://doi.org/10.1109/JSTQE.2022.3217819 (2023).

  44. Tran, M. A., Huang, D. & Bowers, J. E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III–V heterogeneous integration. APL Photon. 4, 11 (2019).

    Article  Google Scholar 

  45. Henry, C. H. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron 18, 259–264 (1982).

    Article  Google Scholar 

  46. Lovic, V., Marangon, D. G., Lucamarini, M., Yuan, Z. & Shields, A. J. Characterizing phase noise in a gain-switched laser diode for quantum random-number generation. Phys. Rev. Appl. 16, 054012 (2021).

    Article  Google Scholar 

  47. Álvarez, J.-R., Sarmiento, S., Lázaro, J. A., Gené, J. M. & Torres, J. P. Random number generation by coherent detection of quantum phase noise. Opt. Express 28, 5538 (2020).

    Article  Google Scholar 

  48. Qi, B., Chi, Y.-M., Lo, H.-K. & Qian, L. High-speed quantum random number generation by measuring phase noise of a single-mode laser. Opt. Lett. 35, 312–314 (2010).

    Article  Google Scholar 

  49. Nie, Y. Q. et al. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. Rev. Sci. Instrum. 86, 063105 (2015).

    Article  Google Scholar 

  50. Guo, H., Tang, W., Liu, Y. & Wei, W. Truly random number generation based on measurement of phase noise of a laser. Phys. Rev. E 81, 051137 (2010).

    Article  Google Scholar 

  51. Sciamanna, M. & Shore, K. A. Physics and applications of laser diode chaos. Nat. Photon. 9, 151–162 (2015).

    Article  Google Scholar 

  52. Goodman, J. Statistical Optics (John Wiley & Sons, 2000).

  53. Guo, Y. et al. 40 Gb/s quantum random number generation based on optically sampled amplified spontaneous emission. APL Photon. 6, 6 (2021).

    Article  Google Scholar 

  54. Zhang, L. et al. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser. Sci. Rep. 8, 4–11 (2017).

    Google Scholar 

  55. Shen, B. et al. Harnessing microcomb-based parallel chaos for random number generation and optical decision making. Nat. Commun. 14, 4590 (2023).

    Article  Google Scholar 

  56. Eaton, M. et al. Resolution of 100 photons and quantum generation of unbiased random numbers. Nat. Photon. 17, 106–111 (2023).

    Article  Google Scholar 

  57. Mattioli, F. et al. Photon-number-resolving superconducting nanowire detectors. Supercond. Sci. Technol. 28, 10 (2015).

    Article  Google Scholar 

  58. Aungskunsiri, K. et al. Quantum random number generation based on multi-photon detection. ACS Omega 8, 35085–35092 (2023).

    Article  Google Scholar 

  59. Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article  Google Scholar 

  60. Roques-Carmes, C. et al. Biasing the quantum vacuum to control macroscopic probability distributions. Science 381, 205–209 (2023).

    Article  Google Scholar 

  61. Choi, S. et al. Photonic probabilistic machine learning using quantum vacuum noise. Nat. Commun. 15, 7760 (2024).

    Article  Google Scholar 

  62. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, 1988).

  63. Jospin, L. V. et al. Hands-on Bayesian neural networks — A tutorial for deep learning users. IEEE Comput. Intell. Mag. 17, 29–48 (2022).

    Article  Google Scholar 

  64. Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020).

  65. Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. Camb. Explor. Arts Sci. https://doi.org/10.61603/ceas.v2i1.33 (2014).

  66. Fahlman, S. E., Hinton, G. E. & Sejnowski, T. J. Massively parallel architectures for AI: NETL, Thistle, and Boltzmann machines. In Proc. AAAI-83 Conference (AAAI-Press) 109–113 (1983).

  67. Bonnet, D. et al. Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks. Nat. Commun. 14, 7530 (2023).

    Article  Google Scholar 

  68. Langenegger, J. et al. In-memory factorization of holographic perceptual representations. Nat. Nanotechnol. 18, 479–485 (2023).

    Article  Google Scholar 

  69. Sarwat, S. G., Kersting, B., Moraitis, T., Jonnalagadda, V. P. & Sebastian, A. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nat. Nanotechnol. 17, 507–513 (2022).

    Article  Google Scholar 

  70. Ramesh, A. et al. Zero-shot text-to-image generation. Proc. Mach. Learn. Res. 139, 8821–8831 (2021).

    Google Scholar 

  71. Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI (eds Navab, N. et al.) 12–20 (Lecture Notes in Computer Science 9351, Springer, 2015).

  72. Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).

    Article  Google Scholar 

  73. Qiu, Y. L., Zheng, H. & Gevaert, O. Genomic data imputation with variational auto-encoders. GigaScience 9, giaa082 (2020).

    Article  Google Scholar 

  74. McCoy, J. T., Kroon, S. & Auret, L. Variational autoencoders for missing data imputation with application to a simulated milling circuit. IFAC-PapersOnLine 51, 141–146 (2018).

  75. Wang, T. et al. Image sensing with multilayer, nonlinear optical neural networks. Nat Photon. 17, 408–415 (2023).

    Article  Google Scholar 

  76. Chen, Y. et al. Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission. Sci. Adv. 9, eadf8437 (2023).

  77. Sharma, M., Farquhar, S., Nalisnick, E. & Rainforth, T. Do Bayesian neural networks need to be fully stochastic? Proc. Mach. Learn. Res. 206, 7694–7722 (2023).

    Google Scholar 

  78. Lambert, B., Forbes, F., Doyle, S., Dehaene, H. & Dojat, M. Trustworthy clinical AI solutions: a unified review of uncertainty quantification in Deep Learning models for medical image analysis. Artif. Intell. Med. 150, 102830 (2024).

    Article  Google Scholar 

  79. Syed, G. S. & Sebastian, A. Solving optimization problems with photonic crossbars. US patent US20230176606A1 (2021).

  80. Gibney, E. & Castelvecchi, D. Physics Nobel scooped by machine-learning pioneers. Nature 634, 523–524 (2024).

    Article  Google Scholar 

  81. Roques-Carmes, C. et al. Heuristic recurrent algorithms for photonic Ising machines. Nat. Commun. 11, 249 (2020).

    Article  Google Scholar 

  82. Fan, Z., Lin, J., Dai, J., Zhang, T. & Xu, K. Photonic Hopfield neural network for the Ising problem. Opt. Express 31, 21340 (2023).

    Article  Google Scholar 

  83. Attneave, F., B, M. & Hebb, D. O. The organization of behavior; a neuropsychological theory. Am. J. Psychol. 63, 633–642 (1950).

    Article  Google Scholar 

  84. Mohseni, N., McMahon, P. L. & Byrnes, T. Ising machines as hardware solvers of combinatorial optimization problems. Nat. Rev. Phys. 4, 363–379 (2022).

    Article  Google Scholar 

  85. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).

    Article  Google Scholar 

  86. Hopfield, J. J. & Tank, D. W. ‘Neural’ computation of decisions in optimization problems. Biol. Cybern. 52, 141–152 (1985).

    Article  Google Scholar 

  87. Aarts, E. H. L. & Korst, J. H. M. Boltzmann machines for travelling salesman problems. Eur. J. Oper. Res. 39, 79–95 (1989).

    Article  MathSciNet  Google Scholar 

  88. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  MathSciNet  Google Scholar 

  89. Frady, E. P., Kent, S. J., Olshausen, B. A. & Sommer, F. T. Resonator networks, 1: an efficient solution for factoring high-dimensional, distributed representations of data structures. Neural Comput. 32, 2311–2331 (2020).

    Article  MathSciNet  Google Scholar 

  90. Kent, S. J., Frady, E. P., Sommer, F. T. & Olshausen, B. A. Resonator networks, 2: factorization performance and capacity compared to optimization-based methods. Neural Comput. 32, 2332–2388 (2020).

    Article  MathSciNet  Google Scholar 

  91. Hersche, M., Zeqiri, M., Benini, L., Sebastian, A. & Rahimi, A. A neuro-vector-symbolic architecture for solving Raven’s progressive matrices. Nat. Mach. Intell. 5, 363–375 (2023).

    Article  Google Scholar 

  92. Khaddam-Aljameh, R. et al. HERMES-Core-A 1.59-TOPS/mm2PCM on 14-nm CMOS in-memory compute core using 300-ps/LSB linearized CCO-based ADCs. IEEE J. Solid-State Circuits 57, 1027–1038 (2022).

    Article  Google Scholar 

  93. Hua, S. et al. An integrated large-scale photonic accelerator with ultralow latency. Nature 640, 361–367 (2025).

    Article  Google Scholar 

  94. Tsakyridis, A. et al. Photonic neural networks and optics-informed deep learning fundamentals. APL Photon. 9, 1 (2024).

    Article  Google Scholar 

  95. Rasch, M. J. et al. Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators. Nat. Commun. 14, 5282 (2023).

    Article  Google Scholar 

  96. Pai, S. et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science 380, 398–404 (2023).

    Article  Google Scholar 

  97. Momeni, A., Rahmani, B., Malléjac, M., del Hougne, P. & Fleury, R. Backpropagation-free training of deep physical neural networks. Science 382, 1297–1304 (2023).

    Article  MathSciNet  Google Scholar 

  98. Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).

    Article  Google Scholar 

  99. Varri, A. et al. Noise-resilient photonic analog neural networks. J. Lightwave Technol. 42, 7969–7976 (2024).

  100. Jain, S. et al. A heterogeneous and programmable compute-in-memory accelerator architecture for analog-AI using dense 2-D mesh. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 31, 114–127 (2023).

    Article  Google Scholar 

  101. Dazzi, M. et al. 5 Parallel Prism: a topology for pipelined implementations of convolutional neural networks using computational memory. In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019).

Download references

Acknowledgements

We thank J. Stuhrmann, from Illustrato, for his assistance with the illustrations. This research was supported by the European Union’s Horizon 2020 research and innovation program (grant no. 101017237, PHOENICS project) and the European Union’s Innovation Council Pathfinder program (grant no. 101046878, HYBRAIN project). We acknowledge funding support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2181/1—390900948 (the Heidelberg STRUCTURES Excellence Cluster), the Excellence Cluster 3D Matter Made to Order (EXC-2082/1—390761711) and CRC 1459 ‘Intelligent Matter’.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: F.B.-P., W.P. Methodology: F.B.-P., A.P.O., A.V., H. Borras, B.K., G.S.S. Investigation: F.B.-P., A.P.O., A.V., H. Borras, B.K., G.S.S. Visualization: F.B.-P., A.P.O., A.V. Funding acquisition: W.P., H.F., C.D.W., H. Bhaskaran, A.S., H.F. Project administration: W.P., H.F. Supervision: W.P., H.F., C.D.W., H. Bhaskaran, G.S.S., A.S. - Writing—original draft: F.B.-P., A.P.O., A.V. - Writing—review & editing: all authors.

Corresponding author

Correspondence to Wolfram Pernice.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Jie Pan, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brückerhoff-Plückelmann, F., Ovvyan, A.P., Varri, A. et al. Probabilistic photonic computing for AI. Nat Comput Sci 5, 377–387 (2025). https://doi.org/10.1038/s43588-025-00800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-025-00800-1

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics