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Abstract

Background Advancements in biomedical optical imaging have enabled researchers to
achieve cellular-level imaging in the living human body. However, research-grade
technology is not always widely available in routine clinical practice. In this paper, we
incorporated artificial intelligence (AI) with standard clinical imaging to successfully obtain
images of the retinal pigment epithelial (RPE) cells in living human eyes.
Methods Following intravenous injection of indocyanine green (ICG) dye, subjects were
imaged by both conventional instruments and adaptive optics (AO) ophthalmoscopy. To
improve the visibility of RPE cells in conventional ICG images, we demonstrate both a
hardware approach using a custom lens add-on andanAI-based approach using a stratified
cycleGAN network.
Results We observe similar fluorescent mosaic patterns arising from labeled RPE cells on
both conventional and AO images, suggesting that cellular-level imaging of RPE may be
obtainable using conventional imaging, albeit at lower resolution. Results show that higher
resolution ICG RPE images of both healthy and diseased eyes can be obtained from
conventional images using AI with a potential 220-fold improvement in time.
Conclusions The application of using AI as an add-onmodule for existing instrumentation is
an important step towards routine screening and detection of disease at earlier stages.

Advances in biomedical optics research have led to the ability to image at the
cellular scale in the living human body. However, while most clinical ima-
ging instruments are able to visualize tissue-level details, it remains chal-
lenging to deploy more sophisticated instrumentation capable of resolving
individual cells for routine clinical use. This challenge is due in part to the
need for specialized expertise for implementing, operating, andmaintaining
such instrumentation. Furthermore, as technological development accel-
erates, there is a growing gap between the current imaging instrumentation
used in clinical practice and the next generation of advanced imaging that is
generally only available in research settingswith dedicated technical support
staff. Increasingly, artificial intelligence (AI) is being applied to
ophthalmology1–3. In this paper, we further extend the application of AI by

introducing stratified cycleGAN, an AI network as a virtual image
enhancement module that can be added on to existing clinical equipment.
The AI network described in this paper enables high-end images to be
obtained using only standard clinical imaging approaches.

AI has already revolutionized thefield ofmedical imaging by providing
tools for disease detection and image analysis4–7. In particular, deep learning
has been increasingly implemented into various medical imaging analyses,
such as segmentation and disease prediction6. Recent studies have shown
that the deep learning approach can be applied to image denoising and
image reconstruction4,8,9. Specifically, methods designed for style transfer
have becomewidely-utilized formedical image generation inboth radiology
and ophthalmology10–13. Examples include estimating high-quality full-dose
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Plain language summary

Advanced imaging methods that allow single
cells to be seen in the living human eyes are
not always available to ophthalmologists
working in the clinic. We combined artificial
intelligence (AI) with standard clinical imaging
to visualize cells within the retina, a part of the
eye, that are critical formaintaining vision and
having healthy eyes.We found the cells could
be seen using a commonly used fluorescent
dye and standard clinical imaging equipment
augmented with AI. The resulting AI images
are comparable to those acquired using
advanced imaging technology. By making
cellular-level information more readily avail-
able in routine clinical practice, it may be
possible to detect diseases earlier.
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computed tomography8 or position emission tomography14, increasing the
resolution of magnetic resonance images from lower resolution images15,
and reducing speckle noise in optical coherence tomography images13,16.

Ophthalmic imaging provides a glimpse into the cells of the central
nervous system, including the retinal pigment epithelial (RPE) cells.
Intravenously-injected indocyanine green (ICG) dye has been shown to be
valuable for visualizing deeper tissue layers due to its near-infrared emission
spectrum17. Recently, ICG dye18–22 has been introduced as amethod to label
RPE cells. This approach is particularly valuable for monitoring diseases
where RPE cells are thought to have a central role in the initiation and
progression of vision loss, including age-related macular degeneration
(AMD), retinitis pigmentosa, vitelliform macular dystrophy, choroider-
emia, and Stargardt disease23–27. Visualization of cells labeled by ICG has
thus far beenprimarily carriedout using adaptive optics (AO) imaging19,25,28,
except in diseases such as choroideremia, where the cells are enlarged to a
greater extent and are visible even using conventional imaging23. Even
though AO imaging provides exquisite detail and achieves cellular level
resolution29–31, it remains a highly-specialized technique not widely acces-
sible in most eye clinics.

Given that RPE cells are at or near the limit of resolution achievable
using standard clinical imaging (~10–15 µm), we explored the possibility of
visualizing individual RPE cells without the use of AO by leveraging AI.We
show that images obtained using clinical imaging instrumentation can be
enhanced using AI to a level comparable to those obtained using high-end,
research-grade AO imaging. The reported results introduce an AI-based
strategy to virtualize AO and thereby circumvent technological barriers that
would have otherwise hindered the adoption of new technology. In parti-
cular, we demonstrate the potential benefit of AI for ushering in a newera of
imaging – AI-assisted imaging, which can serve as a transformative step
towards the routine assessment of tissue health at the cellular level in clinical
practice.

Methods
Subjects
Healthy eyes from 22 individuals from previously collected data were
included in this study (Supplementary Table 1). In addition, four eyes from
patients with age-relatedmacular degeneration (AMD), vitelliformmacular
dystrophy, retinitis pigmentosa, and choroideremia (female carrier) were
included (Supplementary Table 2). Both subject recruitment and data col-
lection were conducted at the National Eye Institute. Prior to imaging,
written, informed consent was obtained from all subjects after the nature of
the research and possible consequences of the study were explained. In
addition, a dilated fundus examination was conducted on all participating
subjects to determine eligibility (healthy vs. diseased eyes). Ethnicity was
self-reported by the participants. This study was approved by the institu-
tional review board of the National Institutes of Health and was conducted
in accordance with the Declaration of Helsinki (NCT02317328; https://
clinicaltrials.gov).

Multimodal imaging
AO-enhanced ICG (AO-ICG) imaging. ICG was administered through
intravenous injection at a dose of 25 mg in 3 mL according to the stan-
dard of care at the National Eye Institute. AO imaging was performed
using a custom-built multimodal AO imaging system18,19. Approximately
one hour after ICG injection, AO imaging was acquired from the central
macula to approximately 5 mm away along the temporal direction. An
overview of ICG imaging of retinal pigment epithelial (RPE) cells is
shown in Supplementary Fig. 1. The total AO imaging time (including
time for breaks) was approximately 40 min to one hour per eye. A
computer controlled fixation system was used32 and subjects were
encouraged to blink naturally and take frequent breaks.

The custom-built AO instrument simultaneously acquires confocal
reflectance and AO-ICG images to visualize photoreceptors33 and ICG-
labeled RPE cells18, respectively. The system uses a 790 nm super-
luminescent diode (SLD) (S-790-G-I-15-M, Superlum, Ireland) for imaging

and an 880 nm SLD (SLD-mCS-341-HP1-SM-880, Superlum, Ireland) for
wavefront sensing in order to correct for ocular aberrations using AO. The
light levels measured at the cornea were maintained below 135 µW for the
790 nm light source and under 40 µW for the 880 nm light source, which
were both below the maximum permissible exposure limits set by the
American National Standards Institute standard Z80.36-202134.

Conventional ICG imaging. Conventional imagingwas conducted using
a commercially-available scanning laser ophthalmoscope (Spectralis,
Heidelberg Engineering). One-hundred-frame averaged 30° field of view
(FOV) Automated Real-time Tracking (ART) images of the retina were
obtained in high resolution mode at least 45 min after ICG
administration.

High magnification mode (HMM) ICG imaging. An add-on lens (high
magnification module, HMM, Heidelberg Engineering) was attached to
the Spectralis scanning laser ophthalmoscope (Heidelberg Engineering).
The focus value was set to a similar value used for conventional ICG
imaging, then averaged ART (100 frames) images were acquired in high
resolution mode at locations matching the retinal region imaged by AO-
ICG and conventional ICG imaging.

Image analysis
AO images. For AO images, eye motion was corrected through strip-
based image registration based on simultaneously collected photo-
receptor images acquired by AO confocal reflectance imaging35, and then
averagedAO-ICG images were assembled into a largermontage based on
retinal features in overlapping areas.

To quantify RPE across eccentricities, regions of interest (ROIs)
(approximately 150 × 150 µm2) were selected from each AO-ICG montage
starting from the fovea and extending out to 5mm in the temporal direction
with 0.5mm increments. The foveawas determined based on the average of
one or more videos acquired to capture the preferred retinal locus (PRL) of
fixation, during which the subject is asked to fixate at the center of the
imaging raster. In all cases, the location of the fovea (based on PRL) was
consistent with the location of the foveal contour as seen using optical
coherence tomography.A total of 190ROIs from26 eyeswere selectedusing
the PRL as the origin for calculating retinal eccentricity. Scaling of image
distances from degrees to millimeters was calculated based on a modified
Bennett-Rabbett model eye using the ocular biometry measurements (axial
length, corneal curvature, and anterior chamber depth) acquired after
dilation (IOL Master, Carl Zeiss Meditec)36. Identification of RPE cells was
performed on ROIs using a previously published detection software37 fol-
lowed by manual correction. This algorithm uses a regression-based
probability map to determine the center points of ICG labeled RPE cells.
Following this initial seeding, the identified cell centers in all images were
sequentially evaluated and iteratively adjusted by at least two expert graders
until full consensusbetweengraderswas achieved.The identified cell centers
were used to construct a Voronoi diagram for visualization purposes. RPE
density was calculated after discarding incomplete cells at the boundaries of
the images25 and RPE spacing was calculated based on the density recovery
profile38.

Averaged RPE spacing and density values were calculated across all
subjects at each eccentricity. To visualize relationships between changes in
RPE spacing/density and age/sex, measurements were normalized by
dividing eachmeasurement by the expected average value corresponding to
each eccentricity39. Thenumber of neighboring cellswas calculatedbasedon
theRPEdetection result. After cells are detected in eachROI image, detected
cells at the image boundaries of ROI were discarded. Using the remaining
cells (not at image boundaries), the number of neighboring cells was cal-
culated for each RPE cell.

Conventional ICG images. No additional post processing was per-
formed to the conventional ICG images. The exported imageswere scaled
appropriately to spatially register conventional ICG images to AO-ICG
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montages. RPE quantification was performed using the same method as
performed for AO images. The contrast of conventional ICG images
shown in the manuscript was enhanced for visualization purposes only.

HMM ICG images. No additional post processing was performed to the
HMMimages. The exported imageswere scaled appropriately to spatially
registerHMMICG images toAO-ICGmontages. RPE quantificationwas
performed using the same method as performed for AO images. The
contrast of theHMMICG images shown in themanuscriptwas enhanced
for visualization purposes only.

AO and non-AO comparison
Six eyes had AO-ICG, conventional ICG, andHMM images and were used
for AO and non-AO comparison. For each eye, AO-ICG montages were
spatially co-registered to the corresponding conventional andHMMimages
based onmatching retinal features. ROIs in conventional andHMMimages
across eccentricities were obtained at the same retinal locations as AO-ICG
ROIs, and then RPE cells in each image were analyzed using the same
procedures as performed for AO images.

AI image enhancement
Enhancement of conventional images was performed using stratified
cycleGAN10. Briefly, a total of 1430 pairs of AO and conventional images
were collected from 10 healthy human subjects (28.8 ± 8.6 years, Supple-
mentary Table 1). Registered pairs of AO and conventional ROIs were
selected from a larger montage constructed from overlapping images,
avoiding any areas with montaging artifacts such as incomplete overlap
between images or image distortion due to eyemotion. Eighty percent of the
images were used as training data and the remaining 20%were reserved for
testing. The training process consists of two steps (Supplementary Fig. 2).
The first step involves assigning numerical image quality grades (0 = poor,
1 =moderate, 2 = good) to AO images (high-quality images, HQ) using
semi-supervised pseudo-labeling40, which is a semi-supervised learning
technique to train theAImodel to classify poor,moderate, and good images.
Briefly, a small set of ground truthAO images (HQ)weremanually assigned
grading scores (0, 1, 2). These images were then used to train a classification
model (C) to predict the grading scores for the remaining unlabeled HQ
images. In the second step, the corresponding conventional lowquality (LQ)
images and the image quality grades are sent to a generator (G1) to generate
high-quality images (HQg). The generated HQg images are examined by a
discriminator (D1) by comparing it against the ground truth (AO images,
HQ) and providing an image validity result and an image quality grade. The
quality of the generated HQg images is also checked by going through a
second generator-discriminator (G2-D2) pair to produce generated low-
quality images (LQg) and be compared against the original input conven-
tional images (LQ) using generation and cycle consistency loss functions. In
this training model, both generators (G1 and G2) start with stride-2 con-
volution, followed by 9 residual blocks, and two fractionally-strided con-
volutions with the input being 256×256-pixel images. The data input for G1
also includes the grading score c that is converted into a 256×256 image.The
discriminator (D1 andD2) networks use PatchGANs, in which D1 also has
a connected layer to perform the image grading (0, 1, 2). Together, the
additional image details gained from this iterative process ensure the reliable
generation ofHQg images. Validation of theAImodel was performed based
on objective cell detection results on the generated AI-ICG images com-
pared to the results from the AO-ICG images (ground truth). The objective
cell detection accuracy was assessed using an automated cell detection
algorithm10,37.

Selected conventional images fromhealthy eyes that were not included
in the training or testing data were used to evaluate the effectiveness of the
enhancement software. Pairs of AOand conventional images from identical
retinal locations were first spatially aligned based on ICG mosaic pattern
(AO served as ground truth). Conventional images were then cropped to
smaller ROIs (~250 × 250 µm) and processed by the enhancement software
to generate AI-ICG images.

The sharpness of the image features in AI-ICG and conventional ICG
images was calculated to quantitatively demonstrate an improvement in
image quality after image enhancement. Sharpness was estimated using the
gradientmagnitude, calculated by dividing the sumof all gradient norms by
the number of available pixels41. After the sharpness of each image was
calculated, the values were normalized to the AO-ICG images to facilitate
comparisons.

Statistical analysis
The relationship between RPE spacing/density and sex/age was analyzed
using a two-tailed t test, and changes inRPE spacing/density across different
ethnicities was evaluated by Kruskal-Wallis paired with Tukey’s honest
significant difference test. For the AO and non-AO comparison, Kruskal-
Wallis combined with Tukey’s honest significant difference test was per-
formed for the spacing/density measurements from six eyes to evaluate
significantdifferences across the three sets ofmeasurements.Themagnitude
of improvement in image feature sharpness after AI-assisted enhancement
compared to the original conventional ICG images was analyzed using a
two-tailed t test. P values under 0.05 are considered significant.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Eccentricity, sex and age dependent changes in RPE revealed
using adaptive optics
Since 201618, the application of using ICG for quantifyingRPE cells has been
largely restricted to AO instrumentation, called AO-enhanced ICG (AO-
ICG). Although RPE cells are also visible in early phase of AO-ICG20, in this
paper we focus on late phase AO-ICG, approximately 45min after intra-
venous injection of ICG dye. At this time point, a hexagonal pattern of ICG
fluorescence can be consistently observed in the RPE cells, with neighboring
cells exhibiting different levels of ICG intensity (Supplementary Fig. 1)19,21,28.
The origin of the ICG signal has been confirmed previously in mouse
eyes18,19,23,42,43, and by other AO modalities, including infrared-auto-
fluorescence, darkfield, and optical coherence tomography (Supplementary
Fig. 3)18,28. In order to establish how the information contained within AO-
ICG images might be clinically relevant, a retrospective analysis was per-
formed on 26 healthy eyes from 20 individuals across different ages
(33.6 ± 13.8 years [mean ± SD], range 22–63; see Supplementary Table 1),
which revealed an eccentricity-dependent change in cell-to-cell spacing and
density, consistentwithbut expandinguponprevious reports (Fig. 1).Ashas
been previously reported19, the heterogeneous ICGfluorescence patternwas
robustly observed across 100% of the subject cohort, which fortuitously
enables neighboring RPE cells to be distinguished from each other.

Based on our previously established late phase ICG imaging technique
and criteria for identifying RPE cells37 (Supplementary Fig. 1), RPE cell-to-
cell spacing and density measurements at each eccentricity show that RPE
spacing is the lowest at the fovea (14.1 ± 1.2 µm, mean ± SD), gradually
increasing to 17.4 ± 1.4 µm at an eccentricity of 5mm (Fig. 1b). In contrast,
the RPE density is highest at the fovea (6419 ± 1224 cells/mm2), decreasing
to 4444 ± 801 cells/mm2 at an eccentricity of 5mmin the temporal direction
(Fig. 1b). These trends are consistent with in vivo and ex vivo published
data18,19,44–57 (gray shaded area in Fig. 1b: range of previously reported
values). In addition, the RPE cell detection result shows that most detected
RPE cells have 6 neighboring cells (5.98 ± 0.03, mean ± SD). This observa-
tion is also consistent with previous reports44.

There were also differences in RPE cell parameters due to age. Nor-
malizedRPE spacing anddensity (normalized to average expected values for
each eccentricity) revealed that RPE spacing is significantly larger and
density is significantly smaller in ≥40-year-old cohort (Supplementary
Fig. 4, p = 1 × 10–4 [spacing], p = 2 × 10–4 [density], two-tailed t test). In
particular, RPE spacing appears to become larger while the density mea-
surements become smaller with age across most retinal eccentricities
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(Fig. 1c). This observation builds upon previous findings of RPE density
decreasing with age as reported in both histology45,47,48,58 as well as in vivo
human imaging59.

Additionally, comparison of RPE spacing between females and males
suggested thatRPEspacing is larger anddensity is smaller at all eccentricities

in female eyes (Fig. 1d). RPE spacing values in female eyes is on average 8%
larger than in male eyes (p = 2 × 10–10, two-tailed t test); correspondingly,
RPE density in female eyes is on average 21% lower than in male eyes
(p = 1 × 10–13, two-tailed t test) as shown in Supplementary Fig. 4. These
differences did not appear to arise due to differences in axial length (female:
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23.7 ± 0.9, male: 23.8 ± 0.8mm, p = 0.73) or in age (female: 36.3 ± 13.7,
male: 30.4 ± 13.4, p = 0.32). Intriguingly, the slightly larger RPE cell spacing
observed in female eyes is similar to the slightly larger cone photoreceptor
diameters observed in female subjects as has been previously reported in a
separate subject cohort60. There were no apparent differences in the RPE
across ethnicity (Supplementary Fig. 4).

Taken together, these results indicate that the heterogeneous pattern of
RPE fluorescence established by intravenous ICG injection can be robustly
imaged using AO (AO-ICG) for the purposes of obtaining cellular infor-
mation of RPE in living human eyes. However, whether this same infor-
mation can be gleaned usingmore routine clinical imaging instrumentation
remains to be demonstrated.

Visualizing RPE cells using standard clinical scanning laser
ophthalmoscopy
Although AO can provide cellular details of RPE cells due to the improved
lateral resolution compared to the current standard clinical ophthalmic
imaging, AO technology is not readily accessible in most eye clinics.
However, cellular-level information of RPE may be possible without AO
since the size of the smallest RPE cells (~14 µm at the fovea) is near the
reported lateral resolution (~10–15 µm) of some commercially-available
clinical imaging systems, such as the scanning laser ophthalmoscope (SLO)
(Spectralis, Heidelberg Engineering). Here, we sought to explore the use of a
hardware-based approach to explore the feasibility of upgrading clinical
imaging with the capability of cellular scale imaging.

A recently-introduced custom lens add-on (High Magnification
Module, HMM, Heidelberg Engineering), originally developed to enable
visualization of cone photoreceptors using a clinical instrument without the
need for AO61, was instead used to obtain higher resolution images of the
fluorescently labeled RPE cells approximately one hour after intravenous
injection of ICG (late phase ICG) (n = 6 eyes imaged using both AO and
HMM, Supplementary Table 1). Our results indicate that HMM imaging
canalsoprovide images ofRPEcells that are comparable toAO-ICG images.

Multiple retinal regions were imaged to compare the ICG RPEmosaic
using AO, HMM, and a commercially available SLO with a standard 30°
imaging lens (thereby referred to as “conventional”) (Spectralis, Heidelberg
Engineering). A detailed comparison of conventional, HMM, and AO
imagingmodes is listed in SupplementaryTable 3. Close observation reveals
that the same ICG mosaic pattern could be seen across all three imaging
modalities, but with varying levels of resolution (Fig. 2 and Supplementary
Videos 1 and 2). Froma larger view on the conventional image (Fig. 2a), one
can see a mostly uniform ICG signal across the retina with a slight hypo-
cyanescent region within the macula. This is distinct from the 787-nm
autofluorescence images showing increased autofluorescence in the central
macula relative to surrounding areas as acquiredusing SLO (Supplementary
Fig. 5). In addition, it is important to note that because the ICGfluorescence
signal ismuch stronger than the 787-nmautofluorescence from the retina18,
variability in autofluorescence is not expected to have a strong impact on the
ICG fluorescence signal. Upon closer view on both non-AO (conventional
and HMM) and AO images (Fig. 2b), the mosaic pattern of varying ICG
signals across individual cells can be better observed. The fact that the same
heterogeneous pattern of fluorescence was observed using both non-AO
and AO instruments not only corroborates our claim that the same fluor-
escent signal is being detected by multiple systems, but also indicates the

possibility for detecting cellular structure without the need for AO instru-
mentation. In particular, availability of AO-ICG images acquired from the
same retinal locations help to serve as a higher resolution ground truth for
improving the interpretability of the lower resolution non-AO images.

Despite the lower resolution in non-AO images, the majority of indi-
vidual RPE cells were still identifiable not only in theHMM ICG image, but
also in the conventional ICG image, which has even lower lateral resolution
thanHMM.To assess whether reliable cellular information can be obtained
using non-AO ICG images, RPE cells were quantified on both HMM and
conventional images at the same ROIs as where AO images were acquired.
RPE cell-to-cell spacing and densitymeasurements obtained using non-AO
images were comparable to ground truth measurements independently
obtained fromAO acrossmultiple retinal locations (eccentricities) (Fig. 2c).
Kruskal-Wallis combined with Tukey’s honest significant difference test
performed separately for both spacing and density on the three sets of
measurement revealed no significant difference among the three modalities
(AO vs. HMM: p = 0.68, AO vs. conventional: p = 0.77, HMM vs. conven-
tional: p = 0.99). This observation reveals an unexpected finding that non-
AO images can contain RPE cellular information content in the context of
late phase ICG imaging, even though they appear to have lower contrast and
clarity when compared to AO-ICG images.

AI-assisted imaging achieves cellular-level resolution faithful to
high end AO imaging
Having established that the heterogeneous ICG fluorescence pattern
represents a signal originating from the RPE that can be revealed using both
AO as well as non-AO imaging techniques, here, we sought to explore the
possibility of using AI to generate AO-like images from conventional ICG
images. Leveraging pairs of AO-ICG images with corresponding non-AO
conventional ICG images from different retinal locations collected from 10
subjects,we trained the stratified cycleGANmodel10 to convert conventional
images toAO-like images, and thenused the fully trainedmodel to generate
AI-enhanced ICG (AI-ICG) images from never-seen conventional ICG
images. The workflow of a trained image enhancement platform and the
architecture of the AI training model are detailed in “Methods” section as
well as Supplementary Fig. 2.

We evaluated the performance of stratified cycleGAN on image
enhancement first using a set of never-seen test images from healthy eyes
(Fig. 3). Data show that AI enhancement greatly improves the visual quality
of the ICG images (AI-ICG vs. conventional ICG images). These results
suggest that the AI-ICG approach is capable of synthesizing images with
improved resolution and contrast with close resemblance to ground truth
AO-ICG images acquired at the same retinal locations for the purposes of
comparison (these AO-ICG images were not provided to the stratified
cycleGAN). These qualitative observations were corroborated by quantifi-
cation of precision, recall, and F1-score using objective cell detection
(Supplementary Table 4). In conventional ICG images, individual cells are
more difficult to distinguish due to the lower resolution and contrast, but
were better visualized in the enhanced AI-ICG images, establishing the
ability of AI to draw out existing information content into a manner that is
more accessible for routine clinical use.

In addition to enhancing images from healthy eyes (Fig. 3), we also
demonstrated the applicability of the AI-ICG approach to enhance
conventional ICG images from eyes with AMD, vitelliform macular

Fig. 1 | Late phase adaptive optics enhanced indocyanine green (AO-ICG) ima-
ging enablesmeasurement of retinal pigment epithelial (RPE) cell-to-cell spacing
and density across the temporal eccentricities and age-related changes. aExample
AO-ICG RPE mosaic at different eccentricities (top row) showing each RPE cell
uniformly labeled by ICG. The corresponding Voronoi maps of the RPE cells
(bottom row) are shown for visualization purposes. b RPE spacing and density
measurements using AO-ICG images compared to previously published in vivo and
ex vivo data (gray shaded area: range of previously reported values). Box plot: center
line: median, box limits: upper/lower quartiles, whiskers: 1.5x interquartile range;
blue markers: individual data points calculated from each location in each eye

(n = 190 locations in this plot); blue line: averaged measurements across all eyes
based on AO-ICG. c RPE spacing and density comparison between <40 (n = 130
locations) and ≥40 (n = 60 locations) years old. In general, RPE spacing is larger in
≥40-year-old cohort at most eccentricities in this study. RPE density is smaller at
most eccentricities in the≥40-year-old cohort. Line:mean ± SD;markers: individual
data points. d RPE spacing and density comparison between male (n = 52 locations)
and female (n = 138 locations). At all eccentricities, females have higher RPE spacing
and lower density. Line: mean ± SD; markers: individual data points. Scale
bar: 50 µm.
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dystrophy, retinitis pigmentosa, and a carrier of choroideremia (Fig. 4
and Supplementary Table 2). Stratified cycleGAN was applied to the
images from the various diseased eyes. Despite the many differences in
pathology between these four diseases, RPE cells were successfully
enhanced using the AI-ICG approach and were consistent with ground-
truth AO-ICG images. Notably, stratified cycleGANwas trained on only
healthy data. To further evaluate whether the generated AI-ICG images
have sharper features than their corresponding conventional ICG ima-
ges, we performed an image sharpness test (Supplementary Fig. 6),
which showed that the features in AI-ICG images were improved by ~8X
compared to conventional ICG images (8.3 ± 5.9 [mean ± SD],
p = 0.0024). These preliminary results on previously-unseen data sug-
gest the possibility of obtaining images of the RPE cellular mosaic across
both health and disease.

Finally, we used the AI-assisted imaging approach to generate a
montage of the RPEmosaic in amanner that wasmuchmore efficient than
would have been possible with AO imaging alone. The amount of retinal
area that can be covered in one AO imaging session is typically limited to
smaller fields of view (~0.5 mm by 0.5 mm) when compared to clinical
instruments (>9mm by 9mm). Here, we show that AI-ICG can be lever-
aged to virtually generate a large-area montage of an eye from a female
choroideremia carrier. Choroideremia is anX-linked retinal disease that has
been shown to cause abnormal changes in RPE in female carriers23,62,63.
Building upon our previous results, patterns of RPE fluorescence from a
choroideremia carrier were also consistently observed across conventional,
HMM, and AO-ICG (Fig. 5). The AI-ICG montage over the same retinal
region shows a clear improvement over the corresponding clinical images
with comparable or better visibility of individual RPE cells thanAO-ICG for

Fig. 2 | Late phase indocyanine green (ICG) retinal pigment epithelial (RPE) cell
mosaic is visible using both adaptive optics (AO) and non-AO (conventional and
highmagnification module) instruments. a Conventional image of late phase ICG
mosaic from a 42-year-old healthy eye. Selected locations for visual comparison of
ICG mosaic acquired from conventional ICG, high magnification module (HMM)
ICG, and AO-ICG are shown by colored boxes. b Selected regions of interest (color
matched boxes in 2a and 2b) show a consistent ICGpattern observed at each location
by both AO and non-AO instruments, but with lower resolution in the non-AO
images (the contrast of the non-AO images in (b) were adjusted for visualization

purposes). Example of RPE cells at each location is shown by the color-matched
arrows. cBox plots showing RPE spacing and density measurements from six eyes at
various eccentricities based on conventional ICG (red), HMM ICG (blue), and AO-
ICG (black) images (colored dots are individual data points of corresponding
modalities, n = 21 locations per modality). No significant difference was observed
across the three modalities, suggesting RPE cellular level information can be
acquired by both AO and non-AO instruments. An additional example comparing
AO and non-AO instruments is provided in Supplementary Videos 1 and 2. Scale
bars: (a) 1 mm, (b) 50 µm.
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this eye (Fig. 5b). Notably, AI-ICG generated the larger-area montage in
much shorter time than AO-ICG. To generate this montage of RPE cells
covering the ~2mmby 0.4mmarea demarcated in Fig. 5a usingAO-ICG, a
total of ~11 h was required, including image acquisition (one hour per eye)
and post processing (>10 h). With AI-ICG, the image covering this same
areawasobtainedwith the assistance ofAIwithin3min (~45 s conventional
image acquisition and up to 2min AI-assisted image enhancement), sub-
stantially faster than AO-ICG with a 220-fold improvement in time. This
example demonstrates that cellular-level information can be acquired in a
clinical environment without the use of AO. More importantly, the result
shown here is potentially transformative as a strategy for improving the
accessibility of next-generation imaging technology through the use of AI.

Discussion
Building upon published findings that demonstrate AO-ICG can be used to
visualize and track the in situmosaicism of RPE at the foveal center in living
human eyes19, this study gatheredAO-ICGdata from 26 healthy eyes across
a broad age range (22–63 years old) and across a range of retinal locations to
evaluate and compare in vivo RPE parameters acquired from AO-ICG to
published values. Results show that both the RPE cell-to-cell spacing and
density measurements based on AO-ICG images are consistent with the
values previously published by other imaging studies and histology, and the
highest RPE density is observed in the fovea as previously described
(Fig. 1b)18,19,44–57,59. In addition, our results demonstrate an in vivo rela-
tionship between RPE packing and age that expands upon published lit-
erature (Fig. 1c)45,47,48,58,59,64. To our knowledge, we present the largest in vivo
normative dataset for RPE cell structure in living human eyes, which will be
particularly important for future studies using both AO and non-AO
imaging to assess the RPE.

Since AO imaging is currently not as widely accessible in routine
clinical practice, and because tracking the health of RPE is an important step
in understanding disease progression, extension of this technique into non-
AO instrumentation is crucial. The introduction of HMM by Heidelberg
Engineering enabled higher resolution imaging of structures resembling
photoreceptors61,65,66, but to our knowledge, has never been extended to
fluorescent imaging before. Compared to photoreceptors, RPE cells are
larger and therefore potentially easier to resolve with non-AO
instrumentation23. The striking similarity in ICG fluorescence patterns
observed across AO, conventional, and HMM (Fig. 2b and Supplementary
Videos 1 and 2) not only serve to cross-validate the source of the ICG signal

being imaged19, but also, opensup thepossibility of using an existingmodule
(HMM) in a novel manner to visualize RPE cells in living eyes without AO.
It is important however to acknowledge that the use of the HMMmodule
has inherent challenges which can affect image quality, such as motion
artifacts or uncorrected optical aberrations61,66. Similar to other studies,
skilled and experienced operators are needed for HMMuse61. All in all, our
results clearly show that the heterogeneous pattern of ICG fluorescence
observed in the RPE is not a phenomenon exclusive to AO imaging, but
rather, a physiologically robust event following ICG injection that can be
seen using standard instruments.

Recognizing that there is a true cellular signal on the non-AO images,
in order to further improve the visualization of RPE on clinical images, we
introduced anAI-based approach to enhance the appearanceof RPE cells so
that they resemble the quality of AO images (Fig. 3). Although training data
in diseased eyes was not available, our preliminary tests on several different
diseases demonstrate the potential for this model to be expanded for other
purposes as more training data becomes available (Figs. 4 and 5). The
proposedAI-based approachnot only offers a substantial time savings (220-
fold improvement from 11 h to 3min), but also, minimal operator training
is required for obtaining AI-ICG images. This strategy also illustrates the
possibility of using AI as an add-on module to existing clinical instru-
mentation, which has the potential for revolutionizing the way in which
diseases are detected and diagnosed. In the future, since the training
mechanism of stratified cycleGAN only involves pairs of “low quality”
images and “high quality” images, this type of enhancement training plat-
form can be applied to different imaging modalities and disease conditions
by further increasing the amountof trainingdata. The generalizability of this
image enhancement technique can potentially be redesigned to provide
clinicians additional cellular information through other types of clinical
imaging instruments.

Recently, AI has demonstrated promising diagnostic potential in the
field of ophthalmology, including detecting diabetic retinopathy and pre-
dicting the progression of AMD2,3. In this study, we further extend the range
of applications of AI in ophthalmology. Considering that the RPE shows
age-dependent changes and plays a critical role in maintaining eye health,
routine visualization and assessment of theRPE at the cellular level is critical
for understanding age-related eye diseases. Todate, ICG imaginghasmostly
been used for visualizing the choroid and choroidal circulation. The data
presented in this study demonstrates an application of ICG beyond
angiography. By incorporating AI-assisted image enhancement with ICG

Fig. 3 | Cellular-level indocyanine green (ICG)
retinal pigment epithelial (RPE) cell images from
healthy eyes can be generated using stratified
cycleGAN. Representative foveal RPE images from
four separate eyes are shown. Conventional ICG and
adaptive optics enhanced ICG (AO-ICG) images
from the same location are acquired from each eye,
and stratified cycleGAN image enhancement was
applied to the conventional ICG image to generate
the artificial intelligence assisted ICG (AI-ICG)
image. Individual RPE cells can be identified (yellow
arrows) in all three ICG image modalities though at
different quality. Results show that AI-ICG RPE
images demonstrate visibly improved quality com-
pared to their corresponding conventional ICG
images, and closely resemble the ground truth
AO-ICG images. Scale bar: 100 µm.
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imaging, it is now possible to obtain cellular information of RPE in addition
to choroidal vascularization using the same dye in the clinic. More broadly,
visualizing the status of cells directly in the living human eye could enable
new discoveries for detecting andmonitoring the initiation and progression

of neurodegenerative disease67. With more routine access to cellular scale
information in the clinic, it may be possible to better detect the onset of
diseases as well as monitor cellular changes in response to novel treatments
in upcoming clinical trials.

Fig. 4 | Cellular-level indocyanine green (ICG)
retinal pigment epithelial (RPE) cell images from
diseased eyes generated using stratified cycleGAN.
Late phase ICG images from four different diseases
(before and after artificial intelligence (AI)
enhancement) are shown. Images shown were
acquired from retinal locations ~0.5 mm away from
the fovea for age-related macular degeneration
(AMD), retinitis pigmentosa, and choroideremia
carrier, and 3 mm for vitelliformmacular dystrophy
in an area with no apparent outer retinal lesions.
Conventional ICG and ground truth adaptive optics
(AO)-ICG images were acquired from identical
locations. Stratified cycleGAN trained on healthy
data onlywas applied to the conventional ICG image
to generate the AI assisted (AI-ICG) images.
Examples of individual RPE cells are shown by
magenta arrows. Scale bar: 100 µm.

Fig. 5 | Multimodal indocyanine green (ICG) ret-
inal pigment epithelial (RPE) cell imaging of an
eye from a choroideremia carrier. a Conventional
ICG. b Zoomed-in view of the ICG RPE signal (box
in 5a) from conventional, high magnification mod-
ule (HMM), artificial intelligence assisted (AI-ICG),
and adaptive optics enhanced (AO-ICG). AI-ICG
has the potential to enable large scale visualization of
the RPE mosaic more efficiently than AO. An
example of a single cell is shown (arrows). The
contrast of HMM image was enhanced for visuali-
zation purposes only. All scale bars: 200 µm.
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Data availability
The data supporting the findings of this study are available within the paper
and its Supplementary Information files. The source data for Figs. 1 and 2,
and Supplementaryfig. 4 and 6 can be found in the SupplementaryDatafile.

Code availability
The implementation of stratified cycleGAN is publicly available in the
Zenodo repository (https://doi.org/10.5281/zenodo.14866971)68.
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