Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rational electrochemical design of hierarchical microarchitectures for SERS sensing applications

Abstract

Electrochemical deposition has been widely used to prepare conformal coatings but has rarely been used to design well-defined micro/nanostructures. Here we report electrochemical synthesis of complex, hierarchical inorganic microarchitectures simply via programming the applied potential waveforms. We identify two distinct electrochemical growth modes—the stacking mode and the flattening mode—under different potential waveforms. We demonstrate how these growth modes can work individually or cooperatively to design previously inaccessible microarchitectures. Each specific potential waveform corresponds to a specific microarchitecture, allowing us to prepare a rich library of microarchitectures. The designed microarchitectures can be converted into other materials by simple redox-potential-driven chemical reactions. We preliminarily studied the applications of converted nanoporous silver microscale torpedoes as high-performance surface-enhanced Raman spectroscopy (SERS) sensing substrates. The reported method opens up a new concept to design complex inorganic microarchitectures with promising applications in metamaterials, chemically or magnetically propelled microrobotics, and miniaturized devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The concept and physical mechanism of the electrochemical method used to construct complex microarchitectures.
Fig. 2: Designing Ag7O8NO3 microarchitectures via the stacking and flattening electrochemical growth modes.
Fig. 3: Design of microarchitectures using gradually increasing potential waveforms.
Fig. 4: Design of microscale torpedoes using gradually decreasing potential waveforms and a selective peeling-off process.
Fig. 5: Microscale torpedoes with different numbers of joints selectively peeled off from the electrode surface.
Fig. 6: The design of complex microarchitectures using complex potential waveforms.
Fig. 7: SERS sensing performance of nanoporous silver microscale torpedoes transformed from Ag7O8NO3 microscale torpedoes.
Fig. 8: Morphology-preserving transformation of the Ag7O8NO3 microarchitectures into other metal oxides driven by the redox potential differences.

Similar content being viewed by others

References

  1. Noorduin, W. L., Grinthal, A., Mahadevan, L. & Aizenberg, J. Rationally designed complex, hierarchical microarchitectures. Science 340, 832–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Luo, Z. et al. Atomic gold–enabled three-dimensional lithography for silicon mesostructures. Science 348, 1451–1455 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Miskin, M. Z. et al. Electronically integrated, mass-manufactured, microscopic robots. Nature 584, 557–561 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Xu, S. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, Z., Ng, D. W. H., Park, H. S. & McAlpine, M. C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater. 6, 27–47 (2020).

    Article  Google Scholar 

  7. Madou, M. J. Fundamentals of Microfabrication: The Science of Miniaturization (CRC Press, 2002).

  8. Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Melchels, F. P. W., Feijen, J. & Grijpma, D. W. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31, 6121–6130 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, H.-E. et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360–365 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Ben-Moshe, A. et al. The chain of chirality transfer in tellurium nanocrystals. Science 372, 729–733 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Tsivion, D., Schvartzman, M., Popovitz-Biro, R., von Huth, P. & Joselevich, E. Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 333, 1003–1007 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Lin, Q.-Y. et al. Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science 359, 669–672 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Dick, K. A. et al. Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater. 3, 380–384 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Andricacos, P. C., Uzoh, C., Dukovic, J. O., Horkans, J. & Deligianni, H. Damascene copper electroplating for chip interconnections. IBM J. Res. Dev. 42, 567–574 (1998).

    Article  CAS  Google Scholar 

  18. Oskam, G., Long, J., Natarajan, A. & Searson, P. Electrochemical deposition of metals onto silicon. J. Phys. D 31, 1927 (1998).

    Article  CAS  Google Scholar 

  19. Mahenderkar, N. K. et al. Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible electronics. Science 355, 1203–1206 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Zach, M. P., Ng, K. H. & Penner, R. M. Molybdenum nanowires by electrodeposition. Science 290, 2120–2123 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Siegfried, M. J. & Choi, K. S. Electrochemical crystallization of cuprous oxide with systematic shape evolution. Adv. Mater. 16, 1743–1746 (2004).

    Article  CAS  Google Scholar 

  23. Zheng, J. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Lopez Teijelo, M., Vilche, J. R. & Arvia, A. J. The electroformation and electroreduction of anodic films formed on silver in 0.1 M sodium hydroxide in the potential range of the Ag/Ag2O couple. J. Electroanal. Chem. Interf. Electrochem. 162, 207–224 (1984).

    Article  CAS  Google Scholar 

  25. McMillan, J. Higher oxidation states of silver. Chem. Rev. 62, 65–80 (1962).

    Article  CAS  Google Scholar 

  26. Zamora-Garcia, I. R. et al. Thermodynamic and electrochemical study on the mechanism of formation of Ag(OH)4 in alkaline media. Electrochim. Acta 111, 268–274 (2013).

    Article  CAS  Google Scholar 

  27. Savinova, E. R. et al. On the mechanism of Ag(111) sub-monolayer oxidation: a combined electrochemical, in situ SERS and ex situ XPS study. Electrochim. Acta 46, 175–183 (2000).

    Article  CAS  Google Scholar 

  28. Cui, L. F., Ying, Y. L., Yu, R. J., Ma, H., Hu, P. & Long, Y. T. In situ characterization of oxygen evolution electrocatalysis of silver salt oxide on a wireless nanopore electrode. Anal. Chem. 94, 15033–15039 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Buck, R. P. Kinetics of bulk and interfacial ionic motion: microscopic bases and limits for the Nernst–Planck equation applied to membrane systems. J. Membrane Sci. 17, 1–62 (1984).

    Article  CAS  Google Scholar 

  30. Wang, Y. et al. Electrocarving during electrodeposition growth. Adv. Mater. 30, e1805686 (2018).

    Article  PubMed  Google Scholar 

  31. Hoyle, B. D. & Costerton, J. W. Bacterial resistance to antibiotics: the role of biofilms. Prog. Drug Res. 37, 91–105 (1991).

    CAS  PubMed  Google Scholar 

  32. Hendrikse, H. C. et al. Shape-preserving chemical conversion of architected nanocomposites. Adv. Mater. 32, e2003999 (2020).

    Article  PubMed  Google Scholar 

  33. Wang, X., Huang, S.-C., Hu, S., Yan, S. & Ren, B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2, 253–271 (2020).

    Article  Google Scholar 

  34. Chen, X., Ding, Q., Bi, C., Ruan, J. & Yang, S. Lossless enrichment of trace analytes in levitating droplets for multiphase and multiplex detection. Nat. Commun. 13, 7807 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Michaels, A. M., Jiang, J. & Brus, L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 104, 11965–11971 (2000).

    Article  CAS  Google Scholar 

  36. Li, J.-F., Zhang, Y.-J., Ding, S.-Y., Panneerselvam, R. & Tian, Z.-Q. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 117, 5002–5069 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Xu, H., Aizpurua, J., Käll, M. & Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 62, 4318–4324 (2000).

    Article  CAS  Google Scholar 

  38. Bard, A., Oarsons, R. & Jordan, J. Standard Potentials in Aqueous Solution (Routledge, 1985).

Download references

Acknowledgements

We acknowledge funding support from the Key R&D Program of Zhejiang Province (2023C01088), the National Natural Science Foundation of China (52273233 and 51971200), the Zhejiang Provincial Natural Science Foundation of China (LR19E010001) and the Open Research Program of Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Westlake University. Part of the work was conducted in the ZJU micro-nanofabrication center.

Author information

Authors and Affiliations

Authors

Contributions

S.Y. and L.Z. conceived the idea and designed the study. L.Z., Y.W. and N.A. carried out the materials synthesis and characterizations. S.J. and Z.H. performed the phase-field simulations. L.Z., M.Y., X.Z., Z.H. and S.Y. analysed the data. L.Z., M.Y., Z.H. and S.Y. wrote the paper. All authors contributed to the revision of the paper.

Corresponding authors

Correspondence to Mi Yan, Zijian Hong or Shikuan Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Domenica Tonelli, Yexiang Tong and Jon Ustarroz for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, captions for Videos 1–5 and Figs. 1–34.

Supplementary Video 1

The microarchitecture design concept: the morphology evolvement of the microarchitectures as the potential waveform changes.

Supplementary Video 2

The change of the ion concentration distribution and the corresponding morphology change when applying 0.18 V to a preformed micropyramid and when the potential is increased from 0.18 V to 0.22 V simulated by the phase-field method.

Supplementary Video 3

The change of the ion concentration distribution and the corresponding morphology change when applying 0.12 V to a preformed binary microarchitecture simulated by the phase-field method.

Supplementary Video 4

Selectively peeling off the uniformly structured microscale torpedoes from the electrode surface by slowly immersing it into water.

Supplementary Video 5

The moving behavior of Ag7O8NO3 microscale torpedoes in 2.5 wt.% H2O2 aqueous solutions.

Source data

Source Data Fig. 1

Unprocessed statistical source data for Fig. 1.

Source Data Fig. 4

Unprocessed statistical source data for Fig. 4.

Source Data Fig. 5

Unprocessed statistical source data for Fig. 5.

Source Data Fig. 7

Unprocessed statistical source data for Fig. 7.

Source Data Fig. 8

Unprocessed statistical source data for Fig. 8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Wang, Y., Jin, S. et al. Rational electrochemical design of hierarchical microarchitectures for SERS sensing applications. Nat. Synth 3, 867–877 (2024). https://doi.org/10.1038/s44160-024-00553-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00553-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing