Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthesis of high-entropy materials

An Author Correction to this article was published on 24 December 2024

This article has been updated

Abstract

High-entropy materials (HEMs) exhibit compelling behaviours that are distinct from those in conventional solid solutions. Such disordered multicomponent systems bring unprecedented compositional and structural complexities that hinder a thorough understanding of entropy stabilization and its impact on phase selection and property optimization. The controlled fabrication of HEMs, ideally reaching the same level of detail as traditional alloy design, is desirable. The past decade has witnessed the development of advanced synthesis methodologies and techniques to introduce various degrees of control to this class of inherently disordered materials. Here we discuss the emerging rationales for synthesizing bulk and nanostructured HEMs with tunable microstructures, extended compositions and tailored atomic configurations. Case studies of formation pathways and stabilization mechanisms of different types of HEM reveal insightful synthesis guidelines. This progress enables predictable and rational manipulation of atomic order in the chemically disordered lattice, laying the foundations for exceptional functionalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic showing the evolution of randomness (entropy, S) in structures containing five principal elements.
Fig. 2: Shock-derived nonequilibrium synthesis of nanoscale HEMs.
Fig. 3: Low-temperature solution synthesis of nanoscale HEMs.
Fig. 4: Data-guided high-throughput discovery, screening and optimization of HEMs with interesting properties.
Fig. 5: Examples and illustrative diagrams of various types of structural heterogeneity in HEMs.

Similar content being viewed by others

Change history

References

  1. Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    Article  CAS  Google Scholar 

  2. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).

    Article  Google Scholar 

  3. Gao, M. C. et al. Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 238–251 (2017).

    Article  CAS  Google Scholar 

  4. George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    Article  CAS  Google Scholar 

  5. Chuang, M. H., Tsai, M. H., Wang, W. R., Lin, S. J. & Yeh, J. W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308–6317 (2011).

    Article  CAS  Google Scholar 

  6. Lei, Z. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563, 546–550 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227–230 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Yeh, J.-W. & Yeh, J. W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mater. 31, 633–648 (2006).

    Article  CAS  Google Scholar 

  10. Hsu, W. L., Tsai, C. W., Yeh, A. C. & Yeh, J. W. Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 8, 471–485 (2024).

    Article  PubMed  Google Scholar 

  11. Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020).

    Article  CAS  Google Scholar 

  12. Xu, W. et al. Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew. Chem. Int. Ed. 131, 5072–5076 (2019).

    Article  Google Scholar 

  13. Folgueras, M. C., Jiang, Y., Jin, J. & Yang, P. High-entropy halide perovskite single crystals stabilized by mild chemistry. Nature 621, 282–288 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Yao, Y. et al. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery. Science 376, eabn3103 (2023).

    Article  Google Scholar 

  15. Sun, Y. & Dai, S. High-entropy materials for catalysis: a new frontier. Sci. Adv. 7, eabg1600 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schweidler, S. et al. High-entropy materials for energy and electronic applications. Nat. Rev. Mater. 9, 266–281 (2024).

    Article  Google Scholar 

  17. Chang, X., Zeng, M., Liu, K. & Fu, L. Phase engineering of high-entropy alloys. Adv. Mater. 32, 1907226 (2020).

    Article  CAS  Google Scholar 

  18. Toher, C., Oses, C., Hicks, D. & Curtarolo, S. Unavoidable disorder and entropy in multi-component systems. NPJ Comput. Mater. 5, 69 (2019).

    Article  Google Scholar 

  19. Divilov, S. et al. Disordered enthalpy–entropy descriptor for high-entropy ceramics discovery. Nature 625, 66–73 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).

    Article  CAS  Google Scholar 

  21. Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Fracchia, M., Coduri, M., Manzoli, M., Ghigna, P. & Tamburini, U. A. Is configurational entropy the main stabilizing term in rock-salt Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O high entropy oxide? Nat. Commun. 13, 2977 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, R., Bao, Z. & Sun, Y. Probing and leveraging the structural heterogeneity of nanomaterials for enhanced catalysis. ACS Nanosci. Au 3, 140–152 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, Y., Yang, X. & Liaw, P. K. Alloy design and properties optimization of high-entropy alloys. JOM 64, 830–838 (2012).

    Article  CAS  Google Scholar 

  25. Zhang, F. et al. Polymorphism in a high-entropy alloy. Nat. Commun. 8, 15687 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, H. et al. Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting. Acta Mater. 196, 609–625 (2020).

    Article  CAS  Google Scholar 

  27. Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Ying, T. et al. High-entropy van der Waals materials formed from mixed metal dichalcogenides, halides and phosphorus trisulfides. J. Am. Chem. Soc. 143, 7042–7049 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Du, Z. et al. High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 33, 2101473 (2021).

    Article  CAS  Google Scholar 

  30. Cropper, M. D. Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition. Appl. Surf. Sci. 455, 153–159 (2018).

    Article  CAS  Google Scholar 

  31. Guo, H., Wang, X., Dupuy, A. D., Schoenung, J. M. & Bowman, W. J. Growth of nanoporous high-entropy oxide thin films by pulsed laser deposition. J. Mater. Res. 37, 124–135 (2022).

    Article  Google Scholar 

  32. Chida, Y. et al. Experimental study platform for electrocatalysis of atomic-level controlled high-entropy alloy surfaces. Nat. Commun. 14, 4492 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sharma, Y. et al. Single-crystal high entropy perovskite oxide epitaxial films. Phys. Rev. Mater. 2, 060404(R) (2018).

    Article  Google Scholar 

  34. Chen, S. et al. Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy. Nat. Commun. 11, 826 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gangireddy, S., Gwalani, B., Soni, V., Banerjee, R. & Mishra, R. S. Contrasting mechanical behavior in precipitation hardenable AlXCoCrFeNi high entropy alloy microstructures: single phase FCC vs. dual phase FCC-BCC. Mater. Sci. Eng. A 739, 158–166 (2019).

    Article  CAS  Google Scholar 

  36. Qin, M. et al. Dual-phase high-entropy ultra-high temperature ceramics. J. Eur. Ceram. Soc. 40, 5037–5050 (2020).

    Article  CAS  Google Scholar 

  37. Zhu, J. et al. Dual-phase rare-earth-zirconate high-entropy ceramics with glass-like thermal conductivity. J. Eur. Ceram. Soc. 41, 2861–2869 (2021).

    Article  CAS  Google Scholar 

  38. Luo, S. C., Guo, W. M., Plucknett, K. & Lin, H. T. Fine-grained dual-phase high-entropy ceramics derived from boro/carbothermal reduction. J. Eur. Ceram. Soc. 41, 3189–3195 (2021).

    Article  CAS  Google Scholar 

  39. Chen, P. C. et al. Complete miscibility of immiscible elements at the nanometre scale. Nat. Nanotechnol. 19, 775–781 (2024).

    Article  CAS  PubMed  Google Scholar 

  40. Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, K. S., Huh, S. H. & Suganuma, K. Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys. Mater. Sci. Eng. A 333, 106–114 (2002).

    Article  Google Scholar 

  42. Martin, A. & Thuo, M. Beyond Hume-Rothery rules. Acc. Mater. Res. 4, 809–813 (2023).

    Article  CAS  Google Scholar 

  43. Yao, Y. et al. Extreme mixing in nanoscale transition metal alloys. Matter 4, 2340–2353 (2021).

    Article  CAS  Google Scholar 

  44. Yang, C. et al. Overcoming immiscibility toward bimetallic catalyst library. Sci. Adv. 6, eaaz6844 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang, X. & Cranford, S. A creative ‘spark’ for high-entropy alloys. Matter 3, 1391–1393 (2020).

    Article  Google Scholar 

  46. Li, T. et al. Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nat. Catal. 4, 62–70 (2021).

    Article  CAS  Google Scholar 

  47. Cui, M. et al. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv. Energy Mater. 11, 2002887 (2021).

    Article  CAS  Google Scholar 

  48. Xie, H. et al. Rapid liquid phase-assisted ultrahigh-temperature sintering of high-entropy ceramic composites. Sci. Adv. 8, eabn8241 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feng, J. et al. Unconventional alloys confined in nanoparticles: building blocks for new matter. Matter 3, 1646–1663 (2020).

    Article  Google Scholar 

  50. Liao, Y. et al. High-entropy-alloy nanoparticles with 21 ultra-mixed elements for efficient photothermal conversion. Natl Sci. Rev 9, nwac041 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, B. et al. General synthesis of high-entropy alloy and ceramic nanoparticles in nanoseconds. Nat. Synth. 1, 138–146 (2022).

    Article  Google Scholar 

  52. Waag, F. et al. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Adv. 9, 18547–18558 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guo, C. et al. Laser precise synthesis of oxidation-free high-entropy alloy nanoparticle libraries. J. Am. Chem. Soc. 146, 18407–18417 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Cha, J. H. et al. Flash-thermal shock synthesis of high-entropy alloys toward high-performance water splitting. Adv. Mater. 35, 2305222 (2023).

    Article  CAS  Google Scholar 

  55. Gao, S. et al. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 11, 2016 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Glasscott, M. W. et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat. Commun. 10, 2650 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Okejiri, F. et al. Room-temperature synthesis of high-entropy perovskite oxide nanoparticle catalysts through ultrasonication-based method. ChemSusChem 13, 111–115 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Jin, T. et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv. Mater. 30, 1707512 (2018).

    Article  Google Scholar 

  59. Qiao, H. et al. Scalable synthesis of high entropy alloy nanoparticles by microwave heating. ACS Nano 15, 14928–14937 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Xie, P. et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10, 4011 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Batchelor, T. A. A. et al. High-entropy alloys as a discovery platform for electrocatalysis. Joule 3, 834–845 (2019).

    Article  CAS  Google Scholar 

  62. Xie, H. et al. Rapid liquid phase-assisted ultrahigh-temperature sintering of high-entropy ceramic composites. Sci. Adv. 8, 8241 (2022).

    Article  Google Scholar 

  63. Deng, B. et al. Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating. Nat. Commun. 13, 262 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, Y. et al. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nat. Commun. 7, 12332 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dey, G. R. et al. Colloidal nanoparticles of high entropy materials: capabilities, challenges, and opportunities in synthesis and characterization. ACS Nanosci. Au 4, 3–20 (2024).

    Article  CAS  PubMed  Google Scholar 

  66. Alameda, L. T., Baumler, K. J., Katzbaer, R. R. & Schaak, R. E. Soft chemistry of hard materials: low-temperature pathways to bulk and nanostructured layered metal borides. Acc. Chem. Res. 56, 3515–3524 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Solari, S. F. et al. Stabilization of lead-reduced metal halide perovskite nanocrystals by high-entropy alloying. J. Am. Chem. Soc. 144, 5864–5870 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Song, Y. et al. High-entropy design for 2D halide perovskite. J. Am. Chem. Soc. 146, 19478–19755 (2024).

    Article  Google Scholar 

  69. Wang, T., Chen, H., Yang, Z., Liang, J. & Dai, S. High-entropy perovskite fluorides: a new platform for oxygen evolution catalysis. J. Am. Chem. Soc. 142, 4550–4554 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Ma, Y. et al. High-entropy metal-organic frameworks for highly reversible sodium storage. Adv. Mater. 33, 2101342 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Du, M. et al. High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 134, e202209350 (2022).

    Article  Google Scholar 

  72. Wu, H. et al. Structural framework-guided universal design of high-entropy compounds for efficient energy catalysis. J. Am. Chem. Soc. 145, 1924–1935 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Rowell, J. L. et al. Colloidal synthesis of monodisperse high-entropy spinel oxide nanocrystals. J. Am. Chem. Soc. 146, 17613–17617 (2024).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, T. et al. Perovskite oxide-halide solid solutions: a platform for electrocatalysts. Angew. Chem. Int. Ed. 60, 9953–9958 (2021).

    Article  CAS  Google Scholar 

  75. Cao, G. et al. Liquid metal for high-entropy alloy nanoparticles synthesis. Nature 619, 73–77 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Liang, J. et al. Synthesis of ultrathin high-entropy oxides with phase controllability. J. Am. Chem. Soc. 146, 7118–7123 (2024).

    Article  CAS  PubMed  Google Scholar 

  77. Löffler, T. et al. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 8, 1802269 (2018).

    Article  Google Scholar 

  78. Ning, S., Wen, T., Ye, B. & Chu, Y. Low-temperature molten salt synthesis of high-entropy carbide nanopowders. J. Am. Ceram. Soc. 103, 2244–2251 (2020).

    Article  CAS  Google Scholar 

  79. Hanabata, S. et al. Denary high-entropy oxide nanoparticles synthesized by a continuous supercritical hydrothermal flow process. J. Am. Chem. Soc. 146, 181–186 (2024).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, Y.-H. et al. Toward controllable and predictable synthesis of high-entropy alloy nanocrystals. Sci. Adv. 9, adf9931 (2023).

    Article  Google Scholar 

  81. Wood, C. H. & Schaak, R. E. Synthetic roadmap to a large library of colloidal high-entropy rare earth oxyhalide nanoparticles containing up to thirteen metals. J. Am. Chem. Soc. 146, 18730–18742 (2024).

    Article  CAS  PubMed  Google Scholar 

  82. Dey, G. R., McCormick, C. R., Soliman, S. S., Darling, A. J. & Schaak, R. E. Chemical insights into the formation of colloidal high entropy alloy nanoparticles. ACS Nano 17, 5943–5955 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Broge, N. L. N., Bondesgaard, M., Søndergaard-Pedersen, F., Roelsgaard, M. & Iversen, B. B. Autocatalytic formation of high-entropy alloy nanoparticles. Angew. Chem. Int. Ed. 59, 21920–21924 (2020).

    Article  CAS  Google Scholar 

  84. Wu, D. et al. Platinum-group-metal high-entropy-alloy nanoparticles. J. Am. Chem. Soc. 142, 13833–13838 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Sun, J., Leff, A., Li, Y. & Woehl, T. J. Visualizing formation of high entropy alloy nanoparticles with liquid phase transmission electron microscopy. Nanoscale 15, 10447–10457 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Zhan, C. et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 12, 6261 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sun, Y. et al. A general approach to high-entropy metallic nanowire electrocatalysts. Matter 6, 193–205 (2023).

    Article  CAS  Google Scholar 

  88. Liu, J. et al. Polyoxometalate cluster-incorporated high entropy oxide sub-1 nm nanowires. J. Am. Chem. Soc. 144, 23191–23197 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Du, J. et al. One-dimensional high-entropy compounds. J. Am. Chem. Soc. 146, 8464–8471 (2024).

    Article  CAS  PubMed  Google Scholar 

  90. Tao, L. et al. A general synthetic method for high-entropy alloy subnanometer ribbons. J. Am. Chem. Soc. 144, 10582–10590 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Soliman, S. S., Dey, G. R., McCormick, C. R. & Schaak, R. E. Temporal evolution of morphology, composition, and structure in the formation of colloidal high-entropy intermetallic nanoparticles. ACS Nano 17, 16147–16159 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. McCormick, C. R. & Schaak, R. E. Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles. J. Am. Chem. Soc. 143, 1017–1023 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Veglak, J. M., Tsai, A., Soliman, S. S., Dey, G. R. & Schaak, R. E. Disentangling competitive and synergistic chemical reactivities during the seeded growth of high-entropy alloys on high-entropy metal sulfide nanoparticles. J. Am. Chem. Soc. 146, 19521–19536 (2024).

    Article  CAS  PubMed  Google Scholar 

  94. Fan, L. et al. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 144, 7224–7235 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Yu, H. et al. Versatile synthesis of dendritic mesoporous rare earth-based nanoparticles. Sci. Adv. 8, 2356 (2022).

    Article  Google Scholar 

  96. De Marco, M. L. et al. High-entropy-alloy nanocrystal based macro- and mesoporous materials. ACS Nano 16, 15837–15849 (2022).

    Article  PubMed  Google Scholar 

  97. Feng, D. et al. Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol. Angew. Chem. Int. Ed. 59, 19503–19509 (2020).

    Article  CAS  Google Scholar 

  98. Xie, M. et al. High-entropy alloy nanopatterns by prescribed metallization of DNA origami templates. Nat. Commun. 14, 1745 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kar, N. et al. Retrosynthetic design of core–shell nanoparticles for thermal conversion to monodisperse high-entropy alloy nanoparticles. Nat. Synth. 3, 175–184 (2024).

    Article  CAS  Google Scholar 

  100. Chen, H. et al. Self-regenerative noble metal catalysts supported on high-entropy oxides. Chem. Commun. 56, 15056–15059 (2020).

    Article  CAS  Google Scholar 

  101. Suvarna, M. & Pérez-Ramírez, J. Embracing data science in catalysis research. Nat. Catal. 7, 624–635 (2024).

    Article  Google Scholar 

  102. Rao, Z. et al. Machine learning-enabled high-entropy alloy discovery. Science 378, 78–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Huang, W., Martin, P. & Zhuang, H. L. Machine-learning phase prediction of high-entropy alloys. Acta Mater. 169, 225–236 (2019).

    Article  CAS  Google Scholar 

  104. Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L. & Liaw, P. K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534–538 (2008).

    Article  CAS  Google Scholar 

  105. Poletti, M. G. & Battezzati, L. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 75, 297–306 (2014).

    Article  CAS  Google Scholar 

  106. Guo, S., Ng, C., Wang, Z. & Liu, C. T. Solid solutioning in equiatomic alloys: limit set by topological instability. J. Alloys Compd. 583, 410–413 (2014).

    Article  CAS  Google Scholar 

  107. Ye, Y. F., Wang, Q., Lu, J., Liu, C. T. & Yang, Y. Design of high entropy alloys: a single-parameter thermodynamic rule. Scr. Mater. 104, 53–55 (2015).

    Article  CAS  Google Scholar 

  108. Lederer, Y., Toher, C., Vecchio, K. S. & Curtarolo, S. The search for high entropy alloys: a high-throughput ab-initio approach. Acta Mater. 159, 364–383 (2018).

    Article  CAS  Google Scholar 

  109. Pei, Z., Yin, J., Hawk, J. A., Alman, D. E. & Gao, M. C. Machine-learning informed prediction of high-entropy solid solution formation: beyond the Hume-Rothery rules. NPJ Comput. Mater. 6, 50 (2020).

    Article  Google Scholar 

  110. Santodonato, L. J., Liaw, P. K., Unocic, R. R., Bei, H. & Morris, J. R. Predictive multiphase evolution in Al-containing high-entropy alloys. Nat. Commun. 9, 4520 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ye, Y. F., Liu, C. T. & Yang, Y. A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater. 94, 152–161 (2015).

    Article  CAS  Google Scholar 

  112. Sarker, P. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kaufmann, K. et al. Discovery of high-entropy ceramics via machine learning. NPJ Comput. Mater. 6, 42 (2020).

    Article  Google Scholar 

  114. Dey, D., Liang, L. & Yu, L. Mixed enthalpy–entropy descriptor for the rational design of synthesizable high-entropy materials over vast chemical spaces. J. Am. Chem. Soc. 146, 5142–5151 (2024).

    Article  CAS  PubMed  Google Scholar 

  115. Liu, R., Li, X. & Lam, K. S. Combinatorial chemistry in drug discovery. Curr. Opin. Chem. Biol. 38, 117–126 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Yao, Y. et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl Acad. Sci. USA 117, 6316–6322 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kumbhakar, M. et al. High-throughput screening of high-entropy fluorite-type oxides as potential candidates for photovoltaic applications. Adv. Energy Mater. 13, 2204337 (2023).

    Article  CAS  Google Scholar 

  118. Zhu, B. et al. Fast and high-throughput synthesis of medium- and high-entropy alloys using radio frequency inductively coupled plasma. Adv. Eng. Mater. 23, 2001116 (2021).

    Article  CAS  Google Scholar 

  119. Moorehead, M. et al. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing. Mater. Des. 187, 108358 (2020).

    Article  CAS  Google Scholar 

  120. Liu, S., Grohol, C. M. & Shin, Y. C. High throughput synthesis of CoCrFeNiTi high entropy alloys via directed energy deposition. J. Alloys Compd. 916, 165469 (2022).

    Article  CAS  Google Scholar 

  121. Schweidler, S. et al. Synthesis and characterization of high-entropy CrMoNbTaVW thin films using high-throughput methods. Adv. Eng. Mater. 25, 2200870 (2023).

    Article  CAS  Google Scholar 

  122. Batchelor, T. A. A. et al. Complex-solid-solution electrocatalyst discovery by computational prediction and high-throughput experimentation. Angew. Chem. Int. Ed. 60, 6932–6937 (2021).

    Article  CAS  Google Scholar 

  123. Feng, R. et al. High-throughput design of high-performance lightweight high-entropy alloys. Nat. Commun. 12, 4329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Giles, S. A., Sengupta, D., Broderick, S. R. & Rajan, K. Machine-learning-based intelligent framework for discovering refractory high-entropy alloys with improved high-temperature yield strength. NPJ Comput. Mater. 8, 235 (2022).

    Article  Google Scholar 

  125. Lu, Z., Chen, Z. W. & Singh, C. V. Neural network-assisted development of high-entropy alloy catalysts: decoupling ligand and coordination effects. Matter 3, 1318–1333 (2020).

    Article  Google Scholar 

  126. Roy, D., Mandal, S. C. & Pathak, B. Machine learning assisted exploration of high entropy alloy-based catalysts for selective CO2 reduction to methanol. J. Phys. Chem. Lett. 13, 5991–6002 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Xue, D. et al. Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 7, 11241 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ding, Q. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Moniri, S. et al. Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys. Nature 624, 564–569 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Lun, Z. et al. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20, 214–221 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Walsh, F., Asta, M. & Ritchie, R. O. Magnetically driven short-range order can explain anomalous measurements in CrCoNi. Proc. Natl Acad. Sci. USA 118, e2020540118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Huang, Z. et al. Tailoring local chemical ordering via elemental tuning in high-entropy alloys. J. Am. Chem. Soc. 146, 2167–2173 (2024).

    Article  CAS  PubMed  Google Scholar 

  133. Jiang, B. et al. Probing the local site disorder and distortion in pyrochlore high-entropy oxides. J. Am. Chem. Soc. 143, 4193–4204 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Zhang, F. X. et al. Local structure and short-range order in a NiCoCr solid solution alloy. Phys. Rev. Lett. 118, 205501 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Santodonato, L. J. et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).

    Article  PubMed  Google Scholar 

  136. Ding, J., Yu, Q., Asta, M. & Ritchie, R. O. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc. Natl Acad. Sci. USA 115, 8919–8924 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yin, S. et al. Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order. Nat. Commun. 12, 4873 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chen, S. et al. Short-range ordering alters the dislocation nucleation and propagation in refractory high-entropy alloys. Mater. Today 65, 14–25 (2023).

    Article  CAS  Google Scholar 

  139. Su, Z. et al. Radiation-assisted chemical short-range order formation in high-entropy alloys. Scr. Mater. 212, 114547 (2022).

    Article  CAS  Google Scholar 

  140. Jia, Z. et al. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 32, 200385 (2020).

    Google Scholar 

  141. Chen, W. et al. High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis. Adv. Mater. 34, 2206276 (2022).

    Article  CAS  Google Scholar 

  142. Feng, G. et al. Engineering structurally ordered high-entropy intermetallic nanoparticles with high-activity facets for oxygen reduction in practical fuel fells. J. Am. Chem. Soc. 145, 11140–11150 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Chen, T. et al. An ultrasmall ordered high-entropy intermetallic with multiple active sites for the oxygen reduction reaction. J. Am. Chem. Soc. 146, 1174–1184 (2024).

    Article  CAS  PubMed  Google Scholar 

  144. Ma, J., Xing, F., Nakaya, Y., Shimizu, K. I. & Furukawa, S. Nickel-based high-entropy intermetallic as a highly active and selective catalyst for acetylene semihydrogenation. Angew. Chem. Int. Ed. 61, e202200889 (2022).

    Article  CAS  Google Scholar 

  145. Nakaya, Y. et al. High-entropy intermetallics serve ultrastable single-atom Pt for propane dehydrogenation. J. Am. Chem. Soc. 144, 15944–15953 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Xing, F., Ma, J., Shimizu, K. I. & Furukawa, S. High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2. Nat. Commun. 13, 5065 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cui, M. et al. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Sci. Adv. 8, 4322 (2022).

    Article  Google Scholar 

  148. Park, H. et al. Periodic spinodal decomposition in double-strengthened medium-entropy alloy. Nat. Commun. 15, 5757 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cahn, J. W. On spinodal decomposition. Acta Metall. 9, 795–801 (1961).

    Article  CAS  Google Scholar 

  150. An, Z. et al. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy. Mater. Horiz. 8, 948–955 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Liu, T. Y. et al. Spinodal decomposition and mechanical response of a TiZrNbTa high-entropy alloy. Materials 12, 3508 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen, Y. et al. Achieving high strength and ductility in high-entropy alloys via spinodal decomposition-induced compositional heterogeneity. J. Mater. Sci. Technol. 141, 149–154 (2023).

    Article  CAS  Google Scholar 

  153. Liang, Y. J. et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nat. Commun. 9, 4063 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Rao, Z. et al. Beyond solid solution high-entropy alloys: tailoring magnetic properties via spinodal decomposition. Adv. Funct. Mater. 31, 2007668 (2021).

    Article  CAS  Google Scholar 

  155. Divilov, S. et al. A priori procedure to establish spinodal decomposition in alloys. Acta Mater. 266, 119667 (2024).

    Article  CAS  Google Scholar 

  156. Luan, H. et al. Spinodal decomposition and the pseudo-binary decomposition in high-entropy alloys. Acta Mater. 248, 118775 (2023).

    Article  CAS  Google Scholar 

  157. Morral, J. E. & Chen, S. Stability of high entropy alloys to spinodal decomposition. J. Phase Equilibria Diffus. 42, 673–695 (2021).

    Article  CAS  Google Scholar 

  158. Zhan, C. et al. Medium/high-entropy amalgamated core/shell nanoplate achieves efficient formic acid catalysis for direct formic acid fuel cell. Angew. Chem. Int. Ed. 62, e202213783 (2023).

    Article  CAS  Google Scholar 

  159. Wang, C. et al. Facet-controlled synthesis of platinum-group-metal quaternary alloys: the case of nanocubes and {100} facets. J. Am. Chem. Soc. 145, 2553–2560 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. Wu, C.-Y. et al. A catalyst family of high-entropy alloy atomic layers with square atomic arrangements comprising iron- and platinum-group metals. Sci. Adv. 10, 3693 (2024).

    Article  Google Scholar 

  161. Zeng, K. et al. Surface-decorated high-entropy alloy catalysts with significantly boosted activity and stability. Adv. Funct. Mater. 32, 2204643 (2022).

    Article  CAS  Google Scholar 

  162. Sun, Y. et al. Defect engineering of ceria nanocrystals for enhanced catalysis via a high-entropy oxide strategy. ACS Cent. Sci. 8, 1081–1090 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sun, Y. et al. Manipulating copper dispersion on ceria for enhanced catalysis: a nanocrystal-based atom-trapping strategy. Adv. Sci. 9, 2104749 (2022).

    Article  CAS  Google Scholar 

  164. Nguyen, T. X., Su, Y. H., Lin, C. C. & Ting, J. M. Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-performance oxygen evolution reaction electrocatalyst. Adv. Funct. Mater. 31, 2106229 (2021).

    Article  CAS  Google Scholar 

  165. Song, B. et al. In situ oxidation studies of high-entropy alloy nanoparticles. ACS Nano 14, 15131–15143 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Song, B. et al. Revealing high-temperature reduction dynamics of high-entropy alloy nanoparticles via in situ transmission electron microscopy. Nano Lett. 21, 1742–1748 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. McCormack, S. J. & Navrotsky, A. Thermodynamics of high entropy oxides. Acta Mater. 202, 1–21 (2021).

    Article  CAS  Google Scholar 

  168. Holder, C. F. & Schaak, R. E. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13, 7359–7365 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Liu, X., Banerjee, R., Vitos, L. & Wang, Y. Metastable high entropy alloys. Appl. Phys. Lett. 120, 120401 (2022).

    Article  CAS  Google Scholar 

  170. Calvin, J. J., Brewer, A. S. & Alivisatos, A. P. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nat. Synth. 1, 127–137 (2022).

    Article  CAS  Google Scholar 

  171. Loiudice, A. & Buonsanti, R. Reaction intermediates in the synthesis of colloidal nanocrystals. Nat. Synth. 1, 344–351 (2022).

    Article  CAS  Google Scholar 

  172. Fracchia, M. et al. Stabilization by configurational entropy of the Cu(II) active site during CO oxidation on Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O. J. Phys. Chem. Lett. 11, 3589–3593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Troitzsch, U. & Ellis, D. J. The ZrO2–TiO2 phase diagram. J. Mater. Sci. 40, 4571–4577 (2005).

    Article  CAS  Google Scholar 

  174. Aamlid, S. S., Oudah, M., Rottler, J. & Hallas, A. M. Understanding the role of entropy in high entropy oxides. J. Am. Chem. Soc. 145, 5991–6006 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Y.S. acknowledges support from the National Natural Science Foundation of China (22205135), Shanghai Sailing Program under grant no. 22YF1419600, Shanghai Pilot Program for Basic Research—Shanghai Jiao Tong University (21TQ1400219), Fundamental Research Funds for the Central Universities (23X010301599) and start-up funds from Shanghai Jiao Tong University. S.D. acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Catalysis Science Program.

Author information

Authors and Affiliations

Authors

Contributions

S.D. and Y.S. both contributed to the conception, discussion and writing of the manuscript.

Corresponding authors

Correspondence to Yifan Sun or Sheng Dai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Simon Divilov and Abhishek Sarkar for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Dai, S. Synthesis of high-entropy materials. Nat. Synth 3, 1457–1470 (2024). https://doi.org/10.1038/s44160-024-00690-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00690-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing