Abstract
High-entropy materials (HEMs) exhibit compelling behaviours that are distinct from those in conventional solid solutions. Such disordered multicomponent systems bring unprecedented compositional and structural complexities that hinder a thorough understanding of entropy stabilization and its impact on phase selection and property optimization. The controlled fabrication of HEMs, ideally reaching the same level of detail as traditional alloy design, is desirable. The past decade has witnessed the development of advanced synthesis methodologies and techniques to introduce various degrees of control to this class of inherently disordered materials. Here we discuss the emerging rationales for synthesizing bulk and nanostructured HEMs with tunable microstructures, extended compositions and tailored atomic configurations. Case studies of formation pathways and stabilization mechanisms of different types of HEM reveal insightful synthesis guidelines. This progress enables predictable and rational manipulation of atomic order in the chemically disordered lattice, laying the foundations for exceptional functionalities.

This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
118,99 € per year
only 9,92 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Change history
24 December 2024
A Correction to this paper has been published: https://doi.org/10.1038/s44160-024-00725-z
References
Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).
Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).
Gao, M. C. et al. Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 238–251 (2017).
George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).
Chuang, M. H., Tsai, M. H., Wang, W. R., Lin, S. J. & Yeh, J. W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308–6317 (2011).
Lei, Z. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563, 546–550 (2018).
Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227–230 (2016).
Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).
Yeh, J.-W. & Yeh, J. W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mater. 31, 633–648 (2006).
Hsu, W. L., Tsai, C. W., Yeh, A. C. & Yeh, J. W. Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 8, 471–485 (2024).
Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020).
Xu, W. et al. Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew. Chem. Int. Ed. 131, 5072–5076 (2019).
Folgueras, M. C., Jiang, Y., Jin, J. & Yang, P. High-entropy halide perovskite single crystals stabilized by mild chemistry. Nature 621, 282–288 (2023).
Yao, Y. et al. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery. Science 376, eabn3103 (2023).
Sun, Y. & Dai, S. High-entropy materials for catalysis: a new frontier. Sci. Adv. 7, eabg1600 (2021).
Schweidler, S. et al. High-entropy materials for energy and electronic applications. Nat. Rev. Mater. 9, 266–281 (2024).
Chang, X., Zeng, M., Liu, K. & Fu, L. Phase engineering of high-entropy alloys. Adv. Mater. 32, 1907226 (2020).
Toher, C., Oses, C., Hicks, D. & Curtarolo, S. Unavoidable disorder and entropy in multi-component systems. NPJ Comput. Mater. 5, 69 (2019).
Divilov, S. et al. Disordered enthalpy–entropy descriptor for high-entropy ceramics discovery. Nature 625, 66–73 (2024).
Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).
Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).
Fracchia, M., Coduri, M., Manzoli, M., Ghigna, P. & Tamburini, U. A. Is configurational entropy the main stabilizing term in rock-salt Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O high entropy oxide? Nat. Commun. 13, 2977 (2022).
Yang, R., Bao, Z. & Sun, Y. Probing and leveraging the structural heterogeneity of nanomaterials for enhanced catalysis. ACS Nanosci. Au 3, 140–152 (2023).
Zhang, Y., Yang, X. & Liaw, P. K. Alloy design and properties optimization of high-entropy alloys. JOM 64, 830–838 (2012).
Zhang, F. et al. Polymorphism in a high-entropy alloy. Nat. Commun. 8, 15687 (2017).
Wang, H. et al. Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting. Acta Mater. 196, 609–625 (2020).
Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).
Ying, T. et al. High-entropy van der Waals materials formed from mixed metal dichalcogenides, halides and phosphorus trisulfides. J. Am. Chem. Soc. 143, 7042–7049 (2021).
Du, Z. et al. High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 33, 2101473 (2021).
Cropper, M. D. Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition. Appl. Surf. Sci. 455, 153–159 (2018).
Guo, H., Wang, X., Dupuy, A. D., Schoenung, J. M. & Bowman, W. J. Growth of nanoporous high-entropy oxide thin films by pulsed laser deposition. J. Mater. Res. 37, 124–135 (2022).
Chida, Y. et al. Experimental study platform for electrocatalysis of atomic-level controlled high-entropy alloy surfaces. Nat. Commun. 14, 4492 (2023).
Sharma, Y. et al. Single-crystal high entropy perovskite oxide epitaxial films. Phys. Rev. Mater. 2, 060404(R) (2018).
Chen, S. et al. Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy. Nat. Commun. 11, 826 (2020).
Gangireddy, S., Gwalani, B., Soni, V., Banerjee, R. & Mishra, R. S. Contrasting mechanical behavior in precipitation hardenable AlXCoCrFeNi high entropy alloy microstructures: single phase FCC vs. dual phase FCC-BCC. Mater. Sci. Eng. A 739, 158–166 (2019).
Qin, M. et al. Dual-phase high-entropy ultra-high temperature ceramics. J. Eur. Ceram. Soc. 40, 5037–5050 (2020).
Zhu, J. et al. Dual-phase rare-earth-zirconate high-entropy ceramics with glass-like thermal conductivity. J. Eur. Ceram. Soc. 41, 2861–2869 (2021).
Luo, S. C., Guo, W. M., Plucknett, K. & Lin, H. T. Fine-grained dual-phase high-entropy ceramics derived from boro/carbothermal reduction. J. Eur. Ceram. Soc. 41, 3189–3195 (2021).
Chen, P. C. et al. Complete miscibility of immiscible elements at the nanometre scale. Nat. Nanotechnol. 19, 775–781 (2024).
Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).
Kim, K. S., Huh, S. H. & Suganuma, K. Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys. Mater. Sci. Eng. A 333, 106–114 (2002).
Martin, A. & Thuo, M. Beyond Hume-Rothery rules. Acc. Mater. Res. 4, 809–813 (2023).
Yao, Y. et al. Extreme mixing in nanoscale transition metal alloys. Matter 4, 2340–2353 (2021).
Yang, C. et al. Overcoming immiscibility toward bimetallic catalyst library. Sci. Adv. 6, eaaz6844 (2020).
Zhang, X. & Cranford, S. A creative ‘spark’ for high-entropy alloys. Matter 3, 1391–1393 (2020).
Li, T. et al. Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nat. Catal. 4, 62–70 (2021).
Cui, M. et al. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv. Energy Mater. 11, 2002887 (2021).
Xie, H. et al. Rapid liquid phase-assisted ultrahigh-temperature sintering of high-entropy ceramic composites. Sci. Adv. 8, eabn8241 (2022).
Feng, J. et al. Unconventional alloys confined in nanoparticles: building blocks for new matter. Matter 3, 1646–1663 (2020).
Liao, Y. et al. High-entropy-alloy nanoparticles with 21 ultra-mixed elements for efficient photothermal conversion. Natl Sci. Rev 9, nwac041 (2022).
Wang, B. et al. General synthesis of high-entropy alloy and ceramic nanoparticles in nanoseconds. Nat. Synth. 1, 138–146 (2022).
Waag, F. et al. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Adv. 9, 18547–18558 (2019).
Guo, C. et al. Laser precise synthesis of oxidation-free high-entropy alloy nanoparticle libraries. J. Am. Chem. Soc. 146, 18407–18417 (2024).
Cha, J. H. et al. Flash-thermal shock synthesis of high-entropy alloys toward high-performance water splitting. Adv. Mater. 35, 2305222 (2023).
Gao, S. et al. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 11, 2016 (2020).
Glasscott, M. W. et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat. Commun. 10, 2650 (2019).
Okejiri, F. et al. Room-temperature synthesis of high-entropy perovskite oxide nanoparticle catalysts through ultrasonication-based method. ChemSusChem 13, 111–115 (2020).
Jin, T. et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv. Mater. 30, 1707512 (2018).
Qiao, H. et al. Scalable synthesis of high entropy alloy nanoparticles by microwave heating. ACS Nano 15, 14928–14937 (2021).
Xie, P. et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 10, 4011 (2019).
Batchelor, T. A. A. et al. High-entropy alloys as a discovery platform for electrocatalysis. Joule 3, 834–845 (2019).
Xie, H. et al. Rapid liquid phase-assisted ultrahigh-temperature sintering of high-entropy ceramic composites. Sci. Adv. 8, 8241 (2022).
Deng, B. et al. Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating. Nat. Commun. 13, 262 (2022).
Chen, Y. et al. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nat. Commun. 7, 12332 (2016).
Dey, G. R. et al. Colloidal nanoparticles of high entropy materials: capabilities, challenges, and opportunities in synthesis and characterization. ACS Nanosci. Au 4, 3–20 (2024).
Alameda, L. T., Baumler, K. J., Katzbaer, R. R. & Schaak, R. E. Soft chemistry of hard materials: low-temperature pathways to bulk and nanostructured layered metal borides. Acc. Chem. Res. 56, 3515–3524 (2023).
Solari, S. F. et al. Stabilization of lead-reduced metal halide perovskite nanocrystals by high-entropy alloying. J. Am. Chem. Soc. 144, 5864–5870 (2022).
Song, Y. et al. High-entropy design for 2D halide perovskite. J. Am. Chem. Soc. 146, 19478–19755 (2024).
Wang, T., Chen, H., Yang, Z., Liang, J. & Dai, S. High-entropy perovskite fluorides: a new platform for oxygen evolution catalysis. J. Am. Chem. Soc. 142, 4550–4554 (2020).
Ma, Y. et al. High-entropy metal-organic frameworks for highly reversible sodium storage. Adv. Mater. 33, 2101342 (2021).
Du, M. et al. High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 134, e202209350 (2022).
Wu, H. et al. Structural framework-guided universal design of high-entropy compounds for efficient energy catalysis. J. Am. Chem. Soc. 145, 1924–1935 (2023).
Rowell, J. L. et al. Colloidal synthesis of monodisperse high-entropy spinel oxide nanocrystals. J. Am. Chem. Soc. 146, 17613–17617 (2024).
Wang, T. et al. Perovskite oxide-halide solid solutions: a platform for electrocatalysts. Angew. Chem. Int. Ed. 60, 9953–9958 (2021).
Cao, G. et al. Liquid metal for high-entropy alloy nanoparticles synthesis. Nature 619, 73–77 (2023).
Liang, J. et al. Synthesis of ultrathin high-entropy oxides with phase controllability. J. Am. Chem. Soc. 146, 7118–7123 (2024).
Löffler, T. et al. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 8, 1802269 (2018).
Ning, S., Wen, T., Ye, B. & Chu, Y. Low-temperature molten salt synthesis of high-entropy carbide nanopowders. J. Am. Ceram. Soc. 103, 2244–2251 (2020).
Hanabata, S. et al. Denary high-entropy oxide nanoparticles synthesized by a continuous supercritical hydrothermal flow process. J. Am. Chem. Soc. 146, 181–186 (2024).
Liu, Y.-H. et al. Toward controllable and predictable synthesis of high-entropy alloy nanocrystals. Sci. Adv. 9, adf9931 (2023).
Wood, C. H. & Schaak, R. E. Synthetic roadmap to a large library of colloidal high-entropy rare earth oxyhalide nanoparticles containing up to thirteen metals. J. Am. Chem. Soc. 146, 18730–18742 (2024).
Dey, G. R., McCormick, C. R., Soliman, S. S., Darling, A. J. & Schaak, R. E. Chemical insights into the formation of colloidal high entropy alloy nanoparticles. ACS Nano 17, 5943–5955 (2023).
Broge, N. L. N., Bondesgaard, M., Søndergaard-Pedersen, F., Roelsgaard, M. & Iversen, B. B. Autocatalytic formation of high-entropy alloy nanoparticles. Angew. Chem. Int. Ed. 59, 21920–21924 (2020).
Wu, D. et al. Platinum-group-metal high-entropy-alloy nanoparticles. J. Am. Chem. Soc. 142, 13833–13838 (2020).
Sun, J., Leff, A., Li, Y. & Woehl, T. J. Visualizing formation of high entropy alloy nanoparticles with liquid phase transmission electron microscopy. Nanoscale 15, 10447–10457 (2023).
Zhan, C. et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 12, 6261 (2021).
Sun, Y. et al. A general approach to high-entropy metallic nanowire electrocatalysts. Matter 6, 193–205 (2023).
Liu, J. et al. Polyoxometalate cluster-incorporated high entropy oxide sub-1 nm nanowires. J. Am. Chem. Soc. 144, 23191–23197 (2022).
Du, J. et al. One-dimensional high-entropy compounds. J. Am. Chem. Soc. 146, 8464–8471 (2024).
Tao, L. et al. A general synthetic method for high-entropy alloy subnanometer ribbons. J. Am. Chem. Soc. 144, 10582–10590 (2022).
Soliman, S. S., Dey, G. R., McCormick, C. R. & Schaak, R. E. Temporal evolution of morphology, composition, and structure in the formation of colloidal high-entropy intermetallic nanoparticles. ACS Nano 17, 16147–16159 (2023).
McCormick, C. R. & Schaak, R. E. Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles. J. Am. Chem. Soc. 143, 1017–1023 (2021).
Veglak, J. M., Tsai, A., Soliman, S. S., Dey, G. R. & Schaak, R. E. Disentangling competitive and synergistic chemical reactivities during the seeded growth of high-entropy alloys on high-entropy metal sulfide nanoparticles. J. Am. Chem. Soc. 146, 19521–19536 (2024).
Fan, L. et al. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 144, 7224–7235 (2022).
Yu, H. et al. Versatile synthesis of dendritic mesoporous rare earth-based nanoparticles. Sci. Adv. 8, 2356 (2022).
De Marco, M. L. et al. High-entropy-alloy nanocrystal based macro- and mesoporous materials. ACS Nano 16, 15837–15849 (2022).
Feng, D. et al. Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol. Angew. Chem. Int. Ed. 59, 19503–19509 (2020).
Xie, M. et al. High-entropy alloy nanopatterns by prescribed metallization of DNA origami templates. Nat. Commun. 14, 1745 (2023).
Kar, N. et al. Retrosynthetic design of core–shell nanoparticles for thermal conversion to monodisperse high-entropy alloy nanoparticles. Nat. Synth. 3, 175–184 (2024).
Chen, H. et al. Self-regenerative noble metal catalysts supported on high-entropy oxides. Chem. Commun. 56, 15056–15059 (2020).
Suvarna, M. & Pérez-Ramírez, J. Embracing data science in catalysis research. Nat. Catal. 7, 624–635 (2024).
Rao, Z. et al. Machine learning-enabled high-entropy alloy discovery. Science 378, 78–85 (2022).
Huang, W., Martin, P. & Zhuang, H. L. Machine-learning phase prediction of high-entropy alloys. Acta Mater. 169, 225–236 (2019).
Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L. & Liaw, P. K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10, 534–538 (2008).
Poletti, M. G. & Battezzati, L. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 75, 297–306 (2014).
Guo, S., Ng, C., Wang, Z. & Liu, C. T. Solid solutioning in equiatomic alloys: limit set by topological instability. J. Alloys Compd. 583, 410–413 (2014).
Ye, Y. F., Wang, Q., Lu, J., Liu, C. T. & Yang, Y. Design of high entropy alloys: a single-parameter thermodynamic rule. Scr. Mater. 104, 53–55 (2015).
Lederer, Y., Toher, C., Vecchio, K. S. & Curtarolo, S. The search for high entropy alloys: a high-throughput ab-initio approach. Acta Mater. 159, 364–383 (2018).
Pei, Z., Yin, J., Hawk, J. A., Alman, D. E. & Gao, M. C. Machine-learning informed prediction of high-entropy solid solution formation: beyond the Hume-Rothery rules. NPJ Comput. Mater. 6, 50 (2020).
Santodonato, L. J., Liaw, P. K., Unocic, R. R., Bei, H. & Morris, J. R. Predictive multiphase evolution in Al-containing high-entropy alloys. Nat. Commun. 9, 4520 (2018).
Ye, Y. F., Liu, C. T. & Yang, Y. A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Mater. 94, 152–161 (2015).
Sarker, P. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980 (2018).
Kaufmann, K. et al. Discovery of high-entropy ceramics via machine learning. NPJ Comput. Mater. 6, 42 (2020).
Dey, D., Liang, L. & Yu, L. Mixed enthalpy–entropy descriptor for the rational design of synthesizable high-entropy materials over vast chemical spaces. J. Am. Chem. Soc. 146, 5142–5151 (2024).
Liu, R., Li, X. & Lam, K. S. Combinatorial chemistry in drug discovery. Curr. Opin. Chem. Biol. 38, 117–126 (2017).
Yao, Y. et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl Acad. Sci. USA 117, 6316–6322 (2020).
Kumbhakar, M. et al. High-throughput screening of high-entropy fluorite-type oxides as potential candidates for photovoltaic applications. Adv. Energy Mater. 13, 2204337 (2023).
Zhu, B. et al. Fast and high-throughput synthesis of medium- and high-entropy alloys using radio frequency inductively coupled plasma. Adv. Eng. Mater. 23, 2001116 (2021).
Moorehead, M. et al. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing. Mater. Des. 187, 108358 (2020).
Liu, S., Grohol, C. M. & Shin, Y. C. High throughput synthesis of CoCrFeNiTi high entropy alloys via directed energy deposition. J. Alloys Compd. 916, 165469 (2022).
Schweidler, S. et al. Synthesis and characterization of high-entropy CrMoNbTaVW thin films using high-throughput methods. Adv. Eng. Mater. 25, 2200870 (2023).
Batchelor, T. A. A. et al. Complex-solid-solution electrocatalyst discovery by computational prediction and high-throughput experimentation. Angew. Chem. Int. Ed. 60, 6932–6937 (2021).
Feng, R. et al. High-throughput design of high-performance lightweight high-entropy alloys. Nat. Commun. 12, 4329 (2021).
Giles, S. A., Sengupta, D., Broderick, S. R. & Rajan, K. Machine-learning-based intelligent framework for discovering refractory high-entropy alloys with improved high-temperature yield strength. NPJ Comput. Mater. 8, 235 (2022).
Lu, Z., Chen, Z. W. & Singh, C. V. Neural network-assisted development of high-entropy alloy catalysts: decoupling ligand and coordination effects. Matter 3, 1318–1333 (2020).
Roy, D., Mandal, S. C. & Pathak, B. Machine learning assisted exploration of high entropy alloy-based catalysts for selective CO2 reduction to methanol. J. Phys. Chem. Lett. 13, 5991–6002 (2022).
Xue, D. et al. Accelerated search for materials with targeted properties by adaptive design. Nat. Commun. 7, 11241 (2016).
Ding, Q. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).
Moniri, S. et al. Three-dimensional atomic structure and local chemical order of medium- and high-entropy nanoalloys. Nature 624, 564–569 (2023).
Lun, Z. et al. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20, 214–221 (2021).
Walsh, F., Asta, M. & Ritchie, R. O. Magnetically driven short-range order can explain anomalous measurements in CrCoNi. Proc. Natl Acad. Sci. USA 118, e2020540118 (2021).
Huang, Z. et al. Tailoring local chemical ordering via elemental tuning in high-entropy alloys. J. Am. Chem. Soc. 146, 2167–2173 (2024).
Jiang, B. et al. Probing the local site disorder and distortion in pyrochlore high-entropy oxides. J. Am. Chem. Soc. 143, 4193–4204 (2021).
Zhang, F. X. et al. Local structure and short-range order in a NiCoCr solid solution alloy. Phys. Rev. Lett. 118, 205501 (2017).
Santodonato, L. J. et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).
Ding, J., Yu, Q., Asta, M. & Ritchie, R. O. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc. Natl Acad. Sci. USA 115, 8919–8924 (2018).
Yin, S. et al. Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order. Nat. Commun. 12, 4873 (2021).
Chen, S. et al. Short-range ordering alters the dislocation nucleation and propagation in refractory high-entropy alloys. Mater. Today 65, 14–25 (2023).
Su, Z. et al. Radiation-assisted chemical short-range order formation in high-entropy alloys. Scr. Mater. 212, 114547 (2022).
Jia, Z. et al. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 32, 200385 (2020).
Chen, W. et al. High-entropy intermetallic PtRhBiSnSb nanoplates for highly efficient alcohol oxidation electrocatalysis. Adv. Mater. 34, 2206276 (2022).
Feng, G. et al. Engineering structurally ordered high-entropy intermetallic nanoparticles with high-activity facets for oxygen reduction in practical fuel fells. J. Am. Chem. Soc. 145, 11140–11150 (2023).
Chen, T. et al. An ultrasmall ordered high-entropy intermetallic with multiple active sites for the oxygen reduction reaction. J. Am. Chem. Soc. 146, 1174–1184 (2024).
Ma, J., Xing, F., Nakaya, Y., Shimizu, K. I. & Furukawa, S. Nickel-based high-entropy intermetallic as a highly active and selective catalyst for acetylene semihydrogenation. Angew. Chem. Int. Ed. 61, e202200889 (2022).
Nakaya, Y. et al. High-entropy intermetallics serve ultrastable single-atom Pt for propane dehydrogenation. J. Am. Chem. Soc. 144, 15944–15953 (2022).
Xing, F., Ma, J., Shimizu, K. I. & Furukawa, S. High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2. Nat. Commun. 13, 5065 (2022).
Cui, M. et al. Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Sci. Adv. 8, 4322 (2022).
Park, H. et al. Periodic spinodal decomposition in double-strengthened medium-entropy alloy. Nat. Commun. 15, 5757 (2024).
Cahn, J. W. On spinodal decomposition. Acta Metall. 9, 795–801 (1961).
An, Z. et al. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy. Mater. Horiz. 8, 948–955 (2021).
Liu, T. Y. et al. Spinodal decomposition and mechanical response of a TiZrNbTa high-entropy alloy. Materials 12, 3508 (2019).
Chen, Y. et al. Achieving high strength and ductility in high-entropy alloys via spinodal decomposition-induced compositional heterogeneity. J. Mater. Sci. Technol. 141, 149–154 (2023).
Liang, Y. J. et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nat. Commun. 9, 4063 (2018).
Rao, Z. et al. Beyond solid solution high-entropy alloys: tailoring magnetic properties via spinodal decomposition. Adv. Funct. Mater. 31, 2007668 (2021).
Divilov, S. et al. A priori procedure to establish spinodal decomposition in alloys. Acta Mater. 266, 119667 (2024).
Luan, H. et al. Spinodal decomposition and the pseudo-binary decomposition in high-entropy alloys. Acta Mater. 248, 118775 (2023).
Morral, J. E. & Chen, S. Stability of high entropy alloys to spinodal decomposition. J. Phase Equilibria Diffus. 42, 673–695 (2021).
Zhan, C. et al. Medium/high-entropy amalgamated core/shell nanoplate achieves efficient formic acid catalysis for direct formic acid fuel cell. Angew. Chem. Int. Ed. 62, e202213783 (2023).
Wang, C. et al. Facet-controlled synthesis of platinum-group-metal quaternary alloys: the case of nanocubes and {100} facets. J. Am. Chem. Soc. 145, 2553–2560 (2023).
Wu, C.-Y. et al. A catalyst family of high-entropy alloy atomic layers with square atomic arrangements comprising iron- and platinum-group metals. Sci. Adv. 10, 3693 (2024).
Zeng, K. et al. Surface-decorated high-entropy alloy catalysts with significantly boosted activity and stability. Adv. Funct. Mater. 32, 2204643 (2022).
Sun, Y. et al. Defect engineering of ceria nanocrystals for enhanced catalysis via a high-entropy oxide strategy. ACS Cent. Sci. 8, 1081–1090 (2022).
Sun, Y. et al. Manipulating copper dispersion on ceria for enhanced catalysis: a nanocrystal-based atom-trapping strategy. Adv. Sci. 9, 2104749 (2022).
Nguyen, T. X., Su, Y. H., Lin, C. C. & Ting, J. M. Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-performance oxygen evolution reaction electrocatalyst. Adv. Funct. Mater. 31, 2106229 (2021).
Song, B. et al. In situ oxidation studies of high-entropy alloy nanoparticles. ACS Nano 14, 15131–15143 (2020).
Song, B. et al. Revealing high-temperature reduction dynamics of high-entropy alloy nanoparticles via in situ transmission electron microscopy. Nano Lett. 21, 1742–1748 (2021).
McCormack, S. J. & Navrotsky, A. Thermodynamics of high entropy oxides. Acta Mater. 202, 1–21 (2021).
Holder, C. F. & Schaak, R. E. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13, 7359–7365 (2019).
Liu, X., Banerjee, R., Vitos, L. & Wang, Y. Metastable high entropy alloys. Appl. Phys. Lett. 120, 120401 (2022).
Calvin, J. J., Brewer, A. S. & Alivisatos, A. P. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nat. Synth. 1, 127–137 (2022).
Loiudice, A. & Buonsanti, R. Reaction intermediates in the synthesis of colloidal nanocrystals. Nat. Synth. 1, 344–351 (2022).
Fracchia, M. et al. Stabilization by configurational entropy of the Cu(II) active site during CO oxidation on Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O. J. Phys. Chem. Lett. 11, 3589–3593 (2020).
Troitzsch, U. & Ellis, D. J. The ZrO2–TiO2 phase diagram. J. Mater. Sci. 40, 4571–4577 (2005).
Aamlid, S. S., Oudah, M., Rottler, J. & Hallas, A. M. Understanding the role of entropy in high entropy oxides. J. Am. Chem. Soc. 145, 5991–6006 (2023).
Acknowledgements
Y.S. acknowledges support from the National Natural Science Foundation of China (22205135), Shanghai Sailing Program under grant no. 22YF1419600, Shanghai Pilot Program for Basic Research—Shanghai Jiao Tong University (21TQ1400219), Fundamental Research Funds for the Central Universities (23X010301599) and start-up funds from Shanghai Jiao Tong University. S.D. acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Catalysis Science Program.
Author information
Authors and Affiliations
Contributions
S.D. and Y.S. both contributed to the conception, discussion and writing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Synthesis thanks Simon Divilov and Abhishek Sarkar for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sun, Y., Dai, S. Synthesis of high-entropy materials. Nat. Synth 3, 1457–1470 (2024). https://doi.org/10.1038/s44160-024-00690-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44160-024-00690-7