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Short and long sleep durations are associated with multiple physical,

psychiatric and neurodegenerative diseases, yet their potentially shared and
distinct biological mechanisms remain unclear. Here, using data from UK
Biobank participants aged 38-73 years, we have characterized the in-depth
genetic architecture of short (<7 h) and long (=7 h) sleep groups, along with
their associations with behaviors, neuroimaging and blood biomarkers. The
two sleep groups exhibited independent genetic architectures and distinct

immunometabolic and proteomic profiles. Notably, long sleep showed
more significant associations with cardiovascular-related biomarkers (for
example, cholesterol), brain structures (for example, hippocampus) and
plasma proteins (for example, GDF15), whereas short sleep demonstrated
greater genetic overlap with psychiatric conditions, particularly depression.
Mendelian randomization further supported this dissociation by showing
that long sleep duration is probably a consequence of multiple brain
disorders and cardiovascular diseases, whereas short sleep duration has a
potential causal effect on various brain and physical ilinesses. Our findings
advance our understanding of the relationship between sleep and health
conditions by revealing distinct biological origins and genetic mechanisms
underlying short and long sleep duration.

Sleepis anessential function for human health, and sleep disturbances
are closely related to physical, mental and neurological disorders in
older adults'. Notably, sleep duration, as a critical characteristic of
sleep health, has been linked to multiple health conditionsin anonlin-
ear manner, with 7-8 h of sleep duration commonly proposed as the
optimallength for adults**. Previous studies have suggested 7 h as the
optimalsleep duration for middle-aged and older adults®”. Deviations
from this optimal sleep duration, namely short or long sleep duration,
areassociated with more severe mental and neurologicalillnesses®, as
wellas cardiometabolic diseases™ . Meanwhile, sleep duration s also
closely associated with lifestyle, physical and psychosocial factors".
However, a systematicinvestigation regarding the shared and distinct

behavioral profiles and neurobiological mechanisms of short and long
sleep durationiis still lacking.

Sleep duration has been identified as a polygenic and heritable
characteristic'*". Furthermore, distinct genetic findings have been
reported for short and long sleep duration compared to normal sleep
duration. Forinstance, lower heritability was found for long sleep dura-
tion compared to short sleep duration’. In terms of relationships with
other health conditions, long sleep duration has been genetically cor-
related with an increased risk of schizophrenia and type 2 diabetes™,
and shortsleep duration has been genetically linked to insomnia”. Fur-
thermore, Mendelian randomization (MR) studies have demonstrated
a causal effect of short sleep duration, but not long sleep duration, on
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cardiovascular disease?. These studies suggest that potentially distinct
genetic mechanisms underpinshortandlongsleep duration. However,
the underlying distinct genetic factors that influence short and long
sleep duration and their potentially different causal associations with
health conditions have yet to be fully elucidated.

Inaddition to genetic mechanisms,immunometabolic biomarkers
and protein levels also play crucial roles in the associations between
sleep duration and various health conditions. For instance, glucose has
beenidentified asacrucial mediator betweensleep deprivationand dia-
betes™ . Inflammation, characterized by increased levels of C-reactive
protein (CRP), has beenassociated with both short and longsleep dura-
tion. However, differentinterpretations of the underlying mechanisms
have been proposed for these associations. For short sleep duration,
inflammation might serve as an intermediate mechanism between
sleep and cardiometabolic diseases and depression?**.In contrast, for
longsleep duration, the associationbetweensleep andincreased levels
of CRP may be attributed to confounding factors such as obesity or a
consequence of underlying diseases®*. Additionally, circulating protein
levels have been proposed as a potential mechanistic pathway between
sleep durationand cardiometabolic health”. Furthermore, brain struc-
ture could play acrucial role in the nonlinear association between sleep
duration, mental health and cognition in middle-aged to older adults’.
However, the distinct and shared neurobiological implications of short
and long sleep duration, especially in terms of potential causal infer-
ences with health-related biomarkers, remain unclear.

In the present study we utilized the large cohort from the UK
Biobank to perform an in-depth genetic and phenotypic characteri-
zation of sleep duration as an ordinal variable in both sleep <7-h and
sleep >7-h groups. Notably, in our previous studies based on the same
cohort, 7 hof sleep was identified as the population-wise optimal sleep
duration®®, showing a nonlinear relationship between sleep duration
and mental health. Following the same settings, we proposed using 7 h
of sleep as ashared baseline (also referred to as the commonreference
point) for boththe <7 hand >7 hgroups®®, where sleep duration ranges
ordinally from ‘barely any sleep’to 7 h,and from7 hto longer durations,
respectively. Specifically, we hypothesized that these two groups
would exhibit distinct phenotypic (for example, lifestyle, physical and
psychosocial factors), neuroimaging and blood-biomarker association
profiles. Furthermore, we hypothesized that these two sleep groups
would have distinct genetic architectures and neurobiological path-
ways, contributingto their differential roles in causal associations with
health conditions inmiddle-aged to older adults. Finally, to explore the
compatibility of our ordinal sleep definition, we conducted a sensitivity
analysis using traditional stratified categories of sleep duration: normal
(7 or 8 h), short (<7 h) and long (>8 h).

Results

Population characteristics

Participants aged 38-73 years with accessible data for sleep duration
atbaseline were utilized in the current study, including 315,628 partici-
pants in the sleep <7-h group (mean +s.d. = 6.5+ 0.72 h) and 375,028
participantsinthesleep >7-hgroup (mean +s.d.=7.6 + 0.79 h). Asleep
duration of 7 h(n=192,383) was utilized as the reference baseline for the
groupsleepinglessthan7 h (n=123,245, mean +s.d. =5.7 £ 0.58 h) and
thegroupsleepingmorethan7 h (n=182,645, mean+s.d.=8.2+0.67 h;
Table1and Supplementary Fig.1). Similarly, follow-up sleep duration
dataassessed during the imaging visit were also groupedinto the sleep
<7-h(n=31,056) and sleep >7-h (n = 36,794) groups and analyzed with
the neuroimaging data. A range of blood test measurements from
478,357 participants and metabolomic data of 118,000 participants
acquired at baseline were also used inthe present study. Extended Data
Fig.1provides a general schema of the study. Throughout this paper,
the term ‘significantly associated’ refers to statistical significance, as
determined by a Bonferroni-corrected P-value threshold of P< 0.01,
unless otherwise specified.

Phenome-wide associations of short and long sleep groups

The phenome-wide association study (PheWAS) encompassed 3,735
phenotypic variables across 20 categories (Supplementary Table 1).
Sleep duration was treated as an ordinal variable, and specific regres-
sion models were applied based on the type of each of the 3,735
variables: linear regression for continuous variables, ordinal logistic
regression for ordered categorical variables, and logistic regression
for binary variables. After adjusting for covariates including age,
sex, body mass index, the Townsend deprivation index measuring
socioeconomic status, educational qualifications, smoking status
and drinking status, 1,308 phenotypes were significantly associated
with the sleep <7-h group, and 934 phenotypes showed significant
associations with the sleep >7-h group (Bonferroni-corrected P< 0.01,
uncorrected P < 2.68 x 107 (0.01/3,735); Fig. 1a). Specifically, for the
sleep <7-h group, the most significant phenotypes included insom-
nia (8=-0.62,P=1x1073%), trouble sleeping (3=-0.49, P=1x1073%),
pain (8=-0.37, P=1.8 x1072%), the number of treatments/medica-
tions taken (8 =-0.14, P=1.2 x 10*%) and most psychosocial factors
(including frequency of tiredness/lethargy: 8 =-0.31, P=1x1073%;
frequency of depressed mood: B=-0.29, P=1x10>*?and so on). The
phenotypes most significantly associated with the sleep >7-h group
included napping during the day (8=0.34, P=1x107%), easiness of
getting up in morning (8=-0.14, P=1.9 x 107°), in-paid employment
ornot (8=-0.44, P=1x107%),impedance of leg measuring the body
fat percentage” (8=0.05, P=5.4 x102%%), occurrence of other disorders
of brain (8=0.28, P=1.4 x107°°) and usual walking pace (8=-0.20,
P=1.0 x1072%). The impedance measure of body, as one of the meas-
ures of body fat percentage, isarelevant factorin metabolic health and
cardiovascular risk, whichis consistent with the previous identification
of the interaction between sleep duration and body composition?.
Notably, in addition to the specific association profiles for the sleep
<7-h andsleep >7-h groups, both groups were also associated with
some phenotypes at similar significance levels, including overall health
rating (8=-0.29, P=1x107%% 8=0.18, P=1x107%), longstanding
illness (8=-0.20, P=1x107%%; =0.19, P=1x107%), occurrence of
depressive episodes (8=-0.21, P=9.7 x 107%%; =0.23, P=1x107%),
disability allowance (8=-0.39, P=1.0 x 107%%%; §=0.42, P=1x1073)
and average totalincome (8=0.17,P=1x107%; 3=-0.23,P=1x107%),
The full list of significant results is provided in Supplementary Data 1
and 2. Age-stratified analysis of the PheWAS showed similar results
(Supplementary Fig. 2).

To visualize and compare the association results of the two sleep
groups, we transformed the S values into ¢ values, which are directly
derived from the linear model, representing the ratio of the estimated
B toits standard error (s.e.). We displayed the ¢-value distributions
for the two sleep groups across each of the 20 phenotype categories
(Fig.1b). The tvalues between the sleep <7-h group and sex-specific fac-
tors, psychosocial factors and digestive factors were higher compared
withthesleep >7-h group. Cognitive functions showed more significant
associations with the sleep >7-h group. Furthermore, the scatter plot
of tvalues of the two sleep groups illustrates the specific phenotypes
in each group, with insomnia, trouble sleeping, depressed mood and
confide to others being more significant in the sleep <7-h group, and
napping during the day, retired or not, and employment status being
more significant in the sleep >7-h group (Fig. 1c).

Differentiated blood-biomarker profiles of short and long
sleep

Associations between sleep duration and 229 blood biomarkers (includ-
ing 31 blood count biomarkers, 30 blood biochemistry biomarkers
and 168 metabolomic biomarkers) were obtained in both sleep groups
after adjusting for covariates including age, sex, body massindex, the
Townsend deprivationindex measuring socioeconomic status, educa-
tional qualifications, smoking status and drinking status (Fig. 2a and
Supplementary Tables 2 and 3). A total of 46 significant biomarkers
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Table 1| Demographic characteristics of participants

Variables Baseline (2006-2010) Imaging visit (2014+)
Sleep<7h Sleep27h Sleep=<7h Sleep27h
n=315,628 n=375,028 n=31,056 n=36,794

Age (years; meants.d.) 56.1+8.0 56.6+8.2 63.6+7.8 64.4+77

Sex (female, %) 167,560 (53.1%) 204,982 (54.7%) 16,490 (53.1%) 18,520 (50.3%)

Townsend deprivation index -1.2+31 -1.5+3.0 -1.8+2.7 -1.9+27

(mean+s.d.)

BMI 274+4.8 272+47 26.6+4.5 26.4+4.4

Educational qualification (%)

Degree level 105,241 (33.3%) 126,103 (33.6%) 15,086 (48.6%) 18,409 (50.0%)

Other 155,348 (49.2%) 183,134 (48.8%) 13,910 (44.8%) 15,998 (43.5%)

Missing data 55,039 (17.5%) 65,791 (17.6%) 2,060 (6.6%) 2,387 (6.5%)

Smoking status (%)

Never 172,628 (54.7%) 207176 (55.2%) 19,210 (61.9%) 22,869 (62.2%)

Previous 107,719 (34.1%) 129,800 (34.6%) 10,648 (34.3%) 12,583 (34.2%)

Current 34,144 (10.8%) 36,778 (9.8%) 1,089 (3.5%) 1,234 (3.4%)

Missing data 1137 (0.4%) 1,274 (0.4%) 109 (0.2%) 108 (0.2%)

Drinking status (%)

Never 13,532 (4.3%) 15,431(4.1%) 1,022 (3.3%) 1,163 (3.1%)

Previous 11,066 (3.5%) 12,352 (3.3%) 1,033 (3.3%) 1,176 (3.2%)

Current 290,687 (92.1%) 346,889 (92.5%) 28,991(93.3%) 34,443 (93.6%)

Missing data 343 (0.1%) 356 (0.1%) 10 (0.1%) 12 (0.1%)

Sleep duration (h; meanz+s.d.) 6.50+0.72 763+0.79 6.53+0.68 759+0.74

BMI, body mass index.

wereidentifiedinthe sleep <7-hgroup and144 inthe sleep >7-h group
(Bonferroni-corrected P< 0.01, uncorrected P< 4.38 x 107 (0.01/229)),
and 121 biomarkers showed significantly differentiated association
strengths between the two sleep groups (permutation test, P< 0.01;
Methods).

Of the 31 blood count biomarkers, 16 and 22 biomarkers were
significantly associated with the sleep <7-h and sleep >7-h groups,
respectively, with 13 overlapping biomarkers significantly associated
with both the sleep <7-h and sleep >7-h groups simultaneously (Sup-
plementary Table 4). Meanwhile, 16 blood count biomarkers showed
significantly different associations between the two sleep groups
(permutation test, P < 0.01). Fourteen of these blood counts, including
neutrophil count and white blood cell count, were closely related to
theimmune system and inflammation?’, and showed more significant
associations with the long sleep group.

Furthermore, of the 30 blood biochemistry biomarkers, 16 and
23 biomarkers were significantly associated with sleep duration in
thesleep <7-handsleep >7-h groups, respectively, with 13 overlapping
biochemistry biomarkers (Supplementary Table 5). Notably, 21 bio-
chemistry biomarkers manifested significantly different correlations
between the two groups (permutation test, P < 0.01). Specifically, four
biomarkers, including alkaline phosphatase, vitamin D and insulin-like
growth factor 1 (IGF-1), which are closely related to musculoskeletal
health and body aging®’, were predominantly associated in the sleep
<7-hgroup (|eeperl > 0.019, Pyeepe; < 9.4 x 107, and P < 2.0 x 10 based
on permutation tests). Additionally, 12 biomarkers, of which seven
biomarkers were from the immunometabolic category, including tri-
glycerides, CRP and high-density lipoprotein (HDL) cholesterol, which
are hallmarks of cardiovascular risk®*2, were more associated with the
sleep 27-h group (|eepssl > 0.016, Pyeeps; < 5.4 X 107%9).

Inaddition to the blood measures, NMR metabolomic biomarkers
(n=118,000) also showed different association patterns with sleep

duration in the two sleep groups, with 14 significant metabolomic
biomarkers in the sleep <7-h group (|ryeep<s/1 ranging from 0.015 to
0.027) and 99 significant metabolomic biomarkers in the sleep >7-h
group (Irgeepssl ranging from 0.014 to 0.052; Supplementary Table 6).
Remarkably, 84 metabolomic biomarkers showed significantly dif-
ferentiated associations between the two sleep groups (permutation
test, P< 0.01). Although ten biomarkers showed predominant associa-
tions in the sleep <7-h group, mostly related to glycoprotein acetyls,
an inflammatory biomarker that has been associated with cardio-
metabolic disease and multiple incident diseases™>* (geep.7) = —0.027,
P=1.5x10"5, permutation P <2 x10™*), the remaining 101 metabolomic
biomarkers showed stronger associations in the sleep >7-h group,
including cholesterol-related biomarkers such as apolipoprotein
B, HDL cholesterol, total cholesterol, cholesteryl esters and so on,
and glycolysis-related metabolites, such as citrate, lactate and so on
(I geeps7) | > 0.012, Pyeeps; <1.5x 107, permutation P< 2 x 107; Fig. 2d).
The results, further adjusted for technical covariates of the NMR bio-
markers, including processing batch, the time difference between
sample measurement and preparation dates, and spectrometer, were
consistent with the current findings (Supplementary Table 7). The age-
stratified association analysis between the sleep <7-h and sleep >7-h
groups withblood biomarkers showed thatelderly participantsinthe
sleep >7-h group had the most significant associations with immuno-
metabolic biomarkers, including triglycerides, HDL cholesterol and
CRP (Supplementary Fig. 2).

Differences in associations with brain structure

Brain structure (n=39,692) also demonstrated different association
patterns with the sleep <7-h and sleep >7-h groups after adjusting for
intracranial volume, sites and the aforementioned covariates. For
instance, the cortical thickness of multiple brain regions showed sig-
nificantly differentiated associations between the two sleep groups.
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Fig.1| Common and specific phenotypic correlation patterns of short and long
sleep groups. a, The PheWAS results of sleep <7 h (top) and sleep >7 h (bottom)
with 3,735 phenotypes. The x axis represents phenotypes (20 categories) and
theyaxis the -log,,P values (two-tailed) of associations between sleep duration
and the phenotypes. These associations were calculated using linear regression
for continuous variables, ordinal logistic regression for ordered categorical
variables and logistic regression for binary variables. The horizontal dashed line
indicates the Bonferroni-corrected significance threshold (P < 0.01). Covariates
adjusted in the regression analyses include age, sex, assessment center, body
mass index, Townsend deprivation index, educational qualifications, smoking
status and drinking status. b, Histogram of ¢ values of regression between
shortand longsleep duration with 20 categories of phenotypes. t values

were transformed from S values (B/s.e.). Red color represents ¢ values of the

t value (sleep <7 h)

association between sleep <7 hand the phenotypes, and blue represents t values
ofthe association between sleep >7 h and the phenotypes. ¢, Scatter plot of the ¢
values of associations of short sleep duration versus the ¢ values of associations
oflongsleep duration x -1. The point size indicates the absolute difference
(Abs. diff.) between the |¢| value of short sleep duration minus the [¢| value of
long sleep duration (||tgeepes| — [Eeeps711), With alarger point size indicating a more
significant difference in associations between the two sleep groups. The color
ofthe pointindicates the |¢] difference between short and long sleep duration
(Itgeeper] ~ ltsieeps7l), with red indicating phenotypes more associated with sleep

<7 hand blue representing phenotypes more associated with sleep >7 h. All
statistical tests were two-sided. Abs. diff. t value: ||£eepss| = |Egieeps71l; diff. £ value:

[Eqteep<r] = 1Esteepa7l-

There wereland 47 predominantbrainregions identified for the sleep
<7-handsleep >7-hgroups, respectively (Bonferroni-corrected P< 0.01,
uncorrected P<1.47 x107*(0.01/68); Fig. 2b), and the only overlapping
region, the left middle temporal gyrus, was significantly associated with
boththesleep<7-handsleep =7-h groups (ryeps; = 0.025,P=3.8 x107%;
Fgeeps7 = —0.042, P=5.8 x10™*). The regions that were only significantly

associated with the sleep >7-h group included the superior frontal
gyrus, superior temporal gyrus and rostral middle frontal gyrus (r
ranged from —0.021 to -0.045, Bonferroni-corrected P < 0.01, uncor-
rected P<1.47 x107* (0.01/68)). On the other hand, the cortical sur-
faceareas of three regions were significantly associated with the sleep
<7-h group (Feepsy = 0.023-0.0267), including the right pericalcarine
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Fig. 2| Specific blood and neuroimaging biomarker association pattern of
short and long sleep groups. a, Associations of blood biomarkers with short
sleep (<7 h, top) and long sleep (=7 h, bottom), with covariates adjusted. The
size of the points represents the absolute correlation coefficient (|r]), with larger
pointsindicating stronger associations. The color indicates the direction of

the correlation, with red representing positive and blue representing negative
associations. The y axis shows the —log,,P value (two-tailed). The statistical
significance of the partial correlation coefficients (r values) was determined
using the Student’s ¢ distribution ina-c. b, Partial correlations between sleep
<7 handsleep >7 h with cortical thickness and subcortical volumes, adjusted
for estimated total intracranial volume, scanning site and other covariates
(Bonferroni-corrected two-tailed P < 0.01). ¢, Partial correlations between sleep
<7 h(top) and sleep >7 h (bottom) with fractional anisotropy (FA) and mean

r value (sleep <7 h)

r value (sleep <7 h)

diffusivity (MD). Red color indicates positive associations and blue indicates
negative associations (FDR-corrected two-tailed P < 0.05). d, Scatter plots of
correlation coefficients for short sleep (ry.e,<;) and the inverse of long sleep
(~Tgeeps7) for blood biomarkers (left), and gray matter (middle) and white matter
(right) microstructure. The point size represents the absolute difference in |r|
values between the shortand long sleep groups (||rgeep<sl = [7sieeps7l), With larger
pointsindicating greater differences between the two sleep groups. The color of
the point represents the direction of the difference of |r| value between the short
sleep group and long sleep group with phenotypes (Irgeep<r| = IFsieeps71), With red
indicating phenotypes more associated with sleep <7 hand blue representing
phenotypes more associated with sleep >7 h. Diff. abs. r value: |yeepes| = IFgieeps7l;
abs.(abs. rdiff.): [IFgeep<sl = Fsieeps7ll-
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cortex, theleft lateral orbitofrontal cortex and the right lingual gyrus,
but no significant finding was observed in the long sleep group
(Supplementary Fig. 3b). The cortical volume of 10 regions (rgeepsy =
0.024-0.035) and 14 regions (reeps; = —0.022 t0 —0.031) showed signifi-
cantassociations with the sleep <7-hand sleep >7-h groups, respectively
(Bonferroni-corrected P< 0.01, uncorrected P < 0.01/68 (1.47 x 10™);
Supplementary Fig.3a). The cortical volume of the right isthmus cingu-
late cortex, the left caudal middle frontal, theright pericalcarine and the
leftinferior temporal gyrus was significantly associated only with the
sleep <7-h group. Nine regions showed significant associations solely
with the sleep >7-h group, including the left frontal pole, the superior
frontal cortex and the left parahippocampal gyrus (Supplementary
Table 8). The associations of subcortical volume with sleep duration
alsovaried across the two groups (Fig. 2b and Supplementary Table 9).
Significant findings were observed only for the sleep >7-h group, for
instance, the hippocampus (left: ry,.; = —0.027, P=2.85 x 107, right:
Teeps7 = —0.027, P=2.57 x107°) and the thalamus (left: .., = —0.023,
P=6.36 x107%; right: reep; = —0.023, P=5.63 x 107°). Age-stratified
analysis showed that elderly participantsinthe sleep >7-h group showed
the most significant associations with brain structures (Supplemen-
tary Fig.2).

Brain white matter microstructure also showed different asso-
ciation patterns in the two sleep groups (Fig. 2c). FA of the posterior
thalamicradiation was associated withsleep durationin the sleep >7-h
group (Fyeeps7=—0.022t0-0.032, false discovery rate (FDR)-corrected
P <0.05), with no significant findings in the sleep <7-h group. Simi-
larly, MD of the posterior thalamic radiation, forceps minor, anterior
thalamic radiation and uncinate fasciculus was solely associated with
sleep durationinthe sleep 27-h group (ryeeps7 = 0.022-0.032; Fig. 2d).

Differences in genetic architecture

We performed genome-wide association studies (GWAS) for sleep
duration in the sleep <7-h and sleep >7-h groups, respectively, and
identified six independent significant loci in the sleep <7-h group
(Fig. 3a and Supplementary Table 10) and 14 independent significant
lociinthe sleep >7-hgroup (Fig.3b). The GWAS results further adjusted
for batch effects and assessment centers were consistent with the
original findings (Supplementary Table 11). There are no shared single
nucleotide polymorphisms (SNPs) between these two sleep groups.
SNP-based heritability (%) utilizing linkage disequilibrium (LD) score
regressionwas 6.17% (s.e. = 0.0034) for the sleep <7-h group and 5.31%
(s.e.=0.0031) for the sleep >7-h group™.

Genetic correlations (r,) were further estimated to measure the
underlying genetic constructs of the two sleep groups and their genetic
overlap with phenotypes of interest, respectively. Although both
groups showed consistently strong genetic correlations witha previous
GWAS finding for complete sleep duration (that is, without the short
versus long sleep stratification, r, = 0.71and 0.69, respectively), the
genetic correlation between the sleep <7-h group and sleep >7-h group
isminimal (r,=-0.058, s.e. = 0.037, P=0.12). This resultimplies distinct
genetic bases for the two sleep groups. Furthermore, the two groups
showed distinct genetic correlation profiles withblood measures and
health-related phenotypes. Specifically, the sleep <7-h group showed
significantr,with118 phenotypes, including 16 health-related pheno-
types (12 mental health, two general health and two cognition pheno-
types), five blood count biomarkers, 12 blood chemistry biomarkers
and 85 metabolomic biomarkers (|r,| range =[0.21, 0.58], P< 4.18 107,
Fig. 3c and Supplementary Data 3). Among them, the overall health
rating, PHQ-4, longstandingillness and trauma experiences (r,range =
[-0.58, -0.47]) showed the most significant genetic correlations
with the sleep <7-h group. In contrast, the sleep >7-h group showed
significant genetic correlations with only 18 phenotypes, including
eight health-related phenotypes, three blood count biomarkers, six
blood chemistry biomarkers and one metabolomic biomarker (|r|
range =[0.12, 0.35], P<4.21 x1075; Fig. 3cand Supplementary Data 3).

Amongthem, the fluid intelligence, overall health ratings, PHQ-9 and
immunometabolic biomarkers, such as glycated hemoglobin (HbAlc),
white blood cell and HDL cholesterol, showed the most significant
genetic correlations (|r,| range = [0.14, 0.35]).

Distinct proteomic profile of short and long sleep groups

The sleep <7-h and sleep >7-h groups showed distinct associations
with the proteomic profiles (n = 54,964), with the sleep <7-h group sig-
nificantly associated with203 of the 1,463 proteins, and the sleep >7-h
group showing significant associations with 485 of the 1,463 proteins
(Fig. 4a; Bonferroni-corrected P < 0.01, uncorrected P < 0.01/1,463
(6.84 x1079)). In detail, 324 proteins were solely associated with the
long sleep group, and 42 proteins were only associated with the sleep
<7-h group. Meanwhile, all four panels of protein—oncology, neurol-
ogy, inflammation and cardiometabolic—showed more significant
associations with the long sleep group (Fig. 4b). Notably, an aging
effect was observed in the associations between the sleep <7-h and
sleep >7-h groups with proteins. Elderly participants in the sleep >7-h
group showed the most significant associations with proteins com-
pared with other groups, with 190 unique proteins associated only
with the elderly group of long sleep (Fig. 4c). Additionally, a greater
differenceinassociations betweenthe sleep <7-h and sleep >7-h groups
with proteins was observed in the elderly group. Specifically, ITGAV
and PTGDS, recognized as oncology and cardiometabolic biomarkers,
respectively, exhibited significant associations solely with the long
sleep group (Fig. 4d).

Distinct causal association pattern of short and long sleep
Bidirectional causal inference between the two sleep groups and
15 health-related phenotypes, covering mental and neurological
health, cardiometabolic health and related biomarkers, was inves-
tigated using two-sample MR (TwoSample MR version 0.5.6; Fig. 5
and Supplementary Table 12) for the sleep <7-h and sleep >7-h groups
separately. These traits have been previously associated with sleep
disturbances in both observational and genetic studies®***~® rep-
resenting major health outcomes identified to interact with sleep
patterns.

Longer sleep duration in the sleep >7-h group was identified as
an outcome of various health conditions, such as poor overall health
(B(s.e.)=0.11(0.03), P=9.7 x107%) and diagnoses of mental or neurode-
generative disorders, including schizophrenia (5 (s.e.) = 0.025(0.004),
P=5.0x107?),bipolar disorder (B (s.e.) = 0.033(0.007),P=6.9 x107°),
major depressive disorder (B (s.e.) = 0.018 (0.007), P=7.1x1073),
Alzheimer’s disease (B (s.e.) = 0.008 (0.003), P=3.5x107%) and coro-
nary artery disease (8 (s.e.) = 0.014 (0.004), P= 6.8 x10™*) (FDR-cor-
rected P < 0.05). These results were further supported by findings
from biomarkers. For instance, causal associations were found from
lower cortical thickness to longer sleep durationin the sleep >7-h group
(B (s.e.) =-0.21(0.06), P=5.9 x10™), aligning with the causal asso-
ciations of brain disorders with longer sleep duration. Furthermore,
a higher low-density lipoprotein (LDL) cholesterol level, a biomarker
of cardiovascular risk, was causally associated with longer sleep dura-
tion (B (s.e.) =0.017 (0.005), P=1.6 x107) in the long sleep group.
Interestingly, alower CRP level, indicating reduced inflammation, was
causally related to longer sleep duration (g (s.e.) =-0.038 (0.009),
P=5.0 x107%).Finally, longsleep duration, but not short sleep duration,
showed acausal association withaschizophrenia diagnosis (odds ratio
(OR) (s.e.) =1.49(0.117), P= 6.8 x10*; Supplementary Figs. 4 and 5and
Supplementary Tables13 and 14).

In contrast, shorter sleep duration in the sleep <7-h group had
bidirectional causal effects with various health conditions and cor-
responding biomarkers. For instance, shorter sleep duration could
possibly increase the risk of multiple health conditions, including
coronary artery disease (OR (s.e.) =1.55 (0.11), P=7.5 x 107), major
depressive disorder (OR (s.e.) =1.36 (0.11), P=5.3 x107%), class 1 obesity
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Fig. 3| Manhattan plot for sleep duration and genetic correlations between
short and long sleep groups with health-related phenotypes. a,b, Manhattan
plots for the GWAS of short sleep (<7 h) (a) and long sleep (=7 h) (b), respectively.
The xaxis represents the genomic positions across the genome and the y axis
represents the -log,,P value (two-tailed) of the associations derived from a
linear model. A ¢-test was utilized to calculate the Pvalues. The red line indicates
the genome-wide significance threshold after multiple testing correction
(P<5x107%). Independent significant loci are labeled. ¢, Genetic correlations (r,)
between the short (sleep <7 h, n=211,101) and long (sleep =7 h, n = 255,699) sleep

groups, with health-related phenotypes calculated using LD-score regression
(significant r, withat least one sleep group are shown; Bonferroni-corrected
two-tailed P< 0.05). The x axis represents health-related phenotypes and the
yaxis represents the absolute value of genetic correlation: ryeepes (I7gsieepsrl

range =[0.21, 0.58], P< 4.18 x10~°) and -1 times the absolute value of genetic
correlation: rygeeps7 (IFgsieeps7)| range = [0.12, 0.35], P < 4.22 x 107°). Detailed P values
for genetic correlations are available in Supplementary Data 3. Error bars indicate
s.e.ofther,.

(OR (s.e.)=1.69 (0.16), P=1.4 x107%) and a higher BMI (B (s.e.) =0.19
(0.06), P=2.5x107) (FDR-corrected P < 0.05). Therefore, maintaining
sleep durationcloseto7 hinthe <7-hsleep group could have a protec-
tive effect against multiple diseases and obesity (Supplementary Fig. 6
and Supplementary Table 15). Inline with these findings, shorter sleep
durationinthesleep <7-hgroup maylead tolower FA (B(s.e.) =—0.004
(0.002), P=1.9 x107) and decreased IGF-1 (B (s.e.) =—-0.94 (0.29),
P=1.4x107), an aging biomarker with neuroprotective functions®.
It could also resultinincreased LDL cholesterol (5 (s.e.) = 0.21(0.08),
P=4.9x107) and decreased HDL cholesterol (8 (s.e.) =-0.16 (0.06),
P=6.5x107) levels. There was also evidence of a causal effect from
shorter sleep duration (in the sleep <7-h group) on increased CRP
(B (s.e.)=0.14 (0.06), P=0.032), indicating a higher risk of inflam-
mation. Reversely, we identified three health-related phenotypes
that show significant causal associations with shorter sleep duration
in the sleep <7-h group, including the overall health (g (s.e.) = 0.097
(0.024), P=4.2 x107), the diagnosis of major depressive disorder

(B (s.e.) =0.019 (0.006), P=3.42 x107®) and a higher LDL cholesterol
level (B (s.e.) = 0.016 (0.005), P= 6.71 x10™*) (FDR-corrected P < 0.05;
Supplementary Fig. 7 and Supplementary Table 16, aligning with previ-
ous clinical observations*®*,

To validate these distinct causal associations of short and long
sleep duration with health-related phenotypes, we also utilized GWAS
results based on the classical stratified definition of short (<7 h) and
long (>8 h) sleep versus normal sleep (7 or 8 h). The results from two-
sample MR are consistent with the current findings (Supplementary
Fig.8).Longsleep durationwas significantly identified as the outcome
of poor overall health, schizophrenia, coronary artery disease, Alzhei-
mer’s disease, bipolar disorder, major depressive disorder and LDL
cholesterol (FDR-corrected P < 0.05). Meanwhile, short sleep dura-
tion showed a causal effect on poor overall health, coronary artery
disease, class1obesity, higher BMIand related biomarkers, including
CRP and HDL cholesterol (FDR-corrected P < 0.05; Supplementary
Tables17-20).
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Fig. 4 | Distinct protein profiles of the short and long sleep groups.

a, Associations between short sleep (<7 h, left) and long sleep (=7 h, right)

with proteins using linear regression. The regression coefficients () and
corresponding two-tailed Pvalues were derived using a t-test. The horizontal line
indicates the Bonferroni-corrected significance threshold (two-tailed P < 0.01).
Thexaxis represents B values and the y axis represents —log,,P values of the
associations. b, Histogram of -log,,P values (two-tailed) of linear regression
between short and long sleep groups with four panels of proteins. Red represents
associations between sleep <7 hand proteins, and blue represents associations
between sleep >7 hand proteins. ¢, Overlapping significant proteins between
the middle-aged and older adult groups of short and long sleep groups. Red
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and green represent middle-aged and older adult groups, respectively, for the
long sleep group, and blue and purple represent the middle-aged and older

adult groups, respectively, for the short sleep group. d, Proteins with the most
significant differences in their associations with short and long sleep groups
within the middle-aged (left) and older adult (right) groups, respectively. The
Xxaxis represents the difference in the absolute correlation values (|r]) between
the shortand longsleep groups for protein associations using linear regression
(IFgeeper] = T geeps7l)- Blue indicates proteins more strongly associated with the long
sleep group, and red indicates proteins more strongly associated with the short
sleep group. Abs. rvalue diff.: |Fgeeper] = IFsieeps7l-

Sensitivity analysis
To further validate the results, we utilized the stratified definition
of short (sleep <7 h, n=123,245) and long (sleep >8 h, n=38,346)
sleep duration versus normal sleep (7 or 8 h, n=336,682) to conduct
the analysis again (Supplementary Tables 21-26, Supplementary
Figs. 9-12 and Supplementary Data 4-6). We calculated the correla-
tion coefficients between the results (rvalues) from the ordinal sleep
durationand theresults (¢ value) from the stratified definition of sleep
groups in each analysis. The results from the stratified definition of
sleep groups were highly consistent with the respective ordinal defini-
tions of shortsleep (sleep <7 h) and long sleep (sleep >7 h), with correla-
tion coefficients for both definitions of the short sleep group ranging
from —0.970 to —0.763 (with subcortical volume as a not-too-distant
outlier, —0.553, where the negative sign was entirely due to reversed
codingintheshortsleep versus normal sleep), and both definitions of
thelongsleep group ranging from 0.879 to 0.995 (Supplementary Table
27).This further demonstrates the reliability of our findings. However,
the classical stratified sleep definition showed lower statistical power

compared to the ordinal definition, primarily due to the loss of detailed
sleep duration information.

Discussion
The present study identified common and differentiated behavioral,

immunometabolic, neuroimaging and protein association atlases of
sleep<7-handsleep >7-h groups. Notably, we revealed distinct genetic
architectures behind these two sleep duration groups by showing
that there was no evidence of a genetic correlation between them
(rg=-0.058, P=0.12). Such a claim was further supported by the MR
results, which indicate that long sleep duration appears to be a con-
sequence of poor health conditions, and short sleep duration has a
potential causal effect on multiple health conditions, such as mental
disorders and cardiovascular diseases, as well as their related blood
and brainimaging biomarkers.

We identified specific phenotypic atlases of blood biomarkers
for short and long sleep duration. In particular, long sleep duration
was preferentially linked with higher levels of inflammation-related
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Fig. 5| Causal associations between short and long sleep groups with multiple
health conditions. Bidirectional two-sample MR identified causal associations
between the short sleep group (sleep <7 h) and long sleep group (sleep >7 h) with
health-related phenotypes, respectively. The causal associations were calculated
using inverse-variance-weighted MR analyses. Red arrows indicate a positive
causal association and blue arrows indicate a negative causal association. Arrows

indicate directions of a causal association, with adouble-headed arrow indicating
asignificant bidirectional causal association (for consistency, the P values labeled
for the bidirectional causal association were from sleep <7 h to outcomes or from
the disease to sleep >7 h). All statistical tests were two-sided. *FDR-corrected
P<0.05,*FDR-corrected P < 0.01, **FDR-corrected P < 0.001.

biomarkers, including CRP and elevated white blood cells. This resultis
consistent witha previous meta-analysis that showed significant asso-
ciations between longsleep duration and increased levels of systemic
inflammation biomarkers, but this was not apparent for short sleep
duration*’. Nonetheless, considering the existence of confounding
factors, it haslongbeen debated whether long sleep durationisindeed
arisk factor forinflammation. Here, our MR resultsidentified that there
is no causal effect from long sleep duration on CRP. This finding sug-
geststhatlongsleep duration and inflammation biomarkers may arise
simultaneously as consequences of previously identified inflammation-
related diseases, including depression and cardiovascular disease®.
Notably, even though the phenotypic associations between short
sleep duration and inflammation-related biomarkers were relatively
weaker compared to those of the long sleep group, we found a signifi-
cant causal association of the short sleep group with CRP, depression
and cardiometabolic disease. This implies that short sleep duration
potentially contributes to increased CRP levels and a higher risk of
inflammation-related diseases. This finding aligns with previously
reported longitudinal associations between short sleep duration and
increased CRP**. A potential mechanism for the causal association
betweenshortsleep duration and inflammation could be attributed to
thefactthatsleep disturbance may adversely affect the hypothalamic-
pituitary-adrenal (HPA) axis and the sympathetic nervous system,
two effector systems of the central nervous system that regulate the
immuneresponse®**, Our results collectively support the notion that
short sleep duration could be causally linked with multiple disease-
related blood biomarkers, particularly immune-related biomarkers,
which, in turn, may represent a plausible mechanism underpinning
the link between short sleep duration and poor health conditions

in adults**°. However, as other inflammation biomarkers, such as
interleukin-6 (IL-6) and IL-10, were not available in the UK Biobank, our
findings should be interpreted with caution. Further validationin other
populations and datasets thatinclude abroader range of inflammatory
markers is necessary.

Interestingly, we found that long sleep duration was a consequence
of abnormal levels of blood biomarkers, which are closely related to
cardiovascular risk and cardiovascular disease. Prior work has found
no causal effect from genetically predicted long sleep duration on
cardiovascular disease?. Our results support this idea and further
identify the reverse causal association from cardiovascular disease
to long sleep duration. Hence, our study suggests that, instead of
being a risk factor for disease incidence, long sleep duration is more
likely a consequence of poor health conditions. Indeed, long sleep
duration has been posited to be a surrogate marker of poor physical
and mental health status*. Possible mechanisms underpinning poor
health’s causal effect onlong sleep durationinclude sleep’s beneficial
and restorative effects on recovery from infection and diseases*®.
Meanwhile, sleep playsacritical role inglymphatic function, a process
inwhich cerebrospinal fluid enters the brain via the glymphatic system
and clears metabolic waste and toxins accumulated during the awake
state*. Notably, a previous study demonstrated a positive association
between total sleep time and glymphatic function in older adults™.
Therefore, the glymphatic system may also be intricately linked to the
health conditions associated with long sleep duration, which could be
crucial for brain and cardiovascular health®.

We also identified different protein profiles for short and long
sleep duration, with long sleep showing more significant associations
with proteins. A key protein identified here is the a cardiometabolic

Nature Mental Health | Volume 3 | April 2025 | 429-443

437


http://www.nature.com/natmentalhealth

Article

https://doi.org/10.1038/s44220-025-00395-6

protein GDF15, which has beenidentified as arobust prognostic protein
for multiple diseases, such as heart disease and dementia, in a previ-
ous study®?. This distinction was identified in both the middle-aged
and older adults groups. Most proteins displayed significant unique
associations with the long sleep group, particularly amongolder adults.
This suggests that disease-related protein biomarkers might serve
as a potential mechanism linking aging-related conditions, such as
neurodegenerative and cardiovascular diseases, to long sleep dura-
tion. These findings align with our MR results. As there is a significant
aging effect in the associations of short and long sleep duration with
health conditions and related biomarkers, future studies could focus
oninvestigating the possible mechanism of aging’sinfluence onthese
associations.

This study also identified that those with short sleep were geneti-
cally distinct from those with long sleep duration. Notably, in contrast
to the more significant phenotypic association between the long sleep
group and most blood biomarkers, the short sleep group manifested
more significant genetic correlations with health-related phenotypes,
including mental health variables and biomarkersrelated to cardiovas-
cular health. This implies that there may be higher genetic overlaps
between the short sleep group and health-related biomarkers. This
findingaligns withaprevious study reporting the genetic links between
insomnia, cardiovascular disease and psychiatric symptoms'**, Mean-
while, our results suggest that the significant phenotypic associations
between long sleep duration and disease-related blood biomarkers
may not be derived from a shared genetic architecture, but rather
from concomitant conditions. This was further identified in the MR
results, where prolonged sleep duration tended to be the consequence
of poor health.

Our study also has somelimitations. One limitation is that we used
a continuous or ordinal definition of short and long sleep duration
(sleep <7 hand sleep >7 h), whereas previous work has often utilized
a stratified definition of short and long sleep duration (short sleep
(<7 h) versus normalsleep (7 or 8 h) and long sleep (>8 h) versus normal
sleep (7 or 8 h)). Nevertheless, we demonstrated thatbothapproaches
yield highly similar results. Notably, our causal associations of ordinal
shortorlongsleep duration with health conditions were also validated
using the stratified definition. Meanwhile, the UK Biobank records
self-reported sleep duration only in whole numbers. In this context,
individualsreporting exactly 7 hof sleep serve asacommonreference
point. Their sleep duration contributes to associations with other
phenotypes only when compared toindividuals with shorter or longer
sleep durations, thatis, resembling the role of the stratified 7-8-h sleep
groupin the classical sleep definition. Therefore, although 7 his used
asareferenceinboththe <7-hand >7-hgroups, thisdoes notintroduce
sharedinformation between the groups, as evidenced by the minimal
genetic correlation between them.

Second, as utilized in the current study, sleep duration was derived
from self-reported questionnaires. Although these are easily obtained
and commonly utilized in most epidemiological studies, they can be
subject to recall bias. Future studies could focus on objective sleep
measures, such as those obtained from actigraphy or polysomnogra-
phy, which could also reveal more about the mechanism by which sleep
may underpinadverse health outcomes. Nevertheless, even the subjec-
tive estimation of sleep duration could vary in different populations
across various countries due to cultural and social factors, latitude
and many other factors™*. Additionally, more detailed self-reported
sleep information is not available in the UK Biobank, such as sleep
variability and duration units in minutes, which should also be inves-
tigated in future studies. Third, the effect sizes of some brain findings
were relatively small (for example, r= 0.02-0.03). However, the large
samplesize (thatis, N >27,000) of the UK Biobank brainimaging data
was able tostillachieve adequate statistical power (>60%) inidentifying
an effect size as small as r= 0.025, even under an extremely stringent
Bonferroni-corrected P < 0.01. Finally, the results of our study reflect

the demographic makeup of the UK Biobank and may not be representa-
tive of other populations. Therefore, caution should be exerted when
extrapolating these findings to other populations.

Overall, we have dissected the recently identified nonlinear rela-
tionships between sleep duration and health conditions® into two
largely independent monotonic relationships. A population-wide
minimum sleep duration of 7 h is recommended to reduce the risk of
adverse health conditions, and long sleep is likely a consequence of
underlying poor health states, signifying the body’sinherent attempt
to initiate repair and recovery processes in response to illness. How-
ever, it isimportant to note that individual variability plays a crucial
role, and personalized recommendations should be tailored based
onanindividualized optimal sleep duration. Thus, our findings make
asignificant and timely contribution to public health.

Methods

Participants

Data from the UK Biobank were utilized in the current study (appli-
cation ID 19542), including 498,277 participants, primarily of Euro-
pean ancestry aged between 38 and 73 years old. The UK Biobank
has research tissue bank approval from the North West Multi-centre
Research Ethics Committee (https://www.ukbiobank.ac.uk/learn-
more-about-uk-biobank/about-us/ethics) and provided oversight
for this study (ref. 11/NW/0382). The use of UK Biobank data in our
study aligns with the terms and conditions of the UK Biobank Material
Transfer Agreement. Written informed consent was obtained from all
participants. The risk of participants experiencing harm from taking
partis minimal, and UK Biobank hasinsurancein place to compensate
for any harm caused by negligence. Briefly, between 2006 and 2010,
information on participants’ health and lifestyle, cognitive function
and a range of physical measurements were collected at the assess-
ment center. Samples of blood were also collected and utilized for
the analysis of blood biomarkers. Meanwhile, online questionnaires,
including a 24-hrecall questionnaire, healthy work questionnaire and
mental health questionnaire, were also collected from the participants.
Imaging data collection began in 2014, and neuroimaging data of
39,692 participants were available and used in the current analyses.
A detailed introduction to the UK Biobank is available at http://www.
ukbiobank.ac.uk.

Sleep measures

Sleep duration, as assessed in the baseline assessment (2006-2010,
n=498,277) and imaging visit (2014+, n =48,511), was utilized in the
current study. It was measured by means of touchscreen question-
naires: ‘About how many hours sleep do you getin every 24 h? (please
include naps)’. Answers of lessthan1h or more than23 hwererejected,
and answers of less than 3 h or more than 12 h required confirmation
by the participants. Participants who answered ‘do not know’ or ‘prefer
not to answer’ were excluded from the analysis. The specific question
aboutsleep duration was not based on any established sleep question-
naire. It was obtained froma category of self-reported sleep conditions
(https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100057).Sleep
duration measured at baseline was utilized in the PheWAS to determine
the associations between sleep duration and phenotypes of interest
measured simultaneously (n =489,277). Sleep duration assessed at
the neuroimaging visit was used to measure the associations with
brain structures (n =48,511). The sleep duration data were divided
intotwo groups: one withsleep duration <7 hand the other with sleep
duration >7 h (Supplementary Fig. 1). Considering that we identified
population-wise optimal sleep duration for middle-aged and elderly
participants of the UK Biobank in previous studies>®, we utilized 7 h as
the baseline to explore how changesinsleep duration—bothincreases
and decreases—are distinctly associated with health conditions and
their potential mechanisms. A sleep duration of exactly 7 h, which, as
a constant, is not associated with any phenotype of interest (that is,
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a column of constants has no variability to correlate with any other
variables), was regarded as the common reference point for both sleep
<7 handsleep>7 h. To further validate our results, we also stratified the
sleep duration into three groups: short sleep (less than 7 h), normal
sleep duration (7 or 8 h) and long sleep (more than 8 h), to replicate
the main analysis.

Behavioral and clinical phenotypes

The phenotypes utilized in the PheWAS could be divided into 20 cat-
egories, comprisingatotal of 3,735 levels of variables: (1) baseline char-
acteristics; (2) cognitive functions; (3) diet by 24-h recall; (4) digestive
health; (5) early life factors; (6) family history; (7) first occurrences; (8)
food preferences; (9) health and medical history; (10) health-related
outcomes; (11) lifestyle and environment; (12) medical conditions;
(13) medications; (14) mental health; (15) operations; (16) physical
measures; (17) psychosocial factors; (18) sex-specific factors; (19)
sociodemographic; (20) work environment. Details of the phenotypes
are provided in Supplementary Table 1. In our study, we specifically
aimed to explore the potential distinct associations of short and long
sleep duration with various psychiatric disorders and neurological
diseases. To this end, we intentionally did not exclude participants
with neurological and psychiatric conditions from our analysis. All
the phenotypes were first overlapped with the participants with sleep
duration <7 hand >7 h and then utilized in the PheWAS, respectively.

Blood biomarkers

Blood samples were collected from 500,000 participants at the UK
Biobank baseline assessment, which allowed for biochemical and
hematologic assays. Details of the blood sample collection are avail-
able in the open-source document at https://www.ukbiobank.ac.uk/
media/gnkeyh2q/study-rationale.pdf. Briefly, whole blood was utilized
for a range of hematological parameters on a Beckman automated
hematology analyzer, and 31 parameters were reported, including
complete blood count data, differential data and reticulocyte data
(category ID 100081). The hematological parameters were further
categorized into three groups in the current study: white blood cell
(basophil count and eosinophil count), red blood cell (hematocrit
percentage, hemoglobin concentration and reticulocyte count) and
platelet (mean platelet volume and platelet count). Meanwhile, 30
biochemistry biomarkers were analyzed from blood samples utiliz-
ing tenimmunoassay analyzers and four clinical chemistry analyzers
(category ID 17518). They were selected based on their established
disease risk factors, diagnostic value and ease of availability at scale.
One of the biochemistry biomarkers was measured in red blood cells
(glycated hemoglobin) and 29 in serum. These biochemistry biomark-
ers were further divided into bone and joint (alkaline phosphatase,
calcium and vitamin D), endocrine (testosterone, IGF-1and sex hor-
mone-binding globulin (SHBG)), immunometabolic (apolipoproteins
A and B, cholesterol, CRP and glucose), liver function (alanine and
aspartate aminotransferase, albumin and direct and total bilirubin) and
renal function (creatinine, cystatin C, phosphate and total protein) as
inaprevious study® (Supplementary Table 2). The blood biomarkers
of the participants were analyzed in two groups with sleep duration
<7handsleep duration>7 h.

Metabolomic biomarkers

Inthe baseline recruitment of the UK Biobank, ethylenediaminetetra-
acetic acid (EDTA) plasma samples were collected from ~118,000
participants, and processed by Nightingale Health Ltd to perform
metabolic biomarker profiling. Detailed descriptions of the metabo-
lomic biomarker profiling platform and experimentation are avail-
able in previous publications®**. High-throughput NMR was used
to measure the samples, providing 248 metabolomic biomarkers,
including168in absolute levels and 81 ratio measure per EDTA plasma
sample. Multi-metabolic pathways were covered by the biomarkers,

including various measures of cholesterol, fatty acid composition and
14 lipoprotein subclasses, as well as low-molecular-weight metabolites
such as amino acids, ketones and glycolysis metabolites quantified
mostly in absolute concentration units. The current study utilized
168 metabolomic biomarkers in absolute levels, which were further
grouped into 16 subsets, including cholesterol, triglycerides, fluid
balance, phospholipids and so on (Supplementary Table 3). In the
subsequent analysis, samples were divided into two groups based on
sleep duration <7 hand sleep duration >7 h.

Structural magnetic resonance imaging data

After baseline assessment between 2006 and 2010, the UK Biobank
invited some participants back to undergo neuroimaging collection
in2014.Imaging-derived phenotypes (IDPs) generated by animaging-
processing pipeline developed and run on behalf of UK Biobank were
used inthe study. Quality-controlled T1-weighted neuroimaging data
and diffusion tensorimaging data, processed with FreeSurfer and FSL
(FMRIB Software Library), respectively, were analyzed. Details of the
imaging protocol and processing pipeline are available in the open-
source document at https://biobank.ndph.ox.ac.uk/showcase/ukb/
docs/brain_mri.pdf. Neuroimaging data were collected on astandard
Siemens Skyra 3T scanner with a 32-channel head coil.

Tlimages were processed with FreeSurfer, and surface templates
were utilized to extract IDPs referring to atlas regions’ surface area, vol-
ume and mean cortical thickness*®. Subcortical regions were extracted
using FreeSurfer’s aseg tool*. FreeSurfer aparc (Category 192) and
ASEG (Category 190) atlas corresponding to 68 cortical regions and
40 subcortical regions were used in this study. The intracranial vol-
ume (field ID 26521) generated by aseg was utilized as a covariate in
the neuroimaging analyses. The Qoala-T approach was used to check
FreeSurfer outputs, supplemented by manual checking of outputs
closetothethreshold. Any FreeSurfer outputs that failed to pass quality
control were notincluded in the FreeSurfer IDPs.

For diffusion-weighted imaging, briefly, the Eddy tool was first
utilized to correct for eddy currents, head motion and outlier slices.
Gradient distortion correction (GDC) was then applied to produce a
more accurate correction®. Tractography-based analysis was then
conducted on the preprocessed diffusion magnetic resonance imag-
ing data, beginning with within-voxel modeling of multi-fiber tract
orientation by the bedpostx tool, followed by probabilistic tractog-
raphy by probtrackx. Twenty-seven major tracts using masks defined
by AutoPtx® were mapped in this pipeline. An IDP was generated for
eachtract. FAand MD of the 27 tracts were utilized in the current study
(category 135).

Genotypes

The UK Biobank provided genome-wide genetic data from 488,000
participants. Two arrays, the Affymetrix UK BiLEVE Axiom and the
Affymetrix UK Biobank Axiom array, were utilized to genotype the UK
Biobank blood samples. Genotype data were quality-controlled and
imputedinto the Haplotype Reference Consortium (HRC) and UK10K
haplotyperesource, whichincreased the number of variants to ~96 mil-
lion. Markers’ positions were expressed in GRCh37 coordinates. Details
of genotyping, the quality-controlled pipeline,imputation and analyses
are provided in a previous publication®’. We also excluded SNPs with
call rates <95%, minor allele frequency <0.1% and deviation from the
Hardy-Weinberg equilibrium with P<1x107°, and selected subjects
that were estimated to have recent British ancestry and have no more
thanten putative third-degree relatives in the kinship table, consistent
with the previous study®. After the quality-control procedures, we
obtained 8,894,431 SNPs and 337,151 participants.

Proteomics
Blood plasma samples of 54,964 participants in the baseline assess-
ment were utilized for proteomic analysis by the Olink Explore 3072
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platform, which measured 2,941 proteins, including eight panels of
cardiometabolic (II), inflammation (II), oncology (II) and neurology
(II). The current study utilized 1,463 proteins (four panels) of the 2,941
proteins available for application. Details of sample selection, sample
handling and quality control of the proteindata are provided in previ-
ous publications®*. Protein samples were first overlapped with the two
sleep groups (sleep <7 hand sleep >7 h), respectively, and utilized for
the subsequent analysis.

Statistical analysis

PheWAS. PheWAS associations were conducted utilizing the PHE-
SANT package in R. Technical details and methods for the rule-based
algorithm used in PHESANT are available in a previous publication®.
Briefly, according to different variable types (including continuous,
ordered categorical, unordered categorical and binary), specific
regression was utilized to determine the associations between the
trait of interest and the variables, corresponding to linear, ordinal
logistic, multinomial logistic and logistic regression, respectively. In
the current study, sleep duration was utilized as the trait of interest,
and was divided into two groups, sleep duration <7 h (n = 315,630)
andsleep duration >7 h (n =375,030), and entered into the PHESANT
as independent variables, respectively. Selected phenotypes of 20
categories were set as dependent variables. Given that sleep duration
isage-dependent and closely associated with genetic factors (such as
sex) and environmental influences (such as education and lifestyle),
we adjusted for age, sex, assessment center, BMI, Townsend depriva-
tion index, educational qualifications, smoking status and drinking
status in the model as covariates of no interest®**. Missing data for
these covariates were imputed using the mean value for each vari-
able. Bonferroni corrections of the 3,735 phenotypes were conducted
for the model results, and standardized regression coefficients and
corresponding two-sided Pvalues were reported in the results for all
regression models.

A partial correlation was utilized to analyze the associations of
sleep duration with measures of interest in two groups (sleep duration
<7 hand sleep duration =7 h), including blood biomarkers, metab-
olomic biomarkers, brain structures and protein biomarkers. The
model adjusted the following variables: age, sex, BMI, scanning site
of imaging, Townsend deprivation index measuring socioeconomic
status, educational qualifications, smoking status and drinking sta-
tus. Scanning site of imaging and intracranial volumes were further
added to the linear model, examining the association between sleep
duration and brain structure. Linear correlation coefficients and
corresponding two-sided P values were obtained from the model to
reflect the association between sleep duration and measures. Bonfer-
roni corrections were conducted for multiple comparisons. Permu-
tation tests were performed to compare the associations between
the two sleep groups and biomarkers. In these tests, the group of
participants with sleep duration of exactly 7 h served as a common
reference (or shared control) and remained unchanged. The sleep
durations of the remaining individuals, either less than 7 h or more
than 7 h, were randomly permuted 5,000 times. Through this per-
mutation process, the groups with permuted sleep duration—short
(<7 h) and long (=7 h)—should theoretically show no difference in
their associations with biomarkers, thus establishing the null dis-
tribution for comparing the associations of both sleep groups with
biomarkers.

Aging effect between short and long sleep with health

To explore the potential aging effect in the association between short
and longsleep groups with health-related biomarkers, including blood
biomarkers, metabolomic biomarkers, brain structure and proteom-
ics data, we divided the participants into two age groups, 37-57 years
old (middle-aged, n =246,209) and 58-73 years old (older adults,
n=256,283),toensureabalanced number of subjects in each subgroup,

for biomarkers measured in the baseline assessment. Similarly, for the
follow-up neuroimaging assessments, the participants were grouped
into 44-63 years old (n=19,594) and 64-82 years old (n =22,820) to
maintain a balanced sample size across groups. Partial correlations
between short and long sleep groups with health-related biomarkers
were performed for each age group, respectively, with covariates
adjusted to explore the potential interaction between short and long
sleep duration with age.

GWAS

A GWAS was conducted adjusting for age, sex and the top ten ances-
try principal components using PLINK 2.0° to assess the association
between genotype and the phenotype of interest. Given our hypoth-
eses, GWASs for sleep duration among 255,699 individuals who sleep
>7hand211,101individuals who sleep <7 hwere performed separately.
All other phenotypes, including blood biomarkers, metabolomic
biomarkers, mental health symptoms, cognitive function and so on,
were first overlapped with the two sleep duration groups, and then
GWASs were performed, respectively. To assess the robustness of the
GWAS results for sleep duration, we further adjusted for 106 genotype
batches and 22 assessment centers in both sleep duration groups, using
105 binary covariates and 21 binary covariates (dummy variables),
respectively.

Functional mapping and annotation (FUMA) was then utilized
to identify the independent significant SNPs, which were selected
from the significant SNPs in the GWAS analysis (P < 5 x1078) and were
independent of other significant SNPs in the linkage equilibrium with
r*<0.6. The lead SNPs were further selected from the independent
significant SNPs and defined ashaving alinkage equilibrium with others
of r* < 0.1. Lead SNPs within a distance of 250 kb were further merged
into the genomic locus.

SNP heritability and genetic correlation

LD-score regression was utilized to assess the SNP-based heritability
of the two groups of sleep (sleep <7 h and sleep >7 h) and the genetic
correlation between the two groups of sleep (GenomicSEM version
0.0.3)*.Meanwhile, the genetic correlations between the two groups’
sleep duration and blood biomarkers, metabolomic biomarkers and
health-related phenotypes were calculated, respectively. Notably, as
we mentioned before, the GWAS summary data of the phenotypes
were obtained from participants in the two groups of sleep duration
(sleep <7 h and sleep =7 h), respectively. HapMap3 SNPs were used
for the reference SNP list, and LD scores of European ancestry from
the 1000 Genomes Project, provided by GenomicSEM, were utilized
as the background scores. Phenotypes with low heritability cannot
be utilized to assess genetic correlation, and 224 phenotypes were
eventually measured. Bonferroni corrections were conducted for the
two-sided Pvalue.

Two-sample MR

Bidirectional two-sample MR®’ (TwoSampleMR version 0.5.6, R) was
performed to measure the causal associationbetween short and long
sleep duration with 15 diseases and health-related biomarkers, includ-
ing bipolar disorder’®, major depressive disorder”, schizophrenia,
Alzheimer’s disease’ and coronary artery disease’, as well as the
clinical blood biomarkers CRP, HDL and LDL cholesterol” and so on
(Supplementary Table 10). These domains cover conditions that are
highly prevalentin the general population and have significant public
healthimplications. Many of the selected traits, such as major depres-
sive disorder, coronary artery disease and biomarkers such as HDL
and LDL cholesterol, have direct clinical relevance and are common
targets for intervention in public health’””, The publicly available
GWAS summary statistics were mainly obtained from large consortia of
primarily European samples. For phenotypes without available public
GWAS summary data that do not overlap with UK Biobank participants,
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including overall health rating, IGF-1and so on, we performed GWAS
analysis utilizing two non-overlapping samples from the UK Biobank,
oneforsleep durationand another for these phenotypes adjusted for
age, sexand the top tenancestry principal components using PLINK 2.0.
The cortical volume, cortical thickness and FA of the brain regions
significantly associated with sleep <7 h and sleep >7 h were averaged,
respectively, and utilized for the GWAS analysis with age, sex, the top
ten ancestry principal components, scanning site and intracranial
volumes adjusted.

Inverse-variance-weighted (IVW) MR was mainly utilized to test
bidirectional association with weighted median and MR-Egger as the
validated methods. Instrumental variants were selected at a thresh-
old of P<1x107 for sleep duration and health-related phenotypes.
Clumpling was performed to ensure theindependence of the variants
with an LD r* threshold of 0.01and a distance of 1,000 kb. For the highly
polygenic phenotypes, including schizophrenia, bipolar disorder and
CRP, the threshold for the variants was further restricted to1 x 1075, If
therequested SNPsinthe exposure were not availablein the outcome
GWAS, they were replaced with proxy SNPs with high LD (LD > 0.8),
identified using the 1000 Genomes European sample data. The expo-
sure and outcome data were then harmonized. Quality controls were
further performed to remove the outliers with Cochran’s Q test for
the VW model and Rucker’s Q test for the MR-Egger model to prevent
horizontal and directional pleiotropy effects, respectively (RadialMR
version 1.0, R). Outliers with a significance level of 0.01 were removed
from the instrumental variants, and the remaining variants were uti-
lized for the MR analysis. For significant results, the MR-Egger intercept
test was performed to test horizontal pleiotropy. FDR corrections
were conducted separately for each group of sleep duration and each
direction (sleep~>health/health-sleep). Estimates were converted to
odds ratios for binary outcomes, including bipolar disorder, major
depression disease, bipolar disorder and so on.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

This project corresponds to UK Biobank application ID 19542. Neuro-
imaging, genotype and behavioral data from UK Biobank dataset are
available from https://biobank.ndph.ox.ac.uk/ by application. The
variables utilized inthis study are detailed in Supplementary Tables1-3.
Previous published GWASs of psychiatric disorders, including depres-
sion, bipolar disorder and schizophrenia, were provided by the Psy-
chiatric Genomics Consortium, which can be downloaded from
https://pgc.unc.edu/for-researchers/download-results/. GWAS sum-
mary statistics of immunometabolic phenotypes, obesity and aging
disease are available in the MRC IEU OpenGWAS database (https://
gwas.mrcieu.ac.uk), and the detailed PubMed identifiers (PMIDs)
for the GWAS summary data are provided in Supplementary Table
10 (https://pubmed.ncbi.nlm.nih.gov/). European ancestral back-
ground LD scores from the 1000 Genomes Project were downloaded
from https://alkesgroup.broadinstitute.org/LDSCORE/. The GRCh37
coordinates can be accessed via http://hgdownload.cse.ucsc.edu/
goldenpath/hgl9/database/.

Code availability

Rversion4.2.0 was used to perform phenotype-wide association analy-
sis. Matlab 2018b was used to perform linear association analysis.
Freesurfer v6.0 was used to process the imaging data. PLINK 2.0 was
used to perform GWAS analysis. R version 4.2.0 GenomicSEM version
0.0.3 was utilized to calculate heritability and genetic correlations.
TwoSampleMR version 0.5.6 was utilized to measure the causal asso-
ciation. Scripts used to perform the analyses are available at https://
github.com/yuzhulineu/UKB_short_longsleep/.
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Extended Data Fig. 1| Guideline of the study. Top, UK biobank data used in this

study included environmental and behavioral measures, blood and imaging

biomarkers, genomics, proteins, and sleep duration. Middle, A phenotype-wide
association study (PheWAS) was performed to explore the associations of short

and long sleep duration with these phenotypes. Biological blood biomarkers,
neuroimaging biomarkers, and proteins were utilized to characterize distinct

association profiles for short and long sleep duration. Bottom, Distinct genetic
architectures and roles in association with health conditions were identified for
shortand longsleep duration. Finally, Mendelian randomization (MR) analysis
showed distinct causal associations between short and long sleep duration and
health-related phenotypes.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.

Data analysis R version 4.2.0 PHSANT was used to perform Phenotype-wide association analysis
Matlab 2018b was used to perform linear association analysis.
Freesurfer v6.0 were used to process the imaging data.
PLINK 2.0 was used to perform genome-wide association analysis.
FUMA 1.3.5d was utilized to identify the independent significant SNP.
R version 4.2.0 package:
GenomicSEM version 0.0.5 was utilized to calculate the genetic correlation,
RadialMR version 1.0 was utilized to remove the outliers from the instrumental variants,
TwosampleMR version 0.5.6 was utilized to perform the Mendelian Randomization.
Scripts used to perform the analyses are available at https://github.com/yuzhulineu/UKB_short_longsleep/

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

This project corresponds to UK Biobank application ID 19542. Neuroimaging, genotype, and behavioral data from UK Biobank dataset are available from https://
biobank.ndph.ox.ac.uk/ by application. The variables utilized in this study are detailed in Supplemental Table 1, Supplemental Table 2 and Supplemental Table 3.
Previous published GWASs of psychiatric disorders, including depression, bipolar disorder, and schizophrenia, were provided by the Psychiatric Genomics
Consortium, which can be downloaded from https://pgc.unc.edu/for-researchers/download-results/. GWAS summary statistics of immunometabolic phenotypes,
obesity, and aging disease are available in the MRC IEU OpenGWAS database (https://gwas.mrcieu.ac.uk), and the detailed PubMed identifiers (PMIDs) for the
GWAS summary data are provided in Supplementary Table 10 (https://pubmed.ncbi.nlm.nih.gov/). European ancestral background LD scores from the 1000
Genomes Project were downloaded from https://alkesgroup.broadinstitute.org/LDSCORE/. The GRCh37 coordinates can be assessed via http://
hgdownload.cse.ucsc.edu/goldenpath/hg19/database/.
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We take sex into considerations in our study and sex was utilized as a covariate in all the analysis. Sex (Field ID 31) was
determined based on the self reporting data via questionnaire.

Reporting on race, ethnicity, or Townsend deprivation index (Field ID 22189)measuring socioeconomic status were utilized as a covariate in our analysis

other socially relevant which were calculated immediately prior to participant joining UK Biobank based on the receding national census output

groupings areas. The index was derived from four census variables: unemployment, non-car ownership, non-home ownership and
household overcrowding. Each participant is assigned a score corresponding to the output area in which their postcode is
located.

Population characteristics A total of 498,277 participants aged between 38 and 73 (54% females) was obtained from the UK biobank study, which is a

large-scale database containing cognitive assessment, mental health questionnaires, brain imaging and in-depth genetic
information from UK participants. Neuroimaging data of 39,694 participants were available and utilized in the current
analyses. See Method section for further details. Population characteristics of the participants are listed in Table 1.

Recruitment The UK Biobank recruited over 500,000 people aged 40-69 since 2006 at 22 recruitment centers across the UK. Previous
investigation showed UK biobank subject to a healthy sample bias.

Ethics oversight UK Biobank has approval from the North West Multi-centre Research Ethics Committee (https://www.ukbiobank.ac.uk/
learn-more-about-uk-biobank/about-us/ethics) as a Research Tissue Bank approval and provides oversight for this study (ref:
11/NW/0382). The use of UK Biobank data in our study aligns with the terms and conditions of the UK Biobank Material
Transfer Agreement. Written informed consent was obtained from all participants. The risk of participants experiencing harm
from taking part is minimal, and UK Biobank has insurance in place to compensate for any harm caused by negligence.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences D Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample sizes and all currently available sample in the UK Biobank were used including
498,277 subjects with behavioral data and blood sample, 54,964 subjects with protein data, 337,151 subjects with genotype data, 156,884
subjects with follow-up mental health data and 39,692 subjects with imaging data. The sample sizes were provided in the Methods section.

Data exclusions  For calculation of GWAS, we excluded single-nucleotide polymorphisms (SNPs) with call rates < 95%, minor allele frequency < 0.1%, deviation
from the Hardy—Weinberg equilibrium with p < 1E-10 and selected subjects that were estimated to have recent British ancestry and have no
more than ten putative third-degree relatives in the kinship table, consistent with the previous study.

Replication We used the classical stratified definition of sleep duration (normal:7-8 hours, short:<7 hours and long >8 hours) to repeat the main analysis
including phenotype-wide association analysis, GWAS analysis and the Two-sample MR. The results were consistent with our original results.




Randomization  Inour association analysis, we regressed out covariates including age, sex, body mass index, scanning site of imaging, Townsend deprivation
index measuring socioeconomic status, qualifications, smoking status and drinking status.

Blinding Blinding was not applicable to this study as this study is observational.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study

Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry

Palaeontology and archaeology |:| |Z MRI-based neuroimaging
Animals and other organisms
Clinical data

Dual use research of concern

XX XX XXX 5
Ooodoog

Plants

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied-
Authentication Describe-any-atuthentication-procedures foreachseed-stock-tused-ornovel-genotype-generated—Describe-any-experiments-used-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Magnetic resonance imaging

Experimental design

Design type Structural MRI. Imaging derived phenotypes (IDP) generated by an imaging-processing pipeline developed and run on
behalf of UK Biobank were used in the study.

Design specifications UK Biobank designed the imaging acquisition protocals including 6 modalities, covering structural, diffusion and
functional imaging. The collection order is T1-weighted structural image, resting-state functional MR, task functional
MRI, T2-weighted FLAIR structural image, Diffution MRI and susceptibility-weighted imaging. T1-weighted structural
image was acquired using straight sagittal orientation for 5 minutes.

Behavioral performance measures Cognitive tests were first administered via touchscreen interface in the UK biobank assessment center at the baseline
visit and repeated at the neuroimaging visit. Seven cognitive tests including reaction time, numeric memory, fluid
intelligence, trail making, prospective memory, symbol digit substitution and pair matching test were utilized in the
current study. Measurement of depressive symptoms via 4-item Patient Health Questionnaire-4 (PHQ-4) was first
assessed in the UK biobank assessment center (2006-2010, n=499,585) and then repeated at the neuroimaging visit
(2014-2017, n=48,571).
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Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI Used

T1-weighted structural imaging
3T

The EPI-based acquisitions utilize simultaneous multi-slice (multiband) acceleration. Biobank uses pulse sequences and
reconstruction code from the Center for Magnetic Resonance Research (CMRR), University of Minnesota https://
www.cmrr.umn.edu/multiband. The resolution is 1x1x1 mm and field of view is 208x256x256 matrix. Straight sagittal
orientation is used. TR and TE are 2000ms and 2.01ms respectively. The flip angle is 8 deg. Detailed sequence and
imaging parameters are openly available here: https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/ brain_mri.pdf

Whole brain

|:| Not used

Parameters The resolution is 2x2x2 mm and field of view is 104x104x72 matrix. For the two diffusion-weighted shells, 50 distinct diffusion-
encoding directions were acquired (and all 100 directions are distinct). Duration: 7 minutes (including 36 seconds phase-encoding
reversed data) 5xb=0 (+3 x b=0 blip-reversed), 50x b=1000 s/mm2, 50x b=2000 s/mm?2

Preprocessing

Preprocessing software

Normalization
Normalization template
Noise and artifact removal

Volume censoring

Imaging derived phenotypes (IDP) generated by an imaging-processing pipeline developed and run on behalf of UK Biobank
were used in the study. T1 images were processed with Freesurfer, surface templates were utilized to extract imaging
derived phenotypes (IDP) referring to atlas regions’ surface area, volume and mean cortical thickness42. Subcortical regions
were extracted via FreeSurfer’s aseg tool. The full processing pipeline is openly available here: http://doi.org/10.1016/
j.neuroimage.2017.10.034

For diffusion-weighted imaging, briefly, the Eddy tool was first utilized to correct for eddy currents, head motion, and outlier-
slices. GDC was then applied to produce a more accurate correction. Then, the tractography-based analysis was conducted
on the preprocessed dMRI data beginning with within-voxel modeling of multi-fiber tract orientation by the bedpostx tool,
followed by probabilistic tractography by probtrackx. Twenty-seven major tracts using masks defined by AutoPtx were
mapped in this pipeline.

see above
fsaverage
see above

see above

Statistical modeling & inference

Model type and settings

Effect(s) tested

mass univariate, linear regression model.

The correlation coefficients (r values) were obtained from the linear regression models.

Specify type of analysis: [ whole brain || ROI-based || Both

Statistic type for inference

(See Eklund et al. 2016)
Correction

Models & analysis

n/a | Involved in the study
IZ |:| Functional and/or effective

IZ |:| Graph analysis

voxel-wise association

Bonferroni

connectivity

IZ |:| Multivariate modeling or predictive analysis
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