Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Moving from fit to fitness for governing water in the Anthropocene

Abstract

We bring together two decades of research on cross-scale spatial and temporal connectivity of water in the Anthropocene to understand the implications for institutional fit and water governance, with a focus on river basin organizations and watershed-based bodies. There is strong evidence showing how hydrological cycles are tightly coupled across larger spatial scales than they were in the past, which implies a possible expansion of the boundaries typically considered in the study and governance of water. Temporally, frequent time lags between action and consequence and the potential for increasing concurrence of extreme events pose risks for decision-makers trying to make accurate and appropriate decisions. Both cross-scale spatial and temporal connectivity create new challenges to key principles regarding participation, deliberation and collaboration in water governance. We argue for a shift from emphasizing how governance can ‘fit’ a closed, biophysical boundary towards a stronger consideration of institutional ‘fitness’ through flexibility, responsiveness and anticipatory capacity to better support water resilience and sustainability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Moving from fit to fitness.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this Article as no additional datasets were generated or analysed during the current study.

References

  1. Integrated Water Resources Management Toolbox, Version 2 (Global Water Partnership, 2003).

  2. Molle, F. Nirvana concepts, narratives and policy models: insights from the water sector. Water Altern. 1, 131–156 (2008).

    Google Scholar 

  3. Bertule, M. et al. Monitoring water resources governance progress globally: experiences from monitoring SDG indicator 6.5.1 on integrated water resources management implementation. Water 10, 1744 (2018).

    Article  Google Scholar 

  4. Pacheco-Vega, R. Governing urban water conflict through watershed councils—a public policy analysis approach and critique. Water 12, 1849 (2020).

    Article  Google Scholar 

  5. Young, O. The Institutional Dimensions of Environmental Change: Fit, Interplay and Scale (MIT Press, 2002).

  6. Moss, T. & Newig, J. Multilevel water governance and problems of scale: setting the stage for a broader debate. Environ. Manage. 46, 1–6 (2010).

    Article  PubMed  Google Scholar 

  7. Herrfahrdt-Pähle, E. Applying the concept of fit to water governance reforms in South Africa. Ecol. Soc. 19, 25 (2014).

    Article  Google Scholar 

  8. Ekstrom, J. A. & Young, O. R. Evaluating functional fit between a set of institutions and an ecosystem. Ecol. Soc. 14, 16 (2009).

    Article  Google Scholar 

  9. Bodin, Ö., Nohrstedt, D. & Orach, K. A diagnostic for evaluating collaborative responses to compound emergencies. Prog. Disaster Sci. 16, 100251 (2022).

    Article  Google Scholar 

  10. Folke, C., Pritchard, L. Jr., Berkes, F., Colding, J. & Svedin, U. The problem of fit between ecosystems and institutions: ten years later. Ecol. Soc. 12, 38 (2007).

    Article  Google Scholar 

  11. Vatn, A. & Vedeld, P. Fit, interplay and scale: a diagnosis. Ecol. Soc. 17, 11 (2012).

    Article  Google Scholar 

  12. Molle, F. Water, politics and river basin governance: repoliticizing approaches to river basin management. Water Int. 34, 62–70 (2009).

    Article  Google Scholar 

  13. Huitema, D. & Meijerink, S. The politics of river basin organizations: institutional design choices, coalitions and consequences. Ecol. Soc. 22, 42 (2017).

    Article  Google Scholar 

  14. Ochoa-Garcia, H. & Rist, S. Water justice and integrated water resources management: constitutionality processes favoring sustainable water governance in Mexico. Hum. Ecol. 46, 51–64 (2018).

    Article  Google Scholar 

  15. Chereni, A. The problem of institutional fit in integrated water resources management: a case of Zimbabwe’s Mazowe catchment. Phys. Chem. Earth Parts ABC 32, 1246–1256 (2007).

    Article  Google Scholar 

  16. Garrick, D., Alvarado-Revilla, F., Loë de, R. C. & Jorgensen, I. Markets and misfits in adaptive water governance: how agricultural markets shape water conflict and cooperation. Ecol. Soc. 27, 2 (2022).

    Article  Google Scholar 

  17. Rockström, J. et al. The unfolding water drama in the Anthropocene: towards a resilience‐based perspective on water for global sustainability. Ecohydrology 7, 1249–1261 (2014).

    Article  Google Scholar 

  18. Vörösmarty, C. J., Pahl-Wostl, C., Bunn, S. E. & Lawford, R. Global water, the anthropocene and the transformation of a science. Curr. Opin. Environ. Sustain. 5, 539–550 (2013).

    Article  Google Scholar 

  19. Sivapalan, M., Savenjie, H. H. & Blöschl, G. Socio-hydrology: a new science of people and water. Hydrol. Process. 26, 1270–1276 (2012).

    Article  Google Scholar 

  20. York, A. M., Sullivan, A. & Bausch, J. C. Cross-scale interactions of socio-hydrological subsystems: examining the frontier of common pool resource governance in Arizona. Environ. Res. Lett. 14, 125019 (2019).

    Article  Google Scholar 

  21. Montanari, A. et al. ‘Panta Rhei—Everything Flows’: change in hydrology and society—The IAHS Scientific Decade 2013-2022. Hydrol. Sci. J. 58, 1256–1275 (2013).

    Article  Google Scholar 

  22. Thompson, S. E. et al. Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene. Hydrol. Earth Syst. Sci. 17, 5013–5039 (2013).

    Article  Google Scholar 

  23. Savenije, H. H. G., Hoekstra, A. Y. & van der Zaag, P. Evolving water science in the Anthropocene. Hydrol. Earth Syst. Sci. 18, 319–332 (2014).

    Article  Google Scholar 

  24. Gain, A. K. et al. Social-ecological system approaches for water resources management. Int. J. Sustain. Dev. World Ecol. 28, 109–124 (2021).

    Article  Google Scholar 

  25. Scanlon, B. R. et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 4, 87–101 (2023).

    Article  Google Scholar 

  26. Te Wierik, S. A., Gupta, J., Cammeraat, E. L. & Artzy-Randrup, Y. A. The need for green and atmospheric water governance. Wiley Interdiscip. Rev. Water 7, e1406 (2020).

    Article  Google Scholar 

  27. Newig, J., Challies, E., Cotta, B., Lenschow, A. & Schilling-Vacaflor, A. Governing global telecoupling toward environmental sustainability. Ecol. Soc. 25, 21 (2020).

    Article  Google Scholar 

  28. Tran, T. A. & Tortajada, C. Responding to transboundary water challenges in the Vietnamese Mekong Delta: in search of institutional fit. Environ. Policy Gov. 32, 331–347 (2022).

    Article  Google Scholar 

  29. Wheeler, S., Ringler, C. & Garrick, D. Carbon’s social cost can’t be retrofitted to water. Nature 617, 252 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Erős, T., Hermoso, V. & Langhans, S. D. Leading the path toward sustainable freshwater management: reconciling challenges and opportunities in historical, hybrid and novel ecosystem types. WIREs Water 10, e1645 (2023).

    Article  Google Scholar 

  31. Epstein, G. et al. Institutional fit and the sustainability of social-ecological systems. Curr. Opin. Environ. Sustain. 14, 34–40 (2015).

    Article  Google Scholar 

  32. Whaley, L. Water governance research in a messy world: a review. Water Altern. 15, 218–250 (2022).

    Google Scholar 

  33. Cotta, B. et al. Environmental governance in globally telecoupled systems: mapping the terrain towards an integrated research agenda. Earth Syst. Gov. 13, 100142 (2022).

    Article  Google Scholar 

  34. Keys, P. W. et al. Anthropocene risk. Nat. Sustain. 2, 667–673 (2019).

    Article  Google Scholar 

  35. Coenen, J. et al. Toward spatial fit in the governance of global commodity flows. Ecol. Soc. 28, 24 (2023).

    Article  Google Scholar 

  36. de Loë, R. C. & Patterson, J. J. Rethinking water governance: moving beyond water-centric perspectives in a connected and changing world. Nat. Resour. J. 57, 75–100 (2017).

    Google Scholar 

  37. Falkenmark, M. & Rockström, J. The new blue and green water paradigm: breaking new ground for water resources planning and management. J. Water Resour. Plan. Manag. 132, 129–132 (2006).

    Article  Google Scholar 

  38. Jaramillo, F. & Destouni, G. Comment on ‘Planetary boundaries: guiding human development on a changing planet’. Science 348, 1217 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Wang-Erlandsson, L. et al. A planetary boundary for green water. Nat. Rev. Earth Environ. 3, 380–392 (2022).

    Article  Google Scholar 

  40. Di Baldassarre, G. et al. Perspectives on socio-hydrology: capturing feedbacks between physical and social processes. Water Resour. Res. 51, 4770–4781 (2015).

    Article  Google Scholar 

  41. Keys, P. W., Wang-Erlandsson, L. & Gordon, L. J. Revealing invisible water: moisture recycling as an ecosystem service. PLoS ONE 11, e0151993 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. D’Odorico, P. et al. The global food‐energy‐water nexus. Rev. Geophys. 56, 456–531 (2018).

    Article  Google Scholar 

  43. Rulli, M. C. et al. Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest. Renew. Sustain. Energy Rev. 105, 499–512 (2019).

    Article  Google Scholar 

  44. Wang, Y. et al. Complex regional telecoupling between people and nature revealed via quantification of trans‐boundary ecosystem service flows. People Nat. 4, 274–292 (2022).

    Article  Google Scholar 

  45. Liu, J., Yang, W. & Li, S. Framing ecosystem services in the telecoupled Anthropocene. Front. Ecol. Environ. 14, 27–36 (2016).

    Article  Google Scholar 

  46. Gleeson, T. et al. Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resour. Res. 56, e2019WR024957 (2020).

    Article  Google Scholar 

  47. Schumacher, D. L. et al. Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat. Geosci. 12, 712–717 (2019).

    Article  CAS  Google Scholar 

  48. Gimeno, L. et al. Recent progress on the sources of continental precipitation as revealed by moisture transport analysis. Earth Sci. Rev. 201, 103070 (2020).

    Article  Google Scholar 

  49. Keys, P. W., Wang-Erlandsson, L., Gordon, L., Galaz, V. & Ebbesson, J. Approaching moisture recycling governance. Glob. Environ. Change 45, 15–23 (2017).

    Article  Google Scholar 

  50. Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Article  Google Scholar 

  51. Li, H. et al. Land-atmosphere feedbacks contribute to crop failure in global rainfed breadbaskets. npj Clim. Atmos. Sci. 6, 51 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deines, J. M., Liu, X. & Liu, J. Telecoupling in urban water systems: an examination of Beijing’s imported water supply. Water Int. 41, 251–270 (2016).

    Article  Google Scholar 

  53. Zhang, J. et al. Complex effects of natural disasters on protected areas through altering telecouplings. Ecol. Soc. 23, 9 (2018).

    Article  Google Scholar 

  54. Hull, V. & Liu, J. Telecoupling: a new frontier for global sustainability. Ecol. Soc. 23, 41 (2018).

    Article  Google Scholar 

  55. D’Odorico, P. et al. Global virtual water trade and the hydrological cycle: patterns, drivers and socio-environmental impacts. Environ. Res. Lett. 14, 053001 (2019).

    Article  Google Scholar 

  56. Du, Y., Zhao, D., Qiu, S., Zhou, F. & Peng, J. How can virtual water trade reshape water stress pattern? A global evaluation based on the metacoupling perspective. Ecol. Indic. 145, 109712 (2022).

    Article  Google Scholar 

  57. Yang, W. et al. Urban water sustainability: framework and application. Ecol. Soc. 21, 4 (2016).

    Article  Google Scholar 

  58. Yao, Y., Sun, J., Tian, Y., Zheng, C. & Liu, J. Alleviating water scarcity and poverty in drylands through telecouplings: vegetable trade and tourism in northwest China. Sci. Total Environ. 741, 140387 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Mehta, L., Veldwisch, G. J. & Franco, J. Introduction to the Special Issue: Water Grabbing? Focus on the (re)appropriation of finite water resources. Water Altern. 5, 193–207 (2012).

    Google Scholar 

  60. Dell’Angelo, J., Rulli, M. C. & D’Odorico, P. The global water grabbing syndrome. Ecol. Econ. 143, 276–285 (2018).

    Article  Google Scholar 

  61. Huo, F., Jiang, Z., Ma, H., Li, Z. & Li, Y. Reduction in autumn precipitation over Southwest China by anthropogenic aerosol emissions from eastern China. Atmos. Res. 257, 105627 (2021).

    Article  CAS  Google Scholar 

  62. Sillmann, J. et al. Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. npj Clim. Atmos. Sci. 2, 24 (2019).

    Article  Google Scholar 

  63. Paul, S. et al. Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Sci. Rep. 6, 32177 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tuinenburg, O. A. Atmospheric Effects of Irrigation in Monsoon Climate: The Indian Subcontinent. PhD thesis, Wageningan Univ. (2013).

  65. Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huggins, X. et al. Hotspots for social and ecological impacts from freshwater stress and storage loss. Nat. Commun. 13, 439 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van Vliet, M. T. et al. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. 16, 024020 (2021).

    Article  Google Scholar 

  68. Franzke, C. L. et al. Perspectives on tipping points in integrated models of the natural and human Earth system: cascading effects and telecoupling. Environ. Res. Lett. 17, 015004 (2022).

    Article  Google Scholar 

  69. Zhao, Y., Wei, Y., Wu, B., Lu, Z. & Fu, L. A connectivity-based assessment framework for river basin ecosystem service management. Curr. Opin. Environ. Sustain. 33, 34–41 (2018).

    Article  Google Scholar 

  70. Levia, D. F. et al. Homogenization of the terrestrial water cycle. Nat. Geosci. 13, 656–658 (2020).

    Article  CAS  Google Scholar 

  71. Chen, Z. M. & Chen, G. Q. Virtual water accounting for the globalized world economy: national water footprint and international virtual water trade. Ecol. Indic. 28, 142–149 (2013).

    Article  Google Scholar 

  72. Moss, T. Spatial fit, from panacea to practice: implementing the EU Water Framework Directive. Ecol. Soc. 17, 2 (2012).

    Article  Google Scholar 

  73. Newig, J., Schulz, D. & Jager, N. W. Disentangling puzzles of spatial scales and participation in environmental governance—the case of governance re-scaling through the European Water Framework Directive. Environ. Manage. 58, 998–1014 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ison, R., Alexandra, J. & Wallis, P. Governing in the Anthropocene: are there cyber-systemic antidotes to the malaise of modern governance? Sustain. Sci. 13, 1209–1223 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Schmeier, S. The institutional design of river basin organizations—empirical findings from around the world. Int. J. River Basin Manag. 13, 51–72 (2015).

    Article  Google Scholar 

  76. Falkenmark, M., Jägerskog, A. & Schneider, K. Overcoming the land-water disconnect in water-scarce regions: time for IWRM to go contemporary. Int. J. Water Resour. Dev. 30, 391–408 (2014).

    Article  Google Scholar 

  77. Pahl-Wostl, C. Governance of the water-energy-food security nexus: a multi-level coordination challenge. Environ. Sci. Policy 92, 356–367 (2019).

    Article  Google Scholar 

  78. Granit, J. et al. A conceptual framework for governing and managing key flows in a source-to-sea continuum. Water Policy 19, 673–691 (2017).

    Article  Google Scholar 

  79. Rockström, J. et al. The planetary commons: a new paradigm for safeguarding Earth-regulating systems in the Anthropocene. Proc. Natl Acad. Sci. USA 121, e2301531121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Falkenmark, M. & Wang-Erlandsson, L. A water-function-based framework for understanding and governing water resilience in the Anthropocene. One Earth 4, 213–225 (2021).

    Article  Google Scholar 

  81. Gupta, J., Pahl-Wostl, C. & Zondervan, R. ‘Glocal’ water governance: a multi-level challenge in the Anthropocene. Curr. Opin. Environ. Sustain. 5, 573–580 (2013).

    Article  Google Scholar 

  82. Haller, T., Fokou, G., Mbeyale, G. & Meroka, P. How fit turns into misfit and back: institutional transformations of pastoral commons in African floodplains. Ecol. Soc. 18, 34 (2013).

    Article  Google Scholar 

  83. Meijerink, S. & Huitema, D. The institutional design, politics and effects of a bioregional approach: observations and lessons from 11 case studies of river basin organizations. Ecol. Soc. 22, 41 (2017).

    Article  Google Scholar 

  84. Garrick, D. E., Schlager, E., De Stefano, L. & Villamayor‐Tomas, S. Managing the cascading risks of droughts: Institutional adaptation in transboundary river basins. Earths Future 6, 809–827 (2018).

    Article  Google Scholar 

  85. Ingold, K. et al. Misfit between physical affectedness and regulatory embeddedness: the case of drinking water supply along the Rhine River. Glob. Environ. Change 48, 136–150 (2017).

    Article  Google Scholar 

  86. Curran, D., Gleeson, T. & Huggins, X. Applying a science-forward approach to groundwater regulatory design. Hydrogeol. J. 31, 853–871 (2023).

    Article  Google Scholar 

  87. Poelina, A. et al. Regeneration time: ancient wisdom for planetary wellbeing. Aust. J. Environ. Educ. 38, 397–414 (2022).

    Article  Google Scholar 

  88. Curley, A. & Smith, S. theorize global time and how do we center indigenous and black futurities? Environ. Plan. E Nat. Space 7, 166–188 (2023).

    Article  Google Scholar 

  89. Terry, N. et al. Inviting a decolonial praxis for future imaginaries of nature: introducing the Entangled Time Tree. Environ. Sci. Policy 151, 103615 (2024).

    Article  Google Scholar 

  90. Hertog, T. On the Origin of Time: The Instant Sunday Times Bestseller (Random House, 2023).

  91. Sturtevant, C. et al. Identifying scale-emergent, nonlinear, asynchronous processes of wetland methane exchange. J. Geophys. Res. Biogeosci. 121, 188–204 (2016).

    Article  CAS  Google Scholar 

  92. Keys, P. W. & Falkenmark, M. Green water and African sustainability. Food Secur. 10, 537–548 (2018).

    Article  Google Scholar 

  93. Rocha, J. C., Peterson, G., Bodin, Ö. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Krueger, E. H. et al. Resilience dynamics of urban water supply security and potential of tipping points. Earths Future 7, 1167–1191 (2019).

    Article  Google Scholar 

  95. Rockström, J. et al. Identifying a safe and just corridor for people and the planet. Earths Future 9, e2020EF001866 (2021).

    Article  Google Scholar 

  96. Barnett, J. et al. From barriers to limits to climate change adaptation: path dependency and the speed of change. Ecol. Soc. 20, 11 (2015).

    Article  Google Scholar 

  97. Scott, C. A., Shrestha, P. P. & Lutz-Ley, A. N. The re-adaptation challenge: limits and opportunities of existing infrastructure and institutions in adaptive water governance. Curr. Opin. Environ. Sustain. 44, 104–112 (2020).

    Article  Google Scholar 

  98. Medeiros, P. & Sivapalan, M. From hard-path to soft-path solutions: slow-fast dynamics of human adaptation to droughts in a water scarce environment. Hydrol. Sci. J. 65, 1803–1814 (2020).

    Article  Google Scholar 

  99. Peterson, T. J., Saft, M., Peel, M. C. & John, A. Watersheds may not recover from drought. Science 372, 745–749 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Di Baldassarre, G. et al. Water shortages worsened by reservoir effects. Nat. Sustain. 1, 617–622 (2018).

    Article  Google Scholar 

  101. Punzo, G. & Arbabi, H. The intrinsic cybernetics of large complex systems and how droughts turn into floods. Sci. Total Environ. 859, 159979 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Delaroche, M., Dias, V. M. & Massoca, P. E. The intertemporal governance challenges of Brazil’s Amazon: managing soybean expansion, deforestation rates and urban floods. Sustain. Sci. 18, 43–58 (2023).

    Article  Google Scholar 

  103. He, X. et al. Integrated approaches to understanding and reducing drought impact on food security across scales. Curr. Opin. Environ. Sustain. 40, 43–54 (2019).

    Article  Google Scholar 

  104. Qi, W., Feng, L., Yang, H. & Liu, J. Increasing concurrent drought probability in global main crop production countries. Geophys. Res. Lett. 49, e2021GL097060 (2022).

    Article  Google Scholar 

  105. Ye, Y. & Qian, C. Conditional attribution of climate change and atmospheric circulation contributing to the record-breaking precipitation and temperature event of summer 2020 in southern China. Environ. Res. Lett. 16, 044058 (2021).

    Article  Google Scholar 

  106. Chatzopoulos, T., Domínguez, I. P., Toreti, A., Adenäuer, M. & Zampieri, M. Potential impacts of concurrent and recurrent climate extremes on the global food system by 2030. Environ. Res. Lett. 16, 124021 (2021).

    Article  Google Scholar 

  107. Niggli, L., Huggel, C., Muccione, V., Neukom, R. & Salzmann, N. Towards improved understanding of cascading and interconnected risks from concurrent weather extremes: analysis of historical heat and drought extreme events. PLoS Clim. 1, e0000057 (2022).

    Article  Google Scholar 

  108. Anderson, W. B., Seager, R., Baethgen, W., Cane, M. & You, L. Synchronous crop failures and climate-forced production variability. Sci. Adv. 5, eaaw1976 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mehrabi, Z. & Ramankutty, N. Synchronized failure of global crop production. Nat. Ecol. Evol. 3, 780–786 (2019).

    Article  PubMed  Google Scholar 

  110. Kornhuber, K. et al. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Change 10, 48–53 (2019).

    Article  Google Scholar 

  111. Posada-Marín, J. A., Arias, P. A., Jaramillo, F. & Salazar, J. F. Global impacts of El Niño on terrestrial moisture recycling. Geophys. Res. Lett. 50, e2023GL103147 (2023).

    Article  Google Scholar 

  112. Di Capua, G. et al. Drivers behind the summer 2010 wave train leading to Russian heatwave and Pakistan flooding. npj Clim. Atmos. Sci. 4, 55 (2021).

    Article  Google Scholar 

  113. Nyström, M. et al. Anatomy and resilience of the global production ecosystem. Nature 575, 98–108 (2019).

    Article  PubMed  Google Scholar 

  114. Nagabhatla, N., Cassidy-Neumiller, M., Francine, N. N. & Maatta, N. Water, conflicts and migration and the role of regional diplomacy: Lake Chad, Congo Basin and the Mbororo pastoralist. Environ. Sci. Policy 122, 35–48 (2021).

    Article  Google Scholar 

  115. Chelleri, L., Waters, J. J., Olazabal, M. & Minucci, G. Resilience trade-offs: addressing multiple scales and temporal aspects of urban resilience. Environ. Urban. 27, 181–198 (2015).

    Article  Google Scholar 

  116. Trimble, M. et al. How do basin committees deal with water crises? Reflections for adaptive water governance from South America. Ecol. Soc. 27, 42 (2022).

    Article  Google Scholar 

  117. Piemontese, L. et al. Over-reliance on water infrastructure can hinder climate resilience in pastoral drylands. Nat. Clim. Change 14, 267–274 (2024).

    Article  Google Scholar 

  118. Nguyen, M. N. et al. An understanding of water governance systems in responding to extreme droughts in the Vietnamese Mekong Delta. Int. J. Water Resour. Dev. 37, 256–277 (2021).

    Article  Google Scholar 

  119. Fanta, V., Šálek, M. & Sklenicka, P. How long do floods throughout the millennium remain in the collective memory?. Nat. Commun. 10, 1105 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Song, S. et al. Improving representation of collective memory in socio‐hydrological models and new insights into flood risk management. J. Flood Risk Manag. 14, e12679 (2021).

    Article  Google Scholar 

  121. Garcia, M. et al. Weathering water extremes and cognitive biases in a changing climate. Water Secur. 15, 100110 (2022).

    Article  Google Scholar 

  122. Bukhari, H. & Brown, C. A comparative review of decision support tools routinely used by selected transboundary River Basin Organisations. Afr. J. Aquat. Sci. 47, 318–337 (2022).

    Article  Google Scholar 

  123. Lemos, M. C., Puga, B. P., Formiga-Johnsson, R. M. & Seigerman, C. K. Building on adaptive capacity to extreme events in Brazil: water reform, participation and climate information across four river basins. Reg. Environ. Change 20, 53 (2020).

    Article  Google Scholar 

  124. Stoler, J. et al. The role of water in environmental migration. Wiley Interdiscip. Rev. Water 9, e1584 (2022).

    Article  Google Scholar 

  125. Hussein, H. et al. Syrian refugees, water scarcity and dynamic policies: how do the new refugee discourses impact water governance debates in Lebanon and Jordan? Water 12, 325 (2020).

    Article  Google Scholar 

  126. Cosens, B. et al. Governing complexity: integrating science, governance and law to manage accelerating change in the globalized commons. Proc. Natl Acad. Sci. USA 118, e2102798118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Keys, P. W. et al. The dry sky: future scenarios for humanity’s modification of the atmospheric water cycle. Glob. Sustain. 7, e11 (2024).

    Article  Google Scholar 

  128. Tanguay, L. et al. Opportunities for and barriers to anticipatory governance of two lake social-ecological systems in Germany and Canada. People Nat. 5, 911–928 (2023).

    Article  Google Scholar 

  129. Herrfahrdt-Pähle, E. et al. Sustainability transformations: socio-political shocks as opportunities for governance transitions. Glob. Environ. Change 63, 102097 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Schmidt, J. J. & Peppard, C. Z. Water ethics on a human‐dominated planet: rationality, context and values in global governance. Wiley Interdiscip. Rev. Water 1, 533–547 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the following support for making this work possible. M.-L.M., O.B., L.W.-E. and J.R. are funded by FORMAS 2022-02089. M.-L.M., O.B. and L.W.-E. are also funded by the Marianne and Marcus Wallenberg Foundation. M.-L.M is also funded by FORMAS 2023-01601. O.B. is also funded by FORMAS Dnr: 2020-01551 and The Kamprad Family Foundation 20200092. L.W.-E. is also funded by Formas 2019-01220, 2022-02089, 2023-0310 and 2023-00321, IKEA Foundation, and Marcus and Amalia Wallenberg Foundation, Horizon Europe (101081661), and the European Research Council (ERC; ERC-2016-ADG-743080). J.E. is funded by the Swedish Research Council (VR-2019-00508). F.J. is funded by the Swedish Research Council for Sustainable Development FORMAS grants 2022-02148 and 2022-01570. S.J.L. is funded by the Australian Government through the Australian Research Council Future Fellowship FT200100381 and the Swedish Research Council FORMAS grant 2020-00371. M.M.G. is funded by the Swedish Research Council, Vetenskaprådet grant 2018-05792. R.M. is funded by Biodiversa+, the European Biodiversity Partnership co-funded by the European Commission (GA N°101052342) and the funding organization FORMAS. We also benefited from the insights of colleagues who provided feedback on presentations of the ideas synthesized in the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the original conception of the paper and its framing. M.-L.M. led the design, analysis, writing and revisions, and L.W.-E., O.B., J.E., F.J., K.J., C.F., P.K., S.J.L., M.M.G., R.M., N.M., A.P. and J.R. all contributed to the analysis, writing and revisions. A.P. led the design of the figure illustration.

Corresponding author

Correspondence to Michele-Lee Moore.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Ray Ison and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, ML., Wang-Erlandsson, L., Bodin, Ö. et al. Moving from fit to fitness for governing water in the Anthropocene. Nat Water 2, 511–520 (2024). https://doi.org/10.1038/s44221-024-00257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00257-y

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene