Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sustainable wastewater management through nitrogen-cycling microorganisms

Abstract

Nitrogen-cycling microorganisms play essential roles in biological wastewater treatment, where nitrogen is removed with substantial energy and chemical consumption and greenhouse gas emissions. The discoveries of new nitrogen-cycling microorganisms paved the way for a remarkable paradigm shift from energy-negative and carbon-positive to energy-positive and carbon-neutral wastewater management. This Review reflects on the trajectory of these microbial discoveries and summarizes the technological progress enabled by them thus far. By bridging the gap between environmental microbiologists and water engineers, who are both interested in these new nitrogen-cycling microorganisms but with different focuses and expertise, this Review acknowledges the challenges encountered and illuminates the exciting future ahead. The continued close collaboration between scientists and engineers will keep redefining the landscape of wastewater management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A snapshot of a dynamically evolving narrative for N-cycling microorganisms.
Fig. 2: Genomic comparisons of aerobic ammonia and nitrite oxidizers.
Fig. 3: Electron transfers from inorganic and organic electron donors to nitrogen-reducing pathways.
Fig. 4: Opportunities for new N-cycling microorganisms to revolutionize wastewater management in a NICER paradigm.

Similar content being viewed by others

References

  1. Kuypers, M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

    PubMed  CAS  Google Scholar 

  2. Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).

    PubMed  CAS  Google Scholar 

  3. Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Phil. Trans. R. Soc. B 368, 20130164 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. Munasinghe-Arachchige, S. P. & Nirmalakhandan, N. Nitrogen-fertilizer recovery from the centrate of anaerobically digested sludge. Environ. Sci. Technol. Lett. 7, 450–459 (2020).

    CAS  Google Scholar 

  5. Wuhrmann, K. Nitrogen removal in sewage treatment processes: with 9 figures in the text and on 2 folders. Int. Ver. Theor. Angew. Limnol. 15, 580–596 (1964).

    CAS  Google Scholar 

  6. Ludzack, F. & Ettinger, M. Controlling operation to minimize activated sludge effluent nitrogen. J. Water Pollut. Control Fed. 34, 920–931 (1962).

    CAS  Google Scholar 

  7. Treusch, A. H. et al. Novel genes for nitrite reductase and Amo‐related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ. Microbiol. 7, 1985–1995 (2005).

    PubMed  CAS  Google Scholar 

  8. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    PubMed  CAS  Google Scholar 

  9. Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).

    PubMed  Google Scholar 

  10. Qin, W. et al. Alternative strategies of nutrient acquisition and energy conservation map to the biogeography of marine ammonia-oxidizing archaea. ISME J. 14, 2595–2609 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Könneke, M. et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc. Natl Acad. Sci. USA 111, 8239–8244 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. Jung, M.-Y. et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 16, 272–283 (2022).

    PubMed  CAS  Google Scholar 

  13. Martens-Habbena, W., Berube, P. M., Urakawa, H., José, R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461, 976–979 (2009).

    PubMed  CAS  Google Scholar 

  14. Kozlowski, J. A., Stieglmeier, M., Schleper, C., Klotz, M. G. & Stein, L. Y. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME J 10, 1836–1845 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Carini, P., Dupont, C. L. & Santoro, A. E. Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environ. Microbiol. 20, 2112–2124 (2018).

    PubMed  CAS  Google Scholar 

  16. Walker, C. B. et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl Acad. Sci. USA 107, 8818–8823 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Stein, L. Y. et al. Comment on “A critical review on nitrous oxide production by ammonia-oxidizing archaea” by Lan Wu, Xueming Chen, Wei Wei, Yiwen Liu, Dongbo Wang, and Bing-Jie Ni. Environ. Sci. Technol. 55, 797–798 (2020).

    PubMed  Google Scholar 

  18. Stieglmeier, M. et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. ISME J. 8, 1135–1146 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Jung, M.-Y. et al. Indications for enzymatic denitrification to N2O at low pH in an ammonia-oxidizing archaeon. ISME J. 13, 2633–2638 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Wan, X. S. et al. Pathways of N2O production by marine ammonia-oxidizing archaea determined from dual-isotope labeling. Proc. Natl Acad. Sci. USA 120, e2220697120 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Costa, E., Pérez, J. & Kreft, J.-U. Why is metabolic labour divided in nitrification? Trends Microbiol 14, 213–219 (2006).

    PubMed  CAS  Google Scholar 

  22. Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. van Kessel, M. A. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Palomo, A. et al. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox. Nitrospira. ISME J. 12, 1779–1793 (2018).

    PubMed  Google Scholar 

  25. Kits, K. D. et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nat. Commun. 10, 1836 (2019).

    PubMed  PubMed Central  Google Scholar 

  26. Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Sakoula, D. et al. Enrichment and physiological characterization of a novel comammox Nitrospira indicates ammonium inhibition of complete nitrification. ISME J. 15, 1010–1024 (2021).

    PubMed  CAS  Google Scholar 

  28. Fumasoli, A., Morgenroth, E. & Udert, K. M. Modeling the low pH limit of Nitrosomonas eutropha in high-strength nitrogen wastewaters. Water Res 83, 161–170 (2015).

    PubMed  CAS  Google Scholar 

  29. Hayatsu, M. et al. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. ISME J. 11, 1130–1141 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Picone, N. et al. Ammonia oxidation at pH 2.5 by a new gammaproteobacterial ammonia-oxidizing bacterium. ISME J. 15, 1150–1164 (2021).

    PubMed  CAS  Google Scholar 

  31. Wang, Z. et al. Robust nitritation sustained by acid-tolerant ammonia-oxidizing bacteria. Environ. Sci. Technol. 55, 2048–2056 (2021).

    PubMed  CAS  Google Scholar 

  32. Li, J. et al. Achieving stable partial nitritation in an acidic nitrifying bioreactor. Environ. Sci. Technol. 54, 456–463 (2019).

    PubMed  Google Scholar 

  33. Fumasoli, A. et al. Growth of Nitrosococcus-related ammonia oxidizing bacteria coincides with extremely low pH values in wastewater with high ammonia content. Environ. Sci. Technol. 51, 6857–6866 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Krulwich, T. A., Sachs, G. & Padan, E. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9, 330–343 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Wang, Z. et al. Stoichiometric and kinetic characterization of an acid-tolerant ammonia oxidizer ‘Candidatus Nitrosoglobus’. Water Res 196, 117026 (2021).

    PubMed  CAS  Google Scholar 

  36. Ni, G. et al. Metabolic interactions of a minimal bacterial consortium drive robust nitritation at acidic pH. Preprint at BioRxiv https://doi.org/10.1101/2023.10.29.564480 (2023).

  37. Blum, J. M. et al. The pH dependency of N‐converting enzymatic processes, pathways and microbes: effect on net N2O production. Environ. Microbiol. 20, 1623–1640 (2018).

    PubMed  Google Scholar 

  38. Su, Q., Domingo-Félez, C., Jensen, M. M. & Smets, B. F. Abiotic nitrous oxide (N2O) production is strongly pH dependent, but contributes little to overall N2O emissions in biological nitrogen removal systems. Environ. Sci. Technol. 53, 3508–3516 (2019).

    PubMed  CAS  Google Scholar 

  39. Kits, K. D., Klotz, M. G. & Stein, L. Y. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ. Microbiol. 17, 3219–3232 (2015).

    PubMed  CAS  Google Scholar 

  40. Poret-Peterson, A. T., Graham, J. E., Gulledge, J. & Klotz, M. G. Transcription of nitrification genes by the methane-oxidizing bacterium, Methylococcus capsulatus strain Bath. ISME J 2, 1213–1220 (2008).

    PubMed  CAS  Google Scholar 

  41. Daebeler, A. et al. Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira. ISME J. 14, 2967–2979 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Hankinson, T. & Schmidt, E. An acidophilic and a neutrophilic Nitrobacter strain isolated from the numerically predominant nitrite-oxidizing population of an acid forest soil. Appl. Environ. Microb. 54, 1536–1540 (1988).

    CAS  Google Scholar 

  43. Laloo, A. E. Mechanism of Action of Free Nitrous Acid (FNA) on Nitrifiers. PhD Thesis, Univ. Queensland (2019).

  44. Wu, M. R. et al. Novel Alcaligenes ammonioxydans sp. nov. from wastewater treatment sludge oxidizes ammonia to N2 with a previously unknown pathway. Environ. Microbiol. 23, 6965–6980 (2021).

    PubMed  CAS  Google Scholar 

  45. Lenferink, W. B., Bakken, L. R., Jetten, M. S. M., van Kessel, M. A. H. J. & Lücker, S. Hydroxylamine production by Alcaligenes faecalis challenges the paradigm of heterotrophic nitrification. Sci. Adv 10, eadl3587 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Mulder, A., Vandegraaf, A. A., Robertson, L. A. & Kuenen, J. G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol. Ecol 16, 177–183 (1995).

    CAS  Google Scholar 

  47. Strous, M. et al. Missing lithotroph identified as new planctomycete. Nature 400, 446–449 (1999).

    PubMed  CAS  Google Scholar 

  48. Oshiki, M., Ali, M., Shinyako-Hata, K., Satoh, H. & Okabe, S. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by ‘Candidatus Brocadia sinica’. Environ. Microbiol. 18, 3133–3143 (2016).

    PubMed  CAS  Google Scholar 

  49. Lawson, C. E. et al. Metabolic network analysis reveals microbial community interactions in anammox granules. Nat. Commun. 8, 15416 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Li, J., Liu, T., McIlroy, S. J., Tyson, G. W. & Guo, J. Phylogenetic and metabolic diversity of microbial communities performing anaerobic ammonium and methane oxidations under different nitrogen loadings. ISME Commun 3, 39 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Kartal, B. et al. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol. Rev. 37, 428–461 (2013).

    PubMed  CAS  Google Scholar 

  52. Dietl, A. et al. The inner workings of the hydrazine synthase multiprotein complex. Nature 527, 394–397 (2015).

    PubMed  CAS  Google Scholar 

  53. Shaw, D. R. et al. Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria. Nat. Commun. 11, 2058 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Strous, M. et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440, 790–794 (2006).

    PubMed  Google Scholar 

  55. Clément, J.-C., Shrestha, J., Ehrenfeld, J. G. & Jaffé, P. R. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol. Biochem. 37, 2323–2328 (2005).

    Google Scholar 

  56. Ding, L.-J., An, X.-L., Li, S., Zhang, G.-L. & Zhu, Y.-G. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. Environ. Sci. Technol. 48, 10641–10647 (2014).

    PubMed  CAS  Google Scholar 

  57. Yang, W. H., Weber, K. A. & Silver, W. L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat. Geosci. 5, 538–541 (2012).

    CAS  Google Scholar 

  58. Huang, S. & Jaffé, P. R. Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6. PLoS ONE 13, e0194007 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Jaffé, P. R. et al. Defluorination of PFAS by Acidimicrobium sp. strain A6 and potential applications for remediation. Method Enzymol. 696, 287–320 (2024).

    Google Scholar 

  60. Liu, T., Chen, D., Li, X. & Li, F. Microbially mediated coupling of nitrate reduction and Fe (II) oxidation under anoxic conditions. FEMS Microbiol. Ecol 95, fiz030 (2019).

    PubMed  CAS  Google Scholar 

  61. Zhang, X., Li, A., Szewzyk, U. & Ma, F. Improvement of biological nitrogen removal with nitrate-dependent Fe (II) oxidation bacterium Aquabacterium parvum B6 in an up-flow bioreactor for wastewater treatment. Bioresour. Technol. 219, 624–631 (2016).

    PubMed  CAS  Google Scholar 

  62. Muyzer, G., Kuenen, J. G. & Robertson, L. A. in The Prokaryotes Prokaryotic Physiology and Biochemistry (eds Rosenberg, E. et al.) 555–588 (2013).

  63. Szekeres, S., Kiss, I., Kalman, M. & Soares, M. I. M. Microbial population in a hydrogen-dependent denitrification reactor. Water Res 36, 4088–4094 (2002).

    PubMed  CAS  Google Scholar 

  64. Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).

    PubMed  CAS  Google Scholar 

  65. Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548 (2010).

    PubMed  CAS  Google Scholar 

  66. Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).

    PubMed  CAS  Google Scholar 

  67. Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. USA 113, 12792–12796 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Yao, X. et al. Methane-dependent complete denitrification by a single Methylomirabilis bacterium. Nat. Microbiol. 9, 464–476 (2024).

    PubMed  Google Scholar 

  69. Wu, M. et al. Anaerobic oxidation of propane coupled to nitrate reduction by a lineage within the class Symbiobacteriia. Nat. Commun. 13, 6115 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Wu, M. et al. Nitrate-driven anaerobic oxidation of ethane and butane by bacteria. ISME J 18, wrad011 (2024).

    PubMed  PubMed Central  Google Scholar 

  71. Garrido-Amador, P. et al. Enrichment and characterization of a nitric oxide-reducing microbial community in a continuous bioreactor. Nat. Microbiol. 8, 1574–1586 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Conthe, M. et al. Life on N2O: deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture. ISME J. 12, 1142–1153 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Yoon, S., Nissen, S., Park, D., Sanford, R. A. & Löffler, F. E. Nitrous oxide reduction kinetics distinguish bacteria harboring clade I nosZ from those harboring clade II nosZ. Appl. Environ. Microb. 82, 3793–3800 (2016).

    CAS  Google Scholar 

  74. Jones, C. M., Graf, D. R. H., Bru, D., Philippot, L. & Hallin, S. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J 7, 417–426 (2013).

    PubMed  CAS  Google Scholar 

  75. Han, P. et al. N2O and NOy production by the comammox bacterium Nitrospira inopinata in comparison with canonical ammonia oxidizers. Water Res. 190, 116728 (2021).

    PubMed  CAS  Google Scholar 

  76. Conthe, M. et al. Denitrification as an N2O sink. Water Res. 151, 381–387 (2019).

    PubMed  CAS  Google Scholar 

  77. Valk, L. C. et al. Exploring the microbial influence on seasonal nitrous oxide concentration in a full-scale wastewater treatment plant using metagenome assembled genomes. Water Res. 219, 118563 (2022).

    PubMed  CAS  Google Scholar 

  78. Qi, C. et al. Organic carbon determines nitrous oxide consumption activity of clade I and II nosZ bacteria: genomic and biokinetic insights. Water Res. 209, 117910 (2022).

    PubMed  CAS  Google Scholar 

  79. Suenaga, T. et al. Enrichment, isolation, and characterization of high-affinity N2O-reducing bacteria in a gas-permeable membrane reactor. Environ. Sci. Technol. 53, 12101–12112 (2019).

    PubMed  CAS  Google Scholar 

  80. Suenaga, T. et al. Immobilization of Azospira sp. strain I13 by gel entrapment for mitigation of N2O from biological wastewater treatment plants: biokinetic characterization and modeling. J. Biosci. Bioeng. 126, 213–219 (2018).

    PubMed  CAS  Google Scholar 

  81. Liu, T. et al. Simultaneous removal of dissolved methane and nitrogen from synthetic mainstream anaerobic effluent. Environ. Sci. Technol. 54, 7629–7638 (2020).

    PubMed  CAS  Google Scholar 

  82. Liu, T., Hu, S., Yuan, Z. & Guo, J. Simultaneous dissolved methane and nitrogen removal from low-strength wastewater using anaerobic granule-based sequencing batch reactor. Water Res 242, 120194 (2023).

    PubMed  CAS  Google Scholar 

  83. Silva-Teira, A., Sanchez, A., Buntner, D., Rodriguez-Hernandez, L. & Garrido, J. M. Removal of dissolved methane and nitrogen from anaerobically treated effluents at low temperature by MBR post-treatment. Chem. Eng. J. 326, 970–979 (2017).

    CAS  Google Scholar 

  84. Chen, X. et al. A new approach to simultaneous ammonium and dissolved methane removal from anaerobic digestion liquor: a model-based investigation of feasibility. Water Res. 85, 295–303 (2015).

    PubMed  CAS  Google Scholar 

  85. Lu, Y. et al. Coupling partial nitritation, anammox and n-DAMO in a membrane aerated biofilm reactor for simultaneous dissolved methane and nitrogen removal. Water Res. 255, 121511 (2024).

    PubMed  CAS  Google Scholar 

  86. Tang, C. J. et al. Performance of high-loaded anammox UASB reactors containing granular sludge. Water Res. 45, 135–144 (2011).

    PubMed  CAS  Google Scholar 

  87. Fan, S.-Q. et al. Granular sludge coupling nitrate/nitrite dependent anaerobic methane oxidation with anammox: from proof-of-concept to high rate nitrogen removal. Environ. Sci. Technol. 54, 297–305 (2019).

    PubMed  Google Scholar 

  88. Niu, C. et al. Superior mainstream partial nitritation in an acidic membrane-aerated biofilm reactor. Water Res. 257, 121692 (2024).

    PubMed  CAS  Google Scholar 

  89. Cao, Y., van Loosdrecht, M. C. M. & Daigger, G. T. Mainstream partial nitritation–anammox in municipal wastewater treatment: status, bottlenecks, and further studies. Appl. Microbiol. Biotechnol. 101, 1365–1383 (2017).

    PubMed  CAS  Google Scholar 

  90. Wang, Z. et al. Acidic aerobic digestion of anaerobically-digested sludge enabled by a novel ammonia-oxidizing bacterium. Water Res. 194, 116962 (2021).

    PubMed  CAS  Google Scholar 

  91. Zhang, L. et al. Increasing capacity of an anaerobic sludge digester through FNA pre-treatment of thickened waste activated sludge. Water Res. 149, 406–413 (2019).

    PubMed  CAS  Google Scholar 

  92. Hu, Z. et al. Adaptation of anammox process for nitrogen removal from acidic nitritation effluent in a low pH moving bed biofilm reactor. Water Res. 243, 120370 (2023).

    PubMed  CAS  Google Scholar 

  93. Xia, J., Ni, G., Wang, Y., Zheng, M. & Hu, S. Mycolicibacter acidiphilus sp. nov., an extremely acid-tolerant member of the genus Mycolicibacter. Int. J. Syst. Evol. Micr 72, 005419 (2022).

    CAS  Google Scholar 

  94. Godfrey, B. et al. Co-immobilization of AOA strains with anammox bacteria in three different synthetic bio-granules maintained under two substrate-level conditions. Chemosphere 342, 140192 (2023).

    PubMed  CAS  Google Scholar 

  95. Li, B. et al. Mainstream nitrogen removal from low temperature and low ammonium strength municipal wastewater using hydrogel-encapsulated comammox and anammox. Water Res. 242, 120303 (2023).

    PubMed  CAS  Google Scholar 

  96. Shao, Y.-H. & Wu, J.-H. Comammox Nitrospira species dominate in an efficient partial nitrification–anammox bioreactor for treating ammonium at low loadings. Environ. Sci. Technol. 55, 2087–2098 (2021).

    PubMed  CAS  Google Scholar 

  97. Lim, Z. K. et al. Versatility of nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO): first demonstration with real wastewater. Water Res. 194, 116912 (2021).

    PubMed  CAS  Google Scholar 

  98. Deng, Y.-F. et al. Coupling sulfur-based denitrification with anammox for effective and stable nitrogen removal: a review. Water Res. 224, 119051 (2022).

    PubMed  CAS  Google Scholar 

  99. Deng, Y.-F. et al. Exploration and verification of the feasibility of sulfide-driven partial denitrification coupled with anammox for wastewater treatment. Water Res. 193, 116905 (2021).

    PubMed  CAS  Google Scholar 

  100. Feng, F. et al. Quantification of enhanced nitrogen removal pathways of pyrite interaction with anammox sludge system. Chem. Eng. J. 459, 141519 (2023).

    CAS  Google Scholar 

  101. Yang, Y., Xiao, C., Lu, J. & Zhang, Y. Fe (III)/Fe (II) forwarding a new anammox-like process to remove high-concentration ammonium using nitrate as terminal electron acceptor. Water Res 172, 115528 (2020).

    PubMed  CAS  Google Scholar 

  102. Liu, W. et al. Temperature-resilient superior performances by coupling partial nitritation/anammox and iron-based denitrification with granular formation. Water Res. 254, 121424 (2024).

    PubMed  CAS  Google Scholar 

  103. Men, Y. et al. Biotransformation of two pharmaceuticals by the ammonia-oxidizing Archaeon Nitrososphaera gargensis. Environ. Sci. Technol. 50, 4682–4692 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Han, P. et al. Specific micropollutant biotransformation pattern by the comammox bacterium Nitrospira inopinata. Environ. Sci. Technol. 53, 8695–8705 (2019).

    PubMed  CAS  Google Scholar 

  105. Martínez-Quintela, M. et al. Cometabolic removal of organic micropollutants by enriched nitrite-dependent anaerobic methane oxidizing cultures. J. Hazard. Mater. 402, 123450 (2021).

    PubMed  Google Scholar 

  106. Huang, J. et al. Unraveling pharmaceuticals removal in a sulfur-driven autotrophic denitrification process: performance, kinetics and mechanisms. Chin. Chem. Lett. 34, 107433 (2023).

    CAS  Google Scholar 

  107. Cheng, Z. et al. Study of free nitrous acid (FNA)-based elimination of sulfamethoxazole: kinetics, transformation pathways, and toxicity assessment. Water Res. 189, 116629 (2021).

    PubMed  CAS  Google Scholar 

  108. Liu, W. et al. Increasing the removal efficiency of antibiotic resistance through anaerobic digestion with free nitrous acid pretreatment. J. Hazard. Mater. 438, 129535 (2022).

    PubMed  CAS  Google Scholar 

  109. Cai, C. et al. Acetate production from anaerobic oxidation of methane via intracellular storage compounds. Environ. Sci. Technol. 53, 7371–7379 (2019).

    PubMed  CAS  Google Scholar 

  110. Zhang, J. et al. Feasibility of methane bioconversion to methanol by acid-tolerant ammonia-oxidizing bacteria. Water Res. 197, 117077 (2021).

    PubMed  CAS  Google Scholar 

  111. Larsen, T. A., Riechmann, M. E. & Udert, K. M. State of the art of urine treatment technologies: a critical review. Water Res. X 13, 100114 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Zuo, Z. et al. The advantage of a two-stage nitrification method for fertilizer recovery from human urine. Water Res. 235, 119932 (2023).

    PubMed  CAS  Google Scholar 

  113. Larsen, T. A., Gruendl, H. & Binz, C. The potential contribution of urine source separation to the SDG agenda—a review of the progress so far and future development options. Environ. Sci. Water Res. Technol. 7, 1161–1176 (2021).

    CAS  Google Scholar 

  114. Zuo, Z., Zheng, M., Liu, T., Peng, Y. & Yuan, Z. New perspectives in free nitrous acid (FNA) uses for sustainable wastewater management. Front. Environ. Sci. Eng. 18, 26 (2024).

    CAS  Google Scholar 

  115. Scherson, Y. D. et al. Nitrogen removal with energy recovery through N2O decomposition. Energy Environ. Sci. 6, 241–248 (2013).

    CAS  Google Scholar 

  116. Oshiki, M. et al. Biosynthesis of hydrazine from ammonium and hydroxylamine using an anaerobic ammonium oxidizing bacterium. Biotechnol. Lett. 42, 979–985 (2020).

    PubMed  CAS  Google Scholar 

  117. Straka, L. L., Meinhardt, K. A., Bollmann, A., Stahl, D. A. & Winkler, M.-K. Affinity informs environmental cooperation between ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria. ISME J 13, 1997–2004 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Belser, L. & Schmidt, E. Growth and oxidation kinetics of three genera of ammonia oxidizing nitrifiers. FEMS Microbiol. Lett 7, 213–216 (1980).

    CAS  Google Scholar 

  119. Boon, B. & Laudelout, H. Kinetics of nitrite oxidation by Nitrobacter winogradskyi. Biochem. J 85, 440 (1962).

    PubMed  PubMed Central  CAS  Google Scholar 

  120. Winkler, M. K. et al. Modelling simultaneous anaerobic methane and ammonium removal in a granular sludge reactor. Water Res. 73, 323–331 (2015).

    PubMed  CAS  Google Scholar 

  121. He, L. et al. A methanotrophic bacterium to enable methane removal for climate mitigation. Proc. Natl Acad. Sci. USA 120, e2310046120 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Zhao, J. et al. Selective enrichment of comammox Nitrospira in a moving bed biofilm reactor with sufficient oxygen supply. Environ. Sci. Technol. 56, 13338–13346 (2022).

    PubMed  CAS  Google Scholar 

  123. Cotto, I. et al. Long solids retention times and attached growth phase favor prevalence of comammox bacteria in nitrogen removal systems. Water Res. 169, 115268 (2020).

    PubMed  CAS  Google Scholar 

  124. Liu, C. et al. Rapid formation of granules coupling n-DAMO and anammox microorganisms to remove nitrogen. Water Res. 194, 116963 (2021).

    PubMed  CAS  Google Scholar 

  125. Liu, T. et al. Temperature-tolerated mainstream nitrogen removal by anammox and nitrite/nitrate-dependent anaerobic methane oxidation in a membrane biofilm reactor. Environ. Sci. Technol. 54, 3012–3021 (2020).

    PubMed  CAS  Google Scholar 

  126. Li, J. et al. Selective enrichment and metagenomic analysis of three novel comammox Nitrospira in a urine-fed membrane bioreactor. ISME Commun. 1, 7 (2021).

    PubMed  PubMed Central  Google Scholar 

  127. Allegue, T., Arias, A., Fernandez-Gonzalez, N., Omil, F. & Garrido, J. M. Enrichment of nitrite-dependent anaerobic methane oxidizing bacteria in a membrane bioreactor. Chem. Eng. J. 347, 721–730 (2018).

    CAS  Google Scholar 

  128. Lotti, T., Kleerebezem, R., Abelleira-Pereira, J., Abbas, B. & van Loosdrecht, M. Faster through training: the anammox case. Water Res. 81, 261–268 (2015).

    PubMed  CAS  Google Scholar 

  129. Zhang, L. et al. Maximum specific growth rate of anammox bacteria revisited. Water Res. 116, 296–303 (2017).

    PubMed  CAS  Google Scholar 

  130. Guerrero-Cruz, S. et al. Key physiology of a nitrite-dependent methane-oxidizing enrichment culture. Appl. Environ. Microb. 85, 00124–00119 (2019).

    Google Scholar 

  131. Kartal, B. et al. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ. Microbiol. 9, 635–642 (2007).

    PubMed  CAS  Google Scholar 

  132. Guven, D. et al. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microb. 71, 1066–1071 (2005).

    Google Scholar 

  133. Lawson, C. E. et al. Autotrophic and mixotrophic metabolism of an anammox bacterium revealed by in vivo 13C and 2H metabolic network mapping. ISME J. 15, 673–687 (2021).

    PubMed  CAS  Google Scholar 

  134. Tourna, M. et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl Acad. Sci. USA 108, 8420–8425 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  135. Xu, S. et al. Survival strategy of comammox bacteria in a wastewater nutrient removal system with sludge fermentation liquid as additional carbon source. Sci. Total Environ. 802, 149862 (2022).

    PubMed  CAS  Google Scholar 

  136. Kim, J.-G. et al. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proc. Natl Acad. Sci. USA 113, 7888–7893 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  137. Wett, B. et al. Going for mainstream deammonification from bench to full scale for maximized resource efficiency. Water Sci. Technol. 68, 283–289 (2013).

    PubMed  CAS  Google Scholar 

  138. Lackner, S., Welker, S., Gilbert, E. M. & Horn, H. Influence of seasonal temperature fluctuations on two different partial nitritation-anammox reactors treating mainstream municipal wastewater. Water Sci. Technol 72, 1358–1363 (2015).

    PubMed  CAS  Google Scholar 

  139. Jenni, S., Vlaeminck, S. E., Morgenroth, E. & Udert, K. M. Successful application of nitritation/anammox to wastewater with elevated organic carbon to ammonia ratios. Water Res. 49, 316–326 (2014).

    PubMed  CAS  Google Scholar 

  140. Liu, T. et al. Evaluation of mainstream nitrogen removal by simultaneous partial nitrification, anammox and denitrification (SNAD) process in a granule-based reactor. Chem. Eng. J. 327, 973–981 (2017).

    CAS  Google Scholar 

  141. Du, R. et al. Partial denitrification providing nitrite: opportunities of extending application for anammox. Environ. Int. 131, 105001 (2019).

    PubMed  CAS  Google Scholar 

  142. Huang, T. et al. Comammox Nitrospira bacteria are dominant ammonia oxidizers in mainstream nitrification bioreactors emended with sponge carriers. Environ. Sci. Technol. 56, 12584–12591 (2022).

    PubMed  CAS  Google Scholar 

  143. Wang, Y. et al. Seasonal prevalence of ammonia-oxidizing archaea in a full-scale municipal wastewater treatment plant treating saline wastewater revealed by a 6-year time-series analysis. Environ. Sci. Technol. 55, 2662–2673 (2021).

    PubMed  CAS  Google Scholar 

  144. Bernhard, A. E. et al. Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Appl. Environ. Microbiol. 76, 1285–1289 (2010).

    PubMed  CAS  Google Scholar 

  145. Lackner, S. et al. Full-scale partial nitritation/anammox experiences–an application survey. Water Res. 55, 292–303 (2014).

    PubMed  CAS  Google Scholar 

  146. Li, J. et al. Quantify the contribution of anammox for enhanced nitrogen removal through metagenomic analysis and mass balance in an anoxic moving bed biofilm reactor. Water Res. 160, 178–187 (2019).

    PubMed  CAS  Google Scholar 

  147. Héder, M. From NASA to EU: the evolution of the TRL scale in public sector innovation. Innov. J. 22, 1–23 (2017).

    Google Scholar 

  148. Jin, R.-C., Yang, G.-F., Yu, J.-J. & Zheng, P. The inhibition of the anammox process: a review. Chem. Eng. J. 197, 67–79 (2012).

    CAS  Google Scholar 

  149. Huang, D.-Q., Fu, J.-J., Li, Z.-Y., Fan, N.-S. & Jin, R.-C. Inhibition of wastewater pollutants on the anammox process: a review. Sci. Total Environ. 803, 150009 (2022).

    PubMed  CAS  Google Scholar 

  150. Zhang, Y. et al. Hot spring distribution and survival mechanisms of thermophilic comammox. Nitrospira. ISME J. 17, 993–1003 (2023).

    PubMed  CAS  Google Scholar 

  151. Vandekerckhove, T. G., Props, R., Carvajal-Arroyo, J. M., Boon, N. & Vlaeminck, S. E. Adaptation and characterization of thermophilic anammox in bioreactors. Water Res. 172, 115462 (2020).

    PubMed  CAS  Google Scholar 

  152. Koch, H. et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus. Nitrospira. Proc. Natl Acad. Sci. USA 112, 11371–11376 (2015).

    PubMed  CAS  Google Scholar 

  153. Palatinszky, M. et al. Cyanate as an energy source for nitrifiers. Nature 524, 105–108 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  154. Koch, H. et al. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation. Science 345, 1052–1054 (2014).

    PubMed  CAS  Google Scholar 

  155. Stahl, D. A. & de la Torre, J. R. Physiology and diversity of ammonia-oxidizing archaea. Annu. Rev. Microbiol. 66, 83–101 (2012).

    PubMed  CAS  Google Scholar 

  156. Wang, Q. & He, J. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5. Water Res. 185, 116300 (2020).

    PubMed  CAS  Google Scholar 

  157. Versantvoort, W. et al. Multiheme hydroxylamine oxidoreductases produce NO during ammonia oxidation in methanotrophs. Proc. Natl Acad. Sci. USA 117, 24459–24463 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  158. Huang, S. & Jaffé, P. R. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions. Biogeosciences 12, 769–779 (2015).

    Google Scholar 

  159. Van Den Berg, E. M., Van Dongen, U., Abbas, B. & Van Loosdrecht, M. C. Enrichment of DNRA bacteria in a continuous culture. ISME J 9, 2153–2161 (2015).

    PubMed  PubMed Central  Google Scholar 

  160. Kraft, B. et al. The environmental controls that govern the end product of bacterial nitrate respiration. Science 345, 676–679 (2014).

    PubMed  CAS  Google Scholar 

  161. Vilardi, K. et al. Co-occurrence and cooperation between comammox and anammox bacteria in a full-scale attached growth municipal wastewater treatment process. Environ. Sci. Technol. 57, 5013–5023 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  162. Gottshall, E. Y. et al. Sustained nitrogen loss in a symbiotic association of Comammox Nitrospira and Anammox bacteria. Water Res. 202, 117426 (2021).

    PubMed  CAS  Google Scholar 

  163. Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508 (2017).

    PubMed  PubMed Central  Google Scholar 

  164. Annavajhala, M. K., Kapoor, V., Santo-Domingo, J. & Chandran, K. Comammox functionality identified in diverse engineered biological wastewater treatment systems. Environ. Sci. Tech. Lett. 5, 110–116 (2018).

    CAS  Google Scholar 

  165. Roots, P. et al. Comammox Nitrospira are the dominant ammonia oxidizers in a mainstream low dissolved oxygen nitrification reactor. Water Res. 157, 396–405 (2019).

    PubMed  CAS  Google Scholar 

  166. Yang, Y. et al. Activity and metabolic versatility of complete ammonia oxidizers in full-scale wastewater treatment systems. Mbio 11, e03175–03119 (2020).

    PubMed  PubMed Central  Google Scholar 

  167. Chao, Y., Mao, Y., Yu, K. & Zhang, T. Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach. Appl. Microbiol. Biot. 100, 8225–8237 (2016).

    CAS  Google Scholar 

  168. Zhou, L.-J. et al. Cometabolic biotransformation and microbial-mediated abiotic transformation of sulfonamides by three ammonia oxidizers. Water Res. 159, 444–453 (2019).

    PubMed  CAS  Google Scholar 

  169. Yan, J. et al. Mimicking the oxygen minimum zones: stimulating interaction of aerobic archaeal and anaerobic bacterial ammonia oxidizers in a laboratory‐scale model system. Environ. Microbiol. 14, 3146–3158 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  170. Landreau, M., Byson, S. J., You, H., Stahl, D. A. & Winkler, M. K. Effective nitrogen removal from ammonium-depleted wastewater by partial nitritation and anammox immobilized in granular and thin layer gel carriers. Water Res. 183, 116078 (2020).

    PubMed  CAS  Google Scholar 

  171. Zhang, T. et al. Occurrence of ammonia-oxidizing Archaea in activated sludges of a laboratory scale reactor and two wastewater treatment plants. J. Appl. Microbiol 107, 970–977 (2009).

    PubMed  CAS  Google Scholar 

  172. Wells, G. F. et al. Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environ. Microbiol. 11, 2310–2328 (2009).

    PubMed  CAS  Google Scholar 

  173. Mußmann, M. et al. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc. Natl Acad. Sci. USA 108, 16771–16776 (2011).

    PubMed  PubMed Central  Google Scholar 

  174. Sauder, L. A., Peterse, F., Schouten, S. & Neufeld, J. D. Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant. Environ. Microbiol. 14, 2589–2600 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  175. DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).

    PubMed  PubMed Central  CAS  Google Scholar 

  176. Fuhrman, J. A., McCallum, K. & Davis, A. A. Novel major archaebacterial group from marine plankton. Nature 356, 148–149 (1992).

    PubMed  CAS  Google Scholar 

  177. Faust, V. et al. Ammonia oxidation by novel “Candidatus Nitrosacidococcus urinae” is sensitive to process disturbances at low pH and to iron limitation at neutral pH. Water Res. X 17, 100157 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  178. Hu, Z., Liu, T., Wang, Z., Meng, J. & Zheng, M. Toward energy neutrality: novel wastewater treatment incorporating acidophilic ammonia oxidation. Environ. Sci. Technol. 57, 4522–4532 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  179. Fumasoli, A., Etter, B., Sterkele, B., Morgenroth, E. & Udert, K. M. Operating a pilot-scale nitrification/distillation plant for complete nutrient recovery from urine. Water Sci. Technol 73, 215–222 (2016).

    PubMed  CAS  Google Scholar 

  180. Hayatsu, M. The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium. Soil Sci. Plant Nutr. 39, 219–226 (1993).

    CAS  Google Scholar 

  181. Liu, T., Hu, S., Yuan, Z. & Guo, J. High-level nitrogen removal by simultaneous partial nitritation, anammox and nitrite/nitrate-dependent anaerobic methane oxidation. Water Res. 166, 115057 (2019).

    PubMed  CAS  Google Scholar 

  182. Shi, Y. et al. Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor. Environ. Sci. Technol. 47, 11577–11583 (2013).

    PubMed  CAS  Google Scholar 

  183. Islas-Lima, S., Thalasso, F. & Gomez-Hernandez, J. Evidence of anoxic methane oxidation coupled to denitrification. Water Res. 38, 13–16 (2004).

    PubMed  CAS  Google Scholar 

  184. Mason, I. Methane as a carbon source in biological denitrification. J. Water Pollut. Control Fed. 49, 855–857 (1977).

    CAS  Google Scholar 

  185. Thalasso, F., Vallecillo, A., GarciaEncina, P. & FdzPolanco, F. The use of methane as a sole carbon source for wastewater denitrification. Water Res. 31, 55–60 (1997).

    CAS  Google Scholar 

  186. Eisentraeger, A., Klag, P., Vansbotter, B., Heymann, E. & Dott, W. Denitrification of groundwater with methane as sole hydrogen donor. Water Res. 35, 2261–2267 (2001).

    PubMed  CAS  Google Scholar 

  187. Le, T. et al. Impact of carbon source and COD/N on the concurrent operation of partial denitrification and anammox. Water Environ. Res. 91, 185–197 (2019).

    PubMed  CAS  Google Scholar 

  188. Cao, Y. et al. The mainstream autotrophic nitrogen removal in the largest full scale activated sludge process in Singapore: process analysis. WEF/IWA Nutrient Removal and Recovery 2013: Trends in Resource Recovery and Use 28–31 (2013).

  189. Third, K. A., Sliekers, A. O., Kuenen, J. G. & Jetten, M. S. M. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: Interaction and competition between three groups of bacteria. Syst. Appl. Microbiol. 24, 588–596 (2001).

    PubMed  CAS  Google Scholar 

  190. van Dongen, U., Jetten, M. S. & van Loosdrecht, M. C. The SHARON-Anammox process for treatment of ammonium rich wastewater. Water Sci. Technol. 44, 153–160 (2001).

    PubMed  Google Scholar 

  191. Broda, E. Two kinds of lithotrophs missing in nature. Z. Allg. Mikrobiol. 17, 491–493 (1977).

    PubMed  CAS  Google Scholar 

  192. Winogradsky, S. Recherches sur les organisms de la nitrification. Ann. Inst. Pasteur (Paris) 4, 213–231 (1890).

    Google Scholar 

  193. Gayon, U. & Dupetit, G. Recherches sur la reduction des nitrates par les infiniment petits. Mem. Soc. Sci. Phys. Nat. Bord. 3, 201–307 (1886).

    Google Scholar 

  194. Larsen, T., Udert, K. & Lienert, J. Source Separation and Decentralization for Wastewater Management (IWA Publishing, 2013).

  195. Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).

    Google Scholar 

  196. Sigurdarson, J. J., Svane, S. & Karring, H. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Rev. Environ. Sci. Biotechnol 17, 241–258 (2018).

    CAS  Google Scholar 

  197. Qin, W. et al. Ammonia-oxidizing bacteria and archaea exhibit differential nitrogen source preferences. Nat. Microbiol. 9, 524–536 (2024).

    PubMed  CAS  Google Scholar 

  198. Daims, H., Lücker, S. & Wagner, M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol 24, 699–712 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  199. Su, Z., Liu, T., Guo, J. & Zheng, M. Nitrite oxidation in wastewater treatment: microbial adaptation and suppression challenges. Environ. Sci. Technol. 57, 12557–12570 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  200. IPCC Climate Change 2021: The Physical Science Basis (eds et al.) (Cambridge Univ. Press, 2023).

  201. Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    PubMed  CAS  Google Scholar 

  202. Höglund-Isaksson, L., Gómez-Sanabria, A., Klimont, Z., Rafaj, P. & Schöpp, W. Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe—results from the GAINS model. Environ. Res. Commun. 2, 025004 (2020).

    Google Scholar 

  203. Water Utilities Unite to Cut Emissions in Race to Zero (Water Sevices Association of Australia, 2021); https://wsaa.stage.wsaa.asn.au/media/water-utilities-unite-cut-emissions-race-zero

  204. Kitamori, K., Manders, T., Dellink, R. & Tabeau, A. OECD Environmental Outlook to 2050: The Consequences of Inaction Report no. 9264122168 (OECD, 2012).

  205. Molinos-Senante, M., Hernández-Sancho, F. & Sala-Garrido, R. Economic feasibility study for wastewater treatment: a cost–benefit analysis. Sci. Total Environ. 408, 4396–4402 (2010).

    PubMed  CAS  Google Scholar 

  206. Beckinghausen, A., Odlare, M., Thorin, E. & Schwede, S. From removal to recovery: an evaluation of nitrogen recovery techniques from wastewater. Appl. Energy 263, 114616 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Australian Research Council Linkage Project (LP220200963) and Discovery Project (DP230101340). T.L. is a recipient of the Australian Research Council DECRA Fellowship (DE220101310) and Hong Kong Research Grants Council’s Early Career Scheme (PolyU 25238324). H.D. and M.Z. are the recipients of the Australian Research Council Industry Fellowship (IE230100422, IE230100245). H.D. acknowledges funding from the Comammox Research Platform of the University of Vienna and the Austrian Science Fund, Cluster of Excellence COE7. S.L. acknowledges funding from the Dutch Research Council (NWO) grant 016.Vidi.189.050. Z.Y. is a Global STEM Professor jointly funded by the Innovation, Technology and Industry Bureau and Education Bureau of the Government of the Hong Kong Special Administrative Region and acknowledges financial support from the Hong Kong Jockey Club for the JC STEM Lab of Sustainable Urban Water Management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Dario Rangel Shaw and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Duan, H., Lücker, S. et al. Sustainable wastewater management through nitrogen-cycling microorganisms. Nat Water 2, 936–952 (2024). https://doi.org/10.1038/s44221-024-00307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00307-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology