Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microbial risk assessment across multiple environments based on metagenomic absolute quantification with cellular internal standards

Abstract

The risk posed by microorganisms in diverse environments has emerged as a notable concern. However, existing microbial risk assessment frameworks often lack breadth and coherence. Here, to address this constraint, we developed a cellular spike-in (including one Gram-positive bacterium (G+) and one Gram-negative bacterium (G)) method that enables absolute quantification of microorganisms in multiple environmental compartments (for example, wastewater, river water and marine water). This method was thoroughly evaluated for consistency, accuracy, feasibility and applicability. Furthermore, we investigated potential biases that might arise from DNA extraction to sequencing under different cell lysis conditions and, importantly, demonstrated that this spike-in absolute quantification method could correct such biases. We then applied this method to various samples to determine the absolute abundance (concentration) of microorganisms, pathogens and antibiotic resistance genes. On the basis of the results, we evaluated the removal efficiencies in terms of pathogens and antibiotic resistance genes in five wastewater treatment plants with different operational modes (for example, chemically enhanced primary treatment, secondary treatment, tertiary treatment and membrane bioreactor). Finally, we developed a risk assessment framework that simplifies complex absolute quantification data into accessible scores, enabling a comprehensive microbial risk evaluation and comparison across diverse environments. This analytical workflow could facilitate informed policymaking and decision-making by authorities based on risk assessment levels, advancing efforts to safeguard public health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Method validation results.
Fig. 2: Concentrations and removal of pathogens and ARGs in five WWTPs.
Fig. 3: Concentrations of pathogens and ARGs in RW, BBW, MW and FW.
Fig. 4: Host tracking of ARGs in different sample types.
Fig. 5: Risk assessment of 34 environmental samples.

Similar content being viewed by others

Data availability

All the raw sequencing data generated in this study have been deposited in the National Center for Biotechnology Informatio Sequence Read Archive database under BioProject ID: PRJNA1158533.

References

  1. Essack, S. Y. Environment: the neglected component of the One Health triad. Lancet Planet. Health 2, e238–e239 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Federigi, I. et al. The application of quantitative microbial risk assessment to natural recreational waters: a review. Mar. Pollut. Bull. 144, 334–350 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Schoen, M. E. et al. Quantitative microbial risk assessment of antimicrobial resistant and susceptible Staphylococcus aureus in reclaimed wastewaters. Environ. Sci. Technol. 55, 15246–15255 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Astles, K. L. et al. An ecological method for qualitative risk assessment and its use in the management of fisheries in New South Wales, Australia. Fish. Res. 82, 290–303 (2006).

    Article  Google Scholar 

  5. Hordyk, A. R. & Carruthers, T. R. A quantitative evaluation of a qualitative risk assessment framework: examining the assumptions and predictions of the productivity susceptibility analysis (PSA). PLoS ONE 13, e0198298 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lim, K.-Y. et al. Evaluation of the dry and wet weather recreational health risks in a semi-enclosed marine embayment in Southern California. Water Res. 111, 318–329 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Tymensen, L. D. et al. Comparative accessory gene fingerprinting of surface water Escherichia coli reveals genetically diverse naturalized population. J. Appl. Microbiol. 119, 263–277 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Mbanga, J. et al. Quantitative microbial risk assessment for waterborne pathogens in a wastewater treatment plant and its receiving surface water body. BMC Microbiol. 20, 346 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Owens, C. E. et al. Implementation of quantitative microbial risk assessment (QMRA) for public drinking water supplies: systematic review. Water Res. 174, 115614 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Miliotis, M. et al. Role of epidemiology in microbial risk assessment. Food Addit. Contam. 25, 1052–1057 (2008).

    Article  CAS  Google Scholar 

  11. Goh, S. G. et al. A new modelling framework for assessing the relative burden of antimicrobial resistance in aquatic environments. J. Hazard. Mater. 424, 127621 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Shao, Y. et al. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Sci. Total Environ. 798, 149205 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Shao, S. et al. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Crit. Rev. Biotechnol. 38, 1195–1208 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Huemer, M. et al. Antibiotic resistance and persistence—implications for human health and treatment perspectives. EMBO Rep. 21, e51034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martínez, J. L. Ecology and evolution of chromosomal gene transfer between environmental microorganisms and pathogens. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.mtbp-0006-2016 (2018).

  16. Che, Y. et al. Mobile antibiotic resistome in wastewater treatment plants revealed by Nanopore metagenomic sequencing. Microbiome 7, 44 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Forster, S. C. et al. Strain-level characterization of broad host range mobile genetic elements transferring antibiotic resistance from the human microbiome. Nat. Commun. 13, 1445 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Larsson, D. & Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 20, 257–269 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, A.-N. et al. An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nat. Commun. 12, 4765 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oliveira, D. M. P. D. et al. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. https://doi.org/10.1128/cmr.00181-19 (2020).

  21. Zhen, X. et al. Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review. Antimicrob. Resist. Infect. Control 8, 137 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reyneke, B. et al. Comparison of EMA-, PMA- and DNase qPCR for the determination of microbial cell viability. Appl. Microbiol. Biotechnol. 101, 7371–7383 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. McLain, J. E. et al. Culture‐based methods for detection of antibiotic resistance in agroecosystems: advantages, challenges, and gaps in knowledge. J. Environ. Qual. 45, 432–440 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Ko, K. K., Chng, K. R. & Nagarajan, N. Metagenomics-enabled microbial surveillance. Nat. Microbiol. 7, 486–496 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Xu, H.-S. et al. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8, 313–323 (1982).

    Article  CAS  PubMed  Google Scholar 

  26. Frossard, A., Hammes, F. & Gessner, M. O. Flow cytometric assessment of bacterial abundance in soils, sediments and sludge. Front. Microbiol. 7, 195298 (2016).

    Article  Google Scholar 

  27. Ruijter, J. et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37, e45 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krehenwinkel, H. et al. Estimating and mitigating amplification bias in qualitative and quantitative arthropod metabarcoding. Sci. Rep. 7, 17668 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Z. et al. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Sci. Rep. 7, 4837 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ji, B. W. et al. Quantifying spatiotemporal variability and noise in absolute microbiota abundances using replicate sampling. Nat. Methods 16, 731–736 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, C. et al. Absolute quantification and genome-centric analyses elucidate the dynamics of microbial populations in anaerobic digesters. Water Res. 224, 119049 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Tkacz, A., Hortala, M. & Poole, P. S. Absolute quantitation of microbiota abundance in environmental samples. Microbiome 6, 110 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang, Y. et al. Rapid absolute quantification of pathogens and ARGs by nanopore sequencing. Sci. Total Environ. 809, 152190 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, Y. et al. QMRA of beach water by Nanopore sequencing-based viability-metagenomics absolute quantification. Water Res. 235, 119858 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Smets, W. et al. A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol. Biochem. 96, 145–151 (2016).

    Article  CAS  Google Scholar 

  37. Crossette, E. et al. Metagenomic quantification of genes with internal standards. mBio https://doi.org/10.1128/mbio.03173-20 (2021).

  38. Janda, J. M. & Abbott, S. L. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 23, 35–73 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong, D. et al. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin. Microbiol. Rev. 30, 409–447 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Wexler, A. G. & Goodman, A. L. An insider’s perspective: Bacteroides as a window into the microbiome. Nat. Microbiol. 2, 17026 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Radomski, N. et al. Mycobacterium behavior in wastewater treatment plant, a bacterial model distinct from Escherichia coli and Enterococci. Environ. Sci. Technol. 45, 5380–5386 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Pendleton, J. N., Gorman, S. P. & Gilmore, B. F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti Infect. Ther. 11, 297–308 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, S. et al. Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: a risk to human health. Environ. Pollut. 266, 115260 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Hirshfeld, B. et al. Prevalence and antimicrobial resistance profiles of Vibrio spp. and Enterococcus spp. in retail shrimp in Northern California. Front. Microbiol. 14, 1192769 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Martinez, J. L. et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol. Rev. 33, 430–449 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bayley, H. Nanopore sequencing: from imagination to reality. Clin. Chem. 61, 25–31 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Lin, B., Hui, J. & Mao, H. Nanopore technology and its applications in gene sequencing. Biosensors 11, 214 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Contijoch, E. J. et al. Gut microbiota density influences host physiology and is shaped by host and microbial factors. eLife 8, e40553 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yin, X. et al. Toward a universal unit for quantification of antibiotic resistance genes in environmental samples. Environ. Sci. Technol. 57, 9713–9721 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Yin, X. et al. An assessment of resistome and mobilome in wastewater treatment plants through temporal and spatial metagenomic analysis. Water Res. 209, 117885 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Offenbaume, K. L., Bertone, E. & Stewart, R. A. Monitoring approaches for faecal indicator bacteria in water: visioning a remote real-time sensor for E. coli and Enterococci. Water 12, 2591 (2020).

    Article  Google Scholar 

  53. Castañeda-Barba, S., Top, E. M. & Stalder, T. Plasmids, a molecular cornerstone of antimicrobial resistance in the One Health era. Nat. Rev. Microbiol. 22, 18–32 (2024).

    Article  PubMed  Google Scholar 

  54. Ellabaan, M. M. et al. Forecasting the dissemination of antibiotic resistance genes across bacterial genomes. Nat. Commun. 12, 2435 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Priti, K. & Kumar, P. A critical evaluation of air quality index models (1960–2021). Environ. Monit. Assess. 194, 324 (2022).

    Article  Google Scholar 

  56. Child, H. T. et al. Comparative evaluation of soil DNA extraction kits for long read metagenomic sequencing. Access Microbiol. 6, 000868.v3 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Seethalakshmi, P. et al. Comparative analysis of commercially available kits for optimal DNA extraction from bovine fecal samples. Arch. Microbiol. 206, 314 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. De Coster, W. et al. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34, 2666–2669 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Yin, X. et al. ARGs-OAP v3.0: antibiotic-resistance gene database curation and analysis pipeline optimization. Engineering 27, 234–241 (2023).

    Article  Google Scholar 

  64. Krawczyk, P. S., Lipinski, L. & Dziembowski, A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 46, e35 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pärnänen, K. et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat. Commun. 9, 3891 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the financial support of the Theme-based Research Scheme of the Research Grant Council of Hong Kong (grant no. T21-705/20-N) and the Shenzhen Science and Technology Innovation Bureau (no. SGDX20230821091559021). X.S., Y.Y., X.C., J.D. and S.L. thank the University of Hong Kong for their postgraduate studentship. C.W., X.X. and X.M. thank the University of Hong Kong for their postdoctoral fellowship. We also thank the Hong Kong Agriculture, Fisheries and Conservation Department and Hong Kong Environmental Protection Department for sample collection. The computations were performed using research computing facilities offered by Information Technology Services at the University of Hong Kong. We also thank the laboratory technician, V. Fung, for assisting with the experimental process.

Author information

Authors and Affiliations

Authors

Contributions

X.S.: conceptualization, methodology, formal analysis, visualization, writing—original draft and investigation. Y.Y.: methodology, writing—review and editing. C.W.: methodology, writing—review and editing. X.X.: methodology, writing—review and editing. X.M.: methodology, writing—review and editing. X.C.: methodology, writing—review and editing. J.D.: methodology, writing—review and editing. S.L.: methodology, writing—review and editing. T.Z.: supervision, resources, conceptualization, writing—review and editing.

Corresponding author

Correspondence to Tong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Karina Yew-Hoong Gin and Francis Hassard for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–6 and Figs. 1–4, and References.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–16.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Yang, Y., Wang, C. et al. Microbial risk assessment across multiple environments based on metagenomic absolute quantification with cellular internal standards. Nat Water 3, 473–485 (2025). https://doi.org/10.1038/s44221-025-00421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-025-00421-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research