Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic tools for investigating the life cycle of extracellular vesicles

Abstract

Mammalian cells ubiquitously release membrane-enclosed vesicles, known as extracellular vesicles. These particles carry a variety of molecules that reflect the status of their cells of origin, making them valuable sources for biomarker discovery. Furthermore, extracellular vesicles deliver their cargo locally and systemically to regulate biological processes, piquing interest in modulating extracellular vesicle biogenesis and developing extracellular vesicle-based therapies. Therefore, a thorough understanding of the extracellular vesicle life cycle, from biogenesis and trafficking to degradation, is essential for unlocking their full potential in biomarker identification and for the design of extracellular vesicle-based therapies. In this Review, we start by outlining the key steps in the extracellular vesicle life cycle and highlight remaining open questions. We then discuss the design and application of genetically encoded systems that can be applied to study extracellular vesicle biogenesis and fate. Finally, we highlight technical challenges that remain to be addressed in the engineering and application of genetically encoded systems to extracellular vesicle research.

Key points

  • Extracellular vesicles are shed by cells and implicated in biological processes through diverse mechanisms.

  • Specific and sensitive characterization of extracellular vesicles is fundamental for identifying extracellular vesicle-based biomarkers and developing therapies. However, their small size and close resemblance to other non-vesicular extracellular particles make their characterization challenging.

  • Genetically encoded systems allow the high-specificity and high-sensitivity characterization of the extracellular vesicle life cycle, from biogenesis and trafficking to degradation.

  • Genetic circuits can be incorporated for the long-term tracking of extracellular vesicle biogenesis and biodistribution in vivo.

  • Caution must be applied when extrapolating knowledge of genetically engineered extracellular vesicles to their native counterparts, which requires complementary approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biogenesis, trafficking and degradation of extracellular vesicles.
Fig. 2: Genetic methods to capture extracellular vesicle-inherent and extracellular vesicle-associated molecules.
Fig. 3: Reporter systems to identify EV-recipient cells.
Fig. 4: Genetic methods to investigate endocytic and non-endocytic routes of EV–cell interaction.

Similar content being viewed by others

References

  1. Welsh, J. A. et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J. Extracell. Vesicles 13, e12404 (2024).

    Article  Google Scholar 

  2. Poupardin, R., Wolf, M. & Strunk, D. Adherence to minimal experimental requirements for defining extracellular vesicles and their functions. Adv. Drug Deliv. Rev. 176, 113872 (2021).

    Article  Google Scholar 

  3. Lian, M. Q. et al. Plant-derived extracellular vesicles: recent advancements and current challenges on their use for biomedical applications. J. Extracell. Vesicles 11, e12283 (2022).

    Article  Google Scholar 

  4. Hosseini-Giv, N. et al. Bacterial extracellular vesicles and their novel therapeutic applications in health and cancer. Front. Cell. Infect. Microbiol. 12, 962216 (2022).

    Article  Google Scholar 

  5. Rodrigues, M. L. & Nimrichter, L. From fundamental biology to the search for innovation: the story of fungal extracellular vesicles. Eur. J. Cell Biol. 101, 151205 (2022).

    Article  Google Scholar 

  6. Cheng, L. & Hill, A. F. Therapeutically harnessing extracellular vesicles. Nat. Rev. Drug Discov. 21, 379–399 (2022).

    Article  Google Scholar 

  7. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    Article  Google Scholar 

  8. Urabe, F. et al. Extracellular vesicles as biomarkers and therapeutic targets for cancer. Am. J. Physiol. Cell Physiol. 318, C29–C39 (2020).

    Article  Google Scholar 

  9. Shaba, E. et al. Multi-omics integrative approach of extracellular vesicles: a future challenging milestone. Proteomes 10, 12 (2022).

    Article  MathSciNet  Google Scholar 

  10. Hendrix, A. et al. Extracellular vesicle analysis. Nat. Rev. Methods Primers 3, 56 (2023).

    Article  Google Scholar 

  11. Rupert, D. L. M., Claudio, V., Lässer, C. & Bally, M. Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim. Biophys. Acta Gen. Subj. 1861, 3164–3179 (2017).

    Article  Google Scholar 

  12. Hartjes, T., Mytnyk, S., Jenster, G., van Steijn, V. & van Royen, M. E. Extracellular vesicle quantification and characterization: common methods and emerging approaches. Bioengineering 6, 7 (2019).

    Article  Google Scholar 

  13. Penders, J. et al. Single particle automated Raman trapping analysis. Nat. Commun. 9, 4256 (2018).

    Article  Google Scholar 

  14. Ter-Ovanesyan, D. et al. Improved isolation of extracellular vesicles by removal of both free proteins and lipoproteins. eLife 12, e86394 (2023).

    Article  Google Scholar 

  15. Karimi, N. et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell. Mol. Life Sci. 75, 2873–2886 (2018).

    Article  Google Scholar 

  16. Wang, T. & Turko, I. V. Proteomic toolbox to standardize the separation of extracellular vesicles and lipoprotein particles. J. Proteome Res. 17, 3104–3113 (2018).

    Article  Google Scholar 

  17. Serrano-Pertierra, E. et al. Extracellular vesicles: current analytical techniques for detection and quantification. Biomolecules 10, 824 (2020).

    Article  Google Scholar 

  18. Verweij, F. J. et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat. Methods 18, 1013–1026 (2021).

    Article  Google Scholar 

  19. Lai, C. P. et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8, 483–494 (2014).

    Article  Google Scholar 

  20. Cheng, A. A. & Lu, T. K. Synthetic biology: an emerging engineering discipline. Annu. Rev. Biomed. Eng. 14, 155–178 (2012).

    Article  Google Scholar 

  21. Kelwick, R. J. R., Webb, A. J., Heliot, A., Segura, C. T. & Freemont, P. S. Opportunities to accelerate extracellular vesicle research with cell-free synthetic biology. J. Extracell. Biol. 2, e90 (2023).

    Article  Google Scholar 

  22. Buzas, E. I. Opportunities and challenges in studying the extracellular vesicle corona. Nat. Cell Biol. 24, 1322–1325 (2022).

    Article  Google Scholar 

  23. van Niel, G., D'Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).

    Article  Google Scholar 

  24. Edgar, J. R., Eden, E. R. & Futter, C. E. Hrs- and CD63-dependent competing mechanisms make different sized endosomal intraluminal vesicles. Traffic 15, 197–211 (2014).

    Article  Google Scholar 

  25. Stuffers, S., Sem Wegner, C., Stenmark, H. & Brech, A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10, 925–937 (2009).

    Article  Google Scholar 

  26. Verweij, F. J. et al. ER membrane contact sites support endosomal small GTPase conversion for exosome secretion. J. Cell Biol. 221, e202112032 (2022).

    Article  Google Scholar 

  27. Miranda, A. M. et al. Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures. Nat. Commun. 9, 291 (2018).

    Article  Google Scholar 

  28. Eitan, E., Suire, C., Zhang, S. & Mattson, M. P. Impact of lysosome status on extracellular vesicle content and release. Ageing Res. Rev. 32, 65–74 (2016).

    Article  Google Scholar 

  29. Strauss, K. et al. Exosome secretion ameliorates lysosomal storage of cholesterol in Niemann–Pick type C disease. J. Biol. Chem. 285, 26279–26288 (2010).

    Article  Google Scholar 

  30. Teng, F. & Fussenegger, M. Shedding light on extracellular vesicle biogenesis and bioengineering. Adv. Sci. 8, 2003505 (2021).

    Article  Google Scholar 

  31. Margolis, L. & Sadovsky, Y. The biology of extracellular vesicles: the known unknowns. PLoS Biol. 17, e3000363 (2019).

    Article  Google Scholar 

  32. Hurwitz, S. N., Conlon, M. M., Rider, M. A., Brownstein, N. C. & Meckes, D. G. Jr Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. J. Extracell. Vesicles 5, 31295 (2016).

    Article  Google Scholar 

  33. Bost, J. P. et al. Growth media conditions influence the secretion route and release levels of engineered extracellular vesicles. Adv. Healthc. Mater. 11, e2101658 (2021).

    Article  Google Scholar 

  34. Shpigelman, J. et al. Generation and application of a reporter cell line for the quantitative screen of extracellular vesicle release. Front. Pharmacol. 12, 668609 (2021).

    Article  Google Scholar 

  35. Yokoi, A. et al. Mechanisms of nuclear content loading to exosomes. Sci. Adv. 5, eaax8849 (2019).

    Article  Google Scholar 

  36. Dixson, A. C., Dawson, T. R., Di Vizio, D. & Weaver, A. M. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat. Rev. Mol. Cell Biol. 24, 454–476 (2023).

    Article  Google Scholar 

  37. Lenzini, S., Bargi, R., Chung, G. & Shin, J. W. Matrix mechanics and water permeation regulate extracellular vesicle transport. Nat. Nanotechnol. 15, 217–223 (2020).

    Article  Google Scholar 

  38. Gupta, D., Wiklander, O. P. B., Wood, M. J. A. & El-Andaloussi, S. Biodistribution of therapeutic extracellular vesicles. Extracell. Vesicles Circ. Nucl. Acids 4, 170–190 (2023).

    Article  Google Scholar 

  39. Sariano, P. A. et al. Convection and extracellular matrix binding control interstitial transport of extracellular vesicles. J. Extracell. Vesicles 12, e12323 (2023).

    Article  Google Scholar 

  40. Debnath, K., Las Heras, K., Rivera, A., Lenzini, S. & Shin, J.-W. Extracellular vesicle–matrix interactions. Nat. Rev. Mater. 8, 390–402 (2023).

    Article  Google Scholar 

  41. Hallal, S., Tűzesi, Á., Grau, G. E., Buckland, M. E. & Alexander, K. L. Understanding the extracellular vesicle surface for clinical molecular biology. J. Extracell. Vesicles 11, e12260 (2022).

    Article  Google Scholar 

  42. Tóth, E. Á. et al. Formation of a protein corona on the surface of extracellular vesicles in blood plasma. J. Extracell. Vesicles 10, e12140 (2021).

    Article  Google Scholar 

  43. Ghosh, P., Liu, Q.-R., Chen, Q., Zhu, M. & Egan, J. M. Pancreatic β cell derived extracellular vesicles containing surface preproinsulin are involved in glucose stimulated insulin secretion. Life Sci. 340, 122460 (2024).

    Article  Google Scholar 

  44. Gupta, D. et al. Quantification of extracellular vesicles in vitro and in vivo using sensitive bioluminescence imaging. J. Extracell. Vesicles 9, 1800222 (2020).

    Article  Google Scholar 

  45. Vidal, M. Exosomes: revisiting their role as “garbage bags”. Traffic 20, 815–828 (2019).

    Article  Google Scholar 

  46. Keller, M. D. et al. Decoy exosomes provide protection against bacterial toxins. Nature 579, 260–264 (2020).

    Article  Google Scholar 

  47. Buzás, E. I., Tóth, E. Á., Sódar, B. W. & Szabó-Taylor, K. É. Molecular interactions at the surface of extracellular vesicles. Semin. Immunopathol. 40, 453–464 (2018).

    Article  Google Scholar 

  48. Roy, S., Hochberg, F. H. & Jones, P. S. Extracellular vesicles: the growth as diagnostics and therapeutics; a survey. J. Extracell. Vesicles 7, 1438720 (2018).

    Article  Google Scholar 

  49. Edelmann, M. J. & Kima, P. E. Current understanding of extracellular vesicle homing/tropism. Zoonoses 2, 14 (2022).

    Article  Google Scholar 

  50. Liam-Or, R. et al. Cellular uptake and in vivo distribution of mesenchymal-stem-cell-derived extracellular vesicles are protein corona dependent. Nat. Nanotechnol. 19, 846–855 (2024).

    Article  Google Scholar 

  51. Heidarzadeh, M., Zarebkohan, A., Rahbarghazi, R. & Sokullu, E. Protein corona and exosomes: new challenges and prospects. Cell Commun. Signal. 21, 64 (2023).

    Article  Google Scholar 

  52. Nishida-Aoki, N., Tominaga, N., Kosaka, N. & Ochiya, T. Altered biodistribution of deglycosylated extracellular vesicles through enhanced cellular uptake. J. Extracell. Vesicles 9, 1713527 (2020).

    Article  Google Scholar 

  53. Gonda, A., Kabagwira, J., Senthil, G. N. & Wall, N. R. Internalization of exosomes through receptor-mediated endocytosis. Mol. Cancer Res. 17, 337–347 (2019).

    Article  Google Scholar 

  54. Qian, F. et al. Analysis and biomedical applications of functional cargo in extracellular vesicles. ACS Nano 16, 19980–20001 (2022).

    Article  Google Scholar 

  55. Bonsergent, E. et al. Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells. Nat. Commun. 12, 1864 (2021).

    Article  Google Scholar 

  56. Somiya, M. & Kuroda, S. Real-time luminescence assay for cytoplasmic cargo delivery of extracellular vesicles. Anal. Chem. 93, 5612–5620 (2021).

    Article  Google Scholar 

  57. Vargas, A. et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 28, 3703–3719 (2014).

    Article  Google Scholar 

  58. Zhang, X. et al. Programmable extracellular vesicles for macromolecule delivery and genome modifications. Dev. Cell 55, 784–801.e9 (2020).

    Article  Google Scholar 

  59. Somiya, M. & Kuroda, S. Reporter gene assay for membrane fusion of extracellular vesicles. J. Extracell. Vesicles 10, e12171 (2021).

    Article  Google Scholar 

  60. Nambiar, D., Le, Q.-T. & Pucci, F. A case for the study of native extracellular vesicles. Front. Oncol. 14, 1430971 (2024).

    Article  Google Scholar 

  61. Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    Article  Google Scholar 

  62. Mathieu, M. et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun. 12, 4389 (2021).

    Article  Google Scholar 

  63. Liu, D.-A. et al. A phosphoinositide switch mediates exocyst recruitment to multivesicular endosomes for exosome secretion. Nat. Commun. 14, 6883 (2023).

    Article  Google Scholar 

  64. Bebelman, M. P. et al. Real-time imaging of multivesicular body–plasma membrane fusion to quantify exosome release from single cells. Nat. Protoc. 15, 102–121 (2020).

    Article  Google Scholar 

  65. Sung, B. H. et al. A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nat. Commun. 11, 2092 (2020).

    Article  Google Scholar 

  66. Verweij, F. J. et al. Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. J. Cell Biol. 217, 1129–1142 (2018).

    Article  Google Scholar 

  67. Morimoto, Y. V., Kojima, S., Namba, K. & Minamino, T. M153R mutation in a pH-sensitive green fluorescent protein stabilizes its fusion proteins. PLoS ONE 6, e19598 (2011).

    Article  Google Scholar 

  68. Liu, A. et al. pHmScarlet is a pH-sensitive red fluorescent protein to monitor exocytosis docking and fusion steps. Nat. Commun. 12, 1413 (2021).

    Article  Google Scholar 

  69. Bebelman, M. P. et al. Exosomal release of the virus-encoded chemokine receptor US28 contributes to chemokine scavenging. iScience 26, 107412 (2023).

    Article  Google Scholar 

  70. Beer, K. B. et al. Degron-tagged reporters probe membrane topology and enable the specific labelling of membrane-wrapped structures. Nat. Commun. 10, 3490 (2019).

    Article  Google Scholar 

  71. Datta, A. et al. High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: a drug repurposing strategy for advanced cancer. Sci. Rep. 8, 8161 (2018).

    Article  Google Scholar 

  72. Ruan, Z. et al. Functional genome-wide short hairpin RNA library screening identifies key molecules for extracellular vesicle secretion from microglia. Cell Rep. 39, 110791 (2022).

    Article  Google Scholar 

  73. Welsh, J. A. et al. A compendium of single extracellular vesicle flow cytometry. J. Extracell. Vesicles 12, e12299 (2023).

    Article  Google Scholar 

  74. Corso, G. et al. Systematic characterization of extracellular vesicles sorting domains and quantification at the single molecule–single vesicle level by fluorescence correlation spectroscopy and single particle imaging. J. Extracell. Vesicles 8, 1663043 (2019).

    Article  Google Scholar 

  75. Bebelman, M. P. et al. Luminescence-based screening for extracellular vesicle release modulators reveals a role for PI4KIIIβ in exosome biogenesis upon lysosome inhibition. Preprint at bioRxiv https://doi.org/10.1101/2023.02.23.529257 (2023).

  76. Chiao, J. J. C., Roberts, J. P., Illner, H. P. & Shires, G. T. Permeability of red-cell membrane to adenosine triphosphate (ATP) molecules during hemorrhagic shock. Surgery 102, 528–533 (1987).

    Google Scholar 

  77. Zheng, W. et al. Identification of scaffold proteins for improved endogenous engineering of extracellular vesicles. Nat. Commun. 14, 4734 (2023).

    Article  Google Scholar 

  78. Dixon, A. S. et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016).

    Article  Google Scholar 

  79. Leidal, A. M. et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat. Cell Biol. 22, 187–199 (2020).

    Article  Google Scholar 

  80. Lu, A. et al. Genome-wide interrogation of extracellular vesicle biology using barcoded miRNAs. eLife 7, e41460 (2018).

    Article  Google Scholar 

  81. Zeng, Y., Wagner, E. J. & Cullen, B. R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).

    Article  Google Scholar 

  82. Imai, T. et al. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice. J. Extracell. Vesicles 4, 26238 (2015).

    Article  Google Scholar 

  83. Wu, A. Y.-T. et al. Multiresolution imaging using bioluminescence resonance energy transfer identifies distinct biodistribution profiles of extracellular vesicles and exomeres with redirected tropism. Adv. Sci. 7, 2001467 (2020).

    Article  Google Scholar 

  84. Driedonks, T. et al. Pharmacokinetics and biodistribution of extracellular vesicles administered intravenously and intranasally to Macaca nemestrina. J. Extracell. Biol. 1, e59 (2022).

    Article  Google Scholar 

  85. Paget, D. et al. Comparative and integrated analysis of plasma extracellular vesicle isolation methods in healthy volunteers and patients following myocardial infarction. J. Extracell. Biol. 1, e66 (2022).

    Article  Google Scholar 

  86. Visan, K. S. et al. Comparative analysis of tangential flow filtration and ultracentrifugation, both combined with subsequent size exclusion chromatography, for the isolation of small extracellular vesicles. J. Extracell. Vesicles 11, e12266 (2022).

    Article  Google Scholar 

  87. Hsia, T. et al. Rigorous comparison of extracellular vesicle processing to enhance downstream analysis for glioblastoma characterization. Adv. Biol. 8, e2300233 (2024).

    Article  Google Scholar 

  88. Zhang, Z. et al. Comprehensive characterization of human brain-derived extracellular vesicles using multiple isolation methods: implications for diagnostic and therapeutic applications. J. Extracell. Vesicles 12, e12358 (2023).

    Article  Google Scholar 

  89. Nieuwland, R., Siljander, P. R.-M., Falcón-Pérez, J. M. & Witwer, K. W. Reproducibility of extracellular vesicle research. Eur. J. Cell Biol. 101, 151226 (2022).

    Article  Google Scholar 

  90. Poupardin, R. et al. Advances in extracellular vesicle research over the past decade: source and isolation method are connected with cargo and function. Adv. Healthc. Mater. 13, e2303941 (2024).

    Article  Google Scholar 

  91. Abyadeh, M. et al. Proteomic profiling of mesenchymal stem cell-derived extracellular vesicles: impact of isolation methods on protein cargo. J. Extracell. Biol. 3, e159 (2024).

    Article  Google Scholar 

  92. Han, C. et al. CD63-snorkel tagging for isolation of exosomes. Extracell. Vesicle 2, 100031 (2023).

    Article  Google Scholar 

  93. Rufino-Ramos, D. et al. Using genetically modified extracellular vesicles as a non-invasive strategy to evaluate brain-specific cargo. Biomaterials 281, 121366 (2022).

    Article  Google Scholar 

  94. Li, W. et al. Construction of a mouse model that can be used for tissue-specific EV screening and tracing in vivo. Front. Cell Dev. Biol. 10, 1015841 (2022).

    Article  Google Scholar 

  95. Zheng, W. et al. Cell‐specific targeting of extracellular vesicles though engineering the glycocalyx. J. Extracell. Vesicles 11, e12290 (2022).

    Article  Google Scholar 

  96. Liang, X. et al. Extracellular vesicles engineered to bind albumin demonstrate extended circulation time and lymph node accumulation in mouse models. J. Extracell. Vesicles 11, e12248 (2022).

    Article  Google Scholar 

  97. Vogt, S. et al. An engineered CD81-based combinatorial library for selecting recombinant binders to cell surface proteins: laminin binding CD81 enhances cellular uptake of extracellular vesicles. J. Extracell. Vesicles 10, e12139 (2021).

    Article  Google Scholar 

  98. Dooley, K. et al. A versatile platform for generating engineered extracellular vesicles with defined therapeutic properties. Mol. Ther. 29, 1729–1743 (2021).

    Article  Google Scholar 

  99. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    Article  Google Scholar 

  100. Martin Perez, C. et al. An extracellular vesicle delivery platform based on the PTTG1IP protein. Extracell. Vesicle 4, 100054 (2024).

    Article  Google Scholar 

  101. Ohno, S. et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 21, 185–191 (2013).

    Article  Google Scholar 

  102. Kehrloesser, S. et al. Cell-of-origin–specific proteomics of extracellular vesicles. PNAS Nexus 2, pgad107 (2023).

    Article  Google Scholar 

  103. Kokkinopoulou, M., Simon, J., Landfester, K., Mailänder, V. & Lieberwirth, I. Visualization of the protein corona: towards a biomolecular understanding of nanoparticle-cell-interactions. Nanoscale 9, 8858–8870 (2017).

    Article  Google Scholar 

  104. Wolf, M. et al. A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation. J. Extracell. Vesicles 11, e12207 (2022).

    Article  Google Scholar 

  105. Choi, D. et al. Quantitative proteomic analysis of trypsin-treated extracellular vesicles to identify the real-vesicular proteins. J. Extracell. Vesicles 9, 1757209 (2020).

    Article  Google Scholar 

  106. Xu, R. et al. Surfaceome of exosomes secreted from the colorectal cancer cell line SW480: peripheral and integral membrane proteins analyzed by proteolysis and TX114. Proteomics 19, e1700453 (2019).

    Article  Google Scholar 

  107. Rai, A., Fang, H., Claridge, B., Simpson, R. J. & Greening, D. W. Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform. J. Extracell. Vesicles 10, e12164 (2021).

    Article  Google Scholar 

  108. Santucci, L. et al. Biological surface properties in extracellular vesicles and their effect on cargo proteins. Sci. Rep. 9, 13048 (2019).

    Article  Google Scholar 

  109. Kirkemo, L. L. et al. Cell-surface tethered promiscuous biotinylators enable comparative small-scale surface proteomic analysis of human extracellular vesicles and cells. eLife 11, e73982 (2022).

    Article  Google Scholar 

  110. Chauhan, S. et al. Surface glycoproteins of exosomes shed by myeloid-derived suppressor cells contribute to function. J. Proteome Res. 16, 238–246 (2017).

    Article  Google Scholar 

  111. Li, Y., Kanao, E., Yamano, T., Ishihama, Y. & Imami, K. TurboID-EV: proteomic mapping of recipient cellular proteins proximal to small extracellular vesicles. Anal. Chem. 95, 14159–14164 (2023).

    Article  Google Scholar 

  112. Skotland, T., Sandvig, K. & Llorente, A. Lipids in exosomes: current knowledge and the way forward. Prog. Lipid Res. 66, 30–41 (2017).

    Article  Google Scholar 

  113. Lee, B. R. et al. Ascorbate peroxidase-mediated in situ labelling of proteins in secreted exosomes. J. Extracell. Vesicles 11, e12239 (2022).

    Article  Google Scholar 

  114. Hagey, D. W. et al. The cellular response to extracellular vesicles is dependent on their cell source and dose. Sci. Adv. 9, eadh1168 (2024).

    Article  Google Scholar 

  115. Shipunova, V. O., Shilova, O. N., Shramova, E. I., Deyev, S. M. & Proshkina, G. M. A highly specific substrate for nanoLUC luciferase furimazine is toxic in vitro and in vivo. Russ. J. Bioorg. Chem. 44, 225–228 (2018).

    Article  Google Scholar 

  116. Gaspar, N. et al. Evaluation of NanoLuc substrates for bioluminescence imaging of transferred cells in mice. J. Photochem. Photobiol. B 216, 112128 (2021).

    Article  Google Scholar 

  117. van Solinge, T. S. et al. Illuminating cellular and extracellular vesicle-mediated communication via a split-Nanoluc reporter in vitro and in vivo. Cell Rep. Methods 3, 100412 (2023).

    Article  Google Scholar 

  118. Leary, N. et al. Melanoma-derived extracellular vesicles mediate lymphatic remodelling and impair tumour immunity in draining lymph nodes. J. Extracell. Vesicles 11, e12197 (2022).

    Article  Google Scholar 

  119. Men, Y. et al. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat. Commun. 10, 4136 (2019).

    Article  Google Scholar 

  120. Hu, Y. et al. Cancer-cell-secreted miR-204-5p induces leptin signalling pathway in white adipose tissue to promote cancer-associated cachexia. Nat. Commun. 14, 5179 (2023).

    Article  Google Scholar 

  121. Ma, S. et al. Skeletal muscle-derived extracellular vesicles transport glycolytic enzymes to mediate muscle-to-bone crosstalk. Cell Metab. 35, 2028–2043.e7 (2023).

    Article  Google Scholar 

  122. Hyenne, V. et al. Studying the fate of tumor extracellular vesicles at high spatiotemporal resolution using the zebrafish embryo. Dev. Cell 48, 554–572.e7 (2019).

    Article  Google Scholar 

  123. Verweij, F. J. et al. Live tracking of inter-organ communication by endogenous exosomes in vivo. Dev. Cell 48, 573–589.e4 (2019).

    Article  Google Scholar 

  124. Chu, J. et al. A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo. Nat. Biotechnol. 34, 760–767 (2016).

    Article  Google Scholar 

  125. Hikita, T., Miyata, M., Watanabe, R. & Oneyama, C. In vivo imaging of long-term accumulation of cancer-derived exosomes using a BRET-based reporter. Sci. Rep. 10, 16616 (2020).

    Article  Google Scholar 

  126. Schaub, F. X. et al. Fluorophore-NanoLuc BRET reporters enable sensitive in vivo optical imaging and flow cytometry for monitoring tumorigenesis. Cancer Res. 75, 5023–5033 (2015).

    Article  Google Scholar 

  127. Suzuki, K. et al. Five colour variants of bright luminescent protein for real-time multicolour bioimaging. Nat. Commun. 7, 13718 (2016).

    Article  Google Scholar 

  128. Zhang, H. et al. Quantitative assessment of near-infrared fluorescent proteins. Nat. Methods 20, 1605–1616 (2023).

    Article  Google Scholar 

  129. Liang, X. et al. Multimodal engineering of extracellular vesicles for efficient intracellular protein delivery. Preprint at bioRxiv https://doi.org/10.1101/2023.04.30.535834 (2023).

  130. Zickler, A. M. et al. Novel endogenous engineering platform for robust loading and delivery of functional mRNA by extracellular vesicles. Adv. Sci. 11, e2407619 (2024).

    Article  Google Scholar 

  131. Zomer, A. et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161, 1046–1057 (2015).

    Article  Google Scholar 

  132. Casella, G. et al. Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice. Sci. Transl Med. 12, eaba0599 (2020).

    Article  Google Scholar 

  133. Kang, M., Jordan, V., Blenkiron, C. & Chamley, L. W. Biodistribution of extracellular vesicles following administration into animals: a systematic review. J. Extracell. Vesicles 10, e12085 (2021).

    Article  Google Scholar 

  134. Kur, I.-M. et al. Neuronal activity triggers uptake of hematopoietic extracellular vesicles in vivo. PLoS Biol. 18, e3000643 (2020).

    Article  Google Scholar 

  135. Ridder, K. et al. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol. 12, e1001874 (2014).

    Article  Google Scholar 

  136. Valkov, N. et al. SnRNA sequencing defines signaling by RBC-derived extracellular vesicles in the murine heart. Life Sci. Alliance 4, e202101048 (2021).

    Article  Google Scholar 

  137. Nikolic, J. et al. Structural basis for the recognition of LDL-receptor family members by VSV glycoprotein. Nat. Commun. 9, 1029 (2018).

    Article  Google Scholar 

  138. de Jong, O. G. et al. A CRISPR-Cas9-based reporter system for single-cell detection of extracellular vesicle-mediated functional transfer of RNA. Nat. Commun. 11, 1113 (2020).

    Article  Google Scholar 

  139. Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  Google Scholar 

  140. Zhang, L. et al. sgRNA knock-in mouse provides an alternative approach for in vivo genetic modification. Front. Cell Dev. Biol. 9, 769673 (2022).

    Article  Google Scholar 

  141. Kranich, J. et al. In vivo identification of apoptotic and extracellular vesicle-bound live cells using image-based deep learning. J. Extracell. Vesicles 9, 1792683 (2020).

    Article  Google Scholar 

  142. Joshi, B. S., de Beer, M. A., Giepmans, B. N. G. & Zuhorn, I. S. Endocytosis of extracellular vesicles and release of their cargo from endosomes. ACS Nano 14, 4444–4455 (2020).

    Article  Google Scholar 

  143. Votteler, J. et al. Designed proteins induce the formation of nanocage-containing extracellular vesicles. Nature 540, 292–295 (2016).

    Article  Google Scholar 

  144. Qin, W. et al. Dynamic mapping of proteome trafficking within and between living cells by TransitID. Cell 186, 3307–3324.e30 (2023).

    Article  Google Scholar 

  145. Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    Article  Google Scholar 

  146. Atai, N. A. et al. Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J. Neurooncol. 115, 343–351 (2013).

    Article  Google Scholar 

  147. Zhang, W. et al. ICAM-1-mediated adhesion is a prerequisite for exosome-induced T cell suppression. Dev. Cell 57, 329–343.e7 (2022).

    Article  Google Scholar 

  148. Franciszkiewicz, K. et al. CD103 or LFA-1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T-cell effector functions. Cancer Res. 73, 617–628 (2013).

    Article  Google Scholar 

  149. Nolte-‘t Hoen, E. N. M., Buschow, S. I., Anderton, S. M., Stoorvogel, W. & Wauben, M. H. M. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood 113, 1977–1981 (2009).

    Article  Google Scholar 

  150. Zapatero-Belinchón, F. J., Carriquí-Madroñal, B. & Gerold, G. in Advances in Virus Research Vol. 109 (ed. Gerold, G.) 63–104 (Academic, 2021).

  151. Lu, S. et al. Native and engineered extracellular vesicles for wound healing. Front. Bioeng. Biotechnol. 10, 1053217 (2022).

    Article  Google Scholar 

  152. de Abreu, R. C. et al. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat. Rev. Cardiol. 17, 685–697 (2020).

    Article  Google Scholar 

  153. Zaborowski, M. P. et al. Membrane-bound Gaussia luciferase as a tool to track shedding of membrane proteins from the surface of extracellular vesicles. Sci. Rep. 9, 17387 (2019).

    Article  Google Scholar 

  154. Ai, Y. et al. Endocytosis blocks the vesicular secretion of exosome marker proteins. Sci. Adv. 10, eadi9156 (2024).

    Article  Google Scholar 

  155. Thompson, A. G. et al. Extracellular vesicles in neurodegenerative disease — pathogenesis to biomarkers. Nat. Rev. Neurol. 12, 346–357 (2016).

    Article  Google Scholar 

  156. Boulanger, C. M., Loyer, X., Rautou, P.-E. & Amabile, N. Extracellular vesicles in coronary artery disease. Nat. Rev. Cardiol. 14, 259–272 (2017).

    Article  Google Scholar 

  157. Grange, C. & Bussolati, B. Extracellular vesicles in kidney disease. Nat. Rev. Nephrol. 18, 499–513 (2022).

    Article  Google Scholar 

  158. Buzas, E. I. The roles of extracellular vesicles in the immune system. Nat. Rev. Immunol. 23, 236–250 (2023).

    Article  Google Scholar 

  159. O’Brien, K., Breyne, K., Ughetto, S., Laurent, L. C. & Breakefield, X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21, 585–606 (2020).

    Article  Google Scholar 

  160. Wu, J. & Jaffrey, S. R. Imaging mRNA trafficking in living cells using fluorogenic proteins. Curr. Opin. Chem. Biol. 57, 177–183 (2020).

    Article  Google Scholar 

  161. Lu, X., Kong, K. Y. S. & Unrau, P. J. Harmonizing the growing fluorogenic RNA aptamer toolbox for RNA detection and imaging. Chem. Soc. Rev. 52, 4071–4098 (2023).

    Article  Google Scholar 

  162. Bonacquisti, E. E. et al. Fluorogenic RNA-based biomaterials for imaging and tracking the cargo of extracellular vesicles. J. Control. Release 374, 349–368 (2024).

    Article  Google Scholar 

  163. Lindenbergh, M. F. S. & Stoorvogel, W. Antigen presentation by extracellular vesicles from professional antigen-presenting cells. Annu. Rev. Immunol. 36, 435–459 (2018).

    Article  Google Scholar 

  164. Shedden, K., Xie, X. T., Chandaroy, P., Chang, Y. T. & Rosania, G. R. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res. 63, 4331–4337 (2003).

    Google Scholar 

  165. Maugeri, M. et al. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat. Commun. 10, 4333 (2019).

    Article  Google Scholar 

  166. Nawaz, M. et al. Lipid nanoparticles deliver the therapeutic VEGFA mRNA in vitro and in vivo and transform extracellular vesicles for their functional extensions. Adv. Sci. 10, e2206187 (2023).

    Article  Google Scholar 

  167. Takahashi, A. et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat. Commun. 8, 15287 (2017).

    Article  Google Scholar 

  168. Troyer, Z. et al. Extracellular vesicles carry SARS-CoV-2 spike protein and serve as decoys for neutralizing antibodies. J. Extracell. Vesicles 10, e12112 (2021).

    Article  Google Scholar 

  169. Zhao, F. et al. Extracellular vesicles from Zika virus-infected cells display viral E protein that binds ZIKV-neutralizing antibodies to prevent infection enhancement. EMBO J. 42, e112096 (2023).

    Article  Google Scholar 

  170. Gupta, D. et al. Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles. Nat. Biomed. Eng. 5, 1084–1098 (2021).

    Article  Google Scholar 

  171. Carotti, V., Rigalli, J. P., van Asbeck-van der Wijst, J. & Hoenderop, J. G. J. Interplay between purinergic signalling and extracellular vesicles in health and disease. Biochem. Pharmacol. 203, 115192 (2022).

    Article  Google Scholar 

  172. Angioni, R. et al. CD73+ extracellular vesicles inhibit angiogenesis through adenosine A2B receptor signalling. J. Extracell. Vesicles 9, 1757900 (2020).

    Article  Google Scholar 

  173. Sanderson, R. D., Bandari, S. K. & Vlodavsky, I. Proteases and glycosidases on the surface of exosomes: newly discovered mechanisms for extracellular remodeling. Matrix Biol. 75–76, 160–169 (2019).

    Article  Google Scholar 

  174. An, Y. et al. Tumor exosomal ENPP1 hydrolyzes cGAMP to inhibit cGAS-STING signaling. Adv. Sci. 11, e230811 (2024).

    Article  Google Scholar 

  175. Hansen, A. S. et al. T-cell derived extracellular vesicles prime macrophages for improved STING based cancer immunotherapy. J. Extracell. Vesicles 12, e12350 (2023).

    Article  Google Scholar 

  176. Roefs, M. T. et al. Cardiac progenitor cell-derived extracellular vesicles promote angiogenesis through both associated- and co-isolated proteins. Commun. Biol. 6, 800 (2023).

    Article  Google Scholar 

  177. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    Article  Google Scholar 

  178. Poggio, M. et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177, 414–427.e13 (2019).

    Article  Google Scholar 

  179. Zhong, W. et al. Tumor-derived small extracellular vesicles inhibit the efficacy of CAR T cells against solid tumors. Cancer Res. 83, 2790–2806 (2023).

    Article  Google Scholar 

  180. Rausch, L. et al. Phosphatidylserine-positive extracellular vesicles boost effector CD8+ T cell responses during viral infection. Proc. Natl Acad. Sci. USA 120, e2210047120 (2023).

    Article  Google Scholar 

  181. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).

    Article  Google Scholar 

  182. Blandin, A. et al. Extracellular vesicles are carriers of adiponectin with insulin-sensitizing and anti-inflammatory properties. Cell Rep. 42, 112866 (2023).

    Article  Google Scholar 

  183. Jin, S. et al. Astroglial exosome HepaCAM signaling and ApoE antagonization coordinates early postnatal cortical pyramidal neuronal axon growth and dendritic spine formation. Nat. Commun. 14, 5150 (2023).

    Article  Google Scholar 

  184. Seras-Franzoso, J. et al. Extracellular vesicles from recombinant cell factories improve the activity and efficacy of enzymes defective in lysosomal storage disorders. J. Extracell. Vesicles 10, e12058 (2021).

    Article  Google Scholar 

  185. Harmati, M., Bukva, M., Böröczky, T., Buzás, K. & Gyukity-Sebestyén, E. The role of the metabolite cargo of extracellular vesicles in tumor progression. Cancer Metastasis Rev. 40, 1203–1221 (2021).

    Article  Google Scholar 

  186. Zhang, Y., Liang, F., Zhang, D., Qi, S. & Liu, Y. Metabolites as extracellular vesicle cargo in health, cancer, pleural effusion, and cardiovascular diseases: an emerging field of study to diagnostic and therapeutic purposes. Biomed. Pharmacother. 157, 114046 (2023).

    Article  Google Scholar 

  187. Pham, T. T. et al. Endocytosis of red blood cell extracellular vesicles by macrophages leads to cytoplasmic heme release and prevents foam cell formation in atherosclerosis. J. Extracell. Vesicles 12, e12354 (2023).

    Article  Google Scholar 

  188. Liang, Y. et al. Cell-derived extracellular vesicles for CRISPR/Cas9 delivery: engineering strategies for cargo packaging and loading. Biomater. Sci. 10, 4095–4106 (2022).

    Article  Google Scholar 

  189. Kostyushev, D. et al. Gene editing by extracellular vesicles. Int. J. Mol. Sci. 21, 7362 (2020).

    Article  Google Scholar 

  190. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  Google Scholar 

  191. Zhang, C. et al. Intercellular mitochondrial component transfer triggers ischemic cardiac fibrosis. Sci. Bull. 68, 1784–1799 (2023).

    Article  Google Scholar 

  192. Crewe, C. et al. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab. 33, 1853–1868.e11 (2021).

    Article  Google Scholar 

  193. Liang, W. et al. Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired. Nat. Commun. 14, 5031 (2023).

    Article  Google Scholar 

  194. Borcherding, N. & Brestoff, J. R. The power and potential of mitochondria transfer. Nature 623, 283–291 (2023).

    Article  Google Scholar 

  195. Li, X. et al. Extracellular vesicle–encapsulated adeno-associated viruses for therapeutic gene delivery to the heart. Circulation 148, 405–425 (2023).

    Article  Google Scholar 

  196. Hirose, H., Hirai, Y., Sasaki, M., Sawa, H. & Futaki, S. Quantitative analysis of extracellular vesicle uptake and fusion with recipient cells. Bioconjug. Chem. 33, 1852–1859 (2022).

    Article  Google Scholar 

  197. Bui, S., Dancourt, J. & Lavieu, G. Virus-free method to control and enhance extracellular vesicle cargo loading and delivery. ACS Appl. Bio Mater. 6, 1081–1091 (2023).

    Article  Google Scholar 

  198. Hamilton, J. R. et al. In vivo human T cell engineering with enveloped delivery vehicles. Nat. Biotechnol. 42, 1684–1692 (2024).

    Article  Google Scholar 

  199. Hamilton, J. R. et al. Targeted delivery of CRISPR-Cas9 and transgenes enables complex immune cell engineering. Cell Rep. 35, 109207 (2021).

    Article  Google Scholar 

  200. Segel, M. et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882–889 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

S.E.A. was funded by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (EXPERT, grant agreement No. 825828), the European Research Council Consolidator Grant (DELIVER, grant agreement No. 101001374), the Swedish Foundation of Strategic Research (FormulaEx, grant agreement No. SM19-0007), the Swedish Cancer Society (project agreement No. 21-1762-Pj-01-H) and the Swedish Research Council (project agreement No. 4-258/2021). The authors acknowledge M. Mowoe for linguistic editing.

Author information

Authors and Affiliations

Authors

Contributions

W.Z. researched data for the draft and contributed to the writing and editing of this manuscript. S.R. and H.Z. contributed to the discussion of content, writing and editing of this manuscript. M.L.C. and G.v.N. contributed to reviewing and editing of the manuscript before submission. J.Z.N. made a substantial contribution to the discussion of content. S.E.A. contributed to the discussion and reviewed the manuscript before submission.

Corresponding author

Correspondence to Samir EL Andaloussi.

Ethics declarations

Competing interests

J.Z.N. and S.E.A. are consultants for and have equity interests in EVOX Therapeutics, Oxford, UK. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Yongjie Yang, Dima Ter-Ovanesyan, who co-reviewed with David Walt, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Roudi, S., Zhou, H. et al. Genetic tools for investigating the life cycle of extracellular vesicles. Nat Rev Bioeng 3, 505–520 (2025). https://doi.org/10.1038/s44222-025-00286-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-025-00286-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research