Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Smart closed-loop drug delivery systems

Abstract

The administration of therapeutics for long-term chronic disease management or treatment faces considerable challenges, such as the need for precise dosage control, timely delivery and adherence to medication regimens. Traditional drug delivery methods often result in suboptimal therapeutic outcomes owing to variable responses, fluctuating drug concentrations and lack of feedback from real-time monitoring. Smart closed-loop systems (CLSs) could address these limitations by integrating real-time biosensing with automated drug delivery, thereby personalizing treatments to individual needs. This Review explores the current landscape of CLSs, highlighting recent advancements in wearable and implantable technologies that facilitate continuous monitoring of biomarkers and offer responsive therapeutic interventions. We discuss the implications of device design and the trade-offs between wearable and implantable systems. In addition, we highlight the potential of artificial intelligence enhancement of CLS control algorithms by enabling systems to learn from and predict responses to achieve more effective and adaptive optimal therapies. Ultimately, this Review charts a path towards next-generation CLSs, emphasizing the integration of synthetic biology and engineered cells into implantable devices.

Key points

  • Closed-loop systems (CLSs) face barriers such as sensor stability, miniaturization of drug delivery systems and regulatory concerns, requiring extensive clinical validation for broad patient acceptance and health-care integration.

  • The trade-offs between wearable and implantable CLSs involve balancing clinical needs with treatment invasiveness and end-user engagement. Implantables offer long-term solutions whereas wearables are more suitable for short-to-mid-term treatments.

  • Artificial intelligence-driven control algorithms improve CLS performance by learning from patient data to predict disease progression and abnormalities, and optimize drug delivery, moving towards full automation with minimal human intervention.

  • The integration of engineered cells in implantable CLSs holds promise for autonomous drug delivery, although overcoming immune rejection and maintaining long-term cell viability and function in vivo remain unresolved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sensors in closed-loop systems.
Fig. 2: Drug delivery profiles and strategies for closed-loop systems.
Fig. 3: Advances in closed-loop systems, working principle and design consideration.
Fig. 4: Next-generation closed-loop systems.

Similar content being viewed by others

References

  1. Mujeeb-U-Rahman, M., Nazari, M. H., Sencan, M. & Antwerp, W. V. A novel needle-injectable millimeter scale wireless electrochemical glucose sensing platform for artificial pancreas applications. Sci. Rep. 9, 17421 (2019).

    Article  Google Scholar 

  2. Taylor, M. J. et al. Closed-loop glycaemic control using an implantable artificial pancreas in diabetic domestic pig (Sus scrofa domesticus). Int. J. Pharm. 500, 371–378 (2016).

    Article  Google Scholar 

  3. Farina, M., Alexander, J. F., Thekkedath, U., Ferrari, M. & Grattoni, A. Cell encapsulation: overcoming barriers in cell transplantation in diabetes and beyond. Adv. Drug Deliv. Rev. 139, 92–115 (2019).

    Article  Google Scholar 

  4. Li, J., Liang, J. Y., Laken, S. J., Langer, R. & Traverso, G. Clinical opportunities for continuous biosensing and closed-loop therapies. Trends Chem. 2, 319–340 (2020).

    Article  Google Scholar 

  5. Tan, M. et al. Recent advances in intelligent wearable medical devices integrating biosensing and drug delivery. Adv. Mater. 34, e2108491 (2022).

    Article  Google Scholar 

  6. Brasier, N. et al. Next-generation digital biomarkers: continuous molecular health monitoring using wearable devices. Trends Biotechnol. 42, 255–257 (2024).

    Article  Google Scholar 

  7. Teymourian, H. et al. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens. 5, 2679–2700 (2020).

    Article  Google Scholar 

  8. Saha, T., Del Caño, R., De la Paz, E., Sandhu, S. S. & Wang, J. Access and management of sweat for non-invasive biomarker monitoring: a comprehensive review. Small 19, 2206064 (2023).

    Article  Google Scholar 

  9. Arroyo-Currás, N., Dauphin-Ducharme, P., Scida, K. & Chávez, J. L. From the beaker to the body: translational challenges for electrochemical, aptamer-based sensors. Anal. Methods 12, 1288–1310 (2020).

    Article  Google Scholar 

  10. Zhao, Y., Lin, Z., Dong, S. & Chen, M. Review of wearable optical fiber sensors: drawing a blueprint for human health monitoring. Opt. Laser Technol. 161, 109227 (2023).

    Article  Google Scholar 

  11. Kim, J., Campbell, A. S., de Avila, B. E. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  Google Scholar 

  12. Seo, H. et al. Smart contact lenses as wearable ophthalmic devices for disease monitoring and health management. Chem. Rev. 123, 11488–11558 (2023).

    Article  Google Scholar 

  13. Teymourian, H. et al. Closing the loop for patients with Parkinson disease: where are we? Nat. Rev. Neurol. 18, 497–507 (2022).

    Article  Google Scholar 

  14. Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Article  Google Scholar 

  15. Ray, D., Collins, T., Woolley, S. & Ponnapalli, P. A review of wearable multi-wavelength photoplethysmography. IEEE Rev. Biomed. Eng. 16, 136–151 (2023).

    Article  Google Scholar 

  16. Xu, C. et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat. Electron. 7, 168–179 (2024).

    Article  Google Scholar 

  17. Yokus, B. M. A. & Daniele, M. A. Integrated non-invasive biochemical and biophysical sensing systems for health and performance monitoring: a systems perspective. Biosens. Bioelectron. 184, 113249 (2021).

    Article  Google Scholar 

  18. Saha, T. et al. Wearable electrochemical glucose sensors in diabetes management: a comprehensive review. Chem. Rev. 123, 7854–7889 (2023).

    Article  Google Scholar 

  19. Sonner, Z. et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 9, 031301 (2015).

    Article  Google Scholar 

  20. Friedel, M. et al. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat. Biomed. Eng. 7, 1541–1555 (2023).

    Article  Google Scholar 

  21. Ferguson, B. S. et al. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci. Transl. Med. 5, 213ra165 (2013).

    Article  Google Scholar 

  22. Razzaghi, M. et al. Remote-controlled sensing and drug delivery via 3D-printed hollow microneedles. Adv. Healthc. Mater. 13, 2400881 (2024).

    Article  Google Scholar 

  23. Li, X. et al. A fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment. Adv. Sci. 8, e2100827 (2021).

    Article  Google Scholar 

  24. Tehrani, F. et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 6, 1214–1224 (2022).

    Article  Google Scholar 

  25. Lucisano, J. Y., Routh, T. L., Lin, J. T. & Gough, D. A. Glucose monitoring in individuals with diabetes using a long-term implanted sensor/telemetry system and model. IEEE Trans. Biomed. Eng. 64, 1982–1993 (2017).

    Article  Google Scholar 

  26. Teymourian, H., Tehrani, F., Mahato, K. & Wang, J. Lab under the skin: microneedle based wearable devices. Adv. Healthc. Mater. 10, 2002255 (2021).

    Article  Google Scholar 

  27. Min, J. et al. Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123, 5049–5138 (2023).

    Article  Google Scholar 

  28. Saha, T. et al. A passive perspiration inspired wearable platform for continuous glucose monitoring. Adv. Sci. 11, e2405518 (2024).

    Article  Google Scholar 

  29. Saha, T., Fang, J., Mukherjee, S., Dickey, M. D. & Velev, O. D. Wearable osmotic-capillary patch for prolonged sweat harvesting and sensing. ACS Appl. Mater. Interfaces 13, 8071–8081 (2021).

    Article  Google Scholar 

  30. Ding, S. et al. A fingertip-wearable microgrid system for autonomous energy management and metabolic monitoring. Nat. Electron. 7, 788–799 (2024).

    Article  Google Scholar 

  31. Saha, T., Mukherjee, S., Dickey, M. D. & Velev, O. D. Harvesting and manipulating sweat and interstitial fluid in microfluidic devices. Lab Chip 24, 1244–1265 (2024).

    Article  Google Scholar 

  32. Yao, H., Shum, A. J., Cowan, M., Lähdesmäki, I. & Parviz, B. A. A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 26, 3290–3296 (2011).

    Article  Google Scholar 

  33. Farandos, N. M., Yetisen, A. K., Monteiro, M. J., Lowe, C. R. & Yun, S. H. Contact lens sensors in ocular diagnostics. Adv. Healthc. Mater. 4, 792–810 (2015).

    Article  Google Scholar 

  34. Arakawa, T. et al. Mouthguard biosensor with telemetry system for monitoring of saliva glucose: a novel cavitas sensor. Biosens. Bioelectron. 84, 106–111 (2016).

    Article  Google Scholar 

  35. Lim, H. R. et al. Smart bioelectronic pacifier for real-time continuous monitoring of salivary electrolytes. Biosens. Bioelectron. 210, 114329 (2022).

    Article  Google Scholar 

  36. De la Paz, E. et al. A self-powered ingestible wireless biosensing system for real-time in situ monitoring of gastrointestinal tract metabolites. Nat. Commun. 13, 7405 (2022).

    Article  Google Scholar 

  37. Manor, O. et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 11, 5206 (2020).

    Article  Google Scholar 

  38. Kalantar-Zadeh, K., Ha, N., Ou, J. Z. & Berean, K. J. Ingestible sensors. ACS Sens. 2, 468–483 (2017).

    Article  Google Scholar 

  39. Wang, C. C. et al. Airborne transmission of respiratory viruses. Science 373, eabd9149 (2021).

    Article  Google Scholar 

  40. Heng, W. et al. A smart mask for exhaled breath condensate harvesting and analysis. Science 385, 954–961 (2024).

    Article  Google Scholar 

  41. Maier, D. et al. Toward continuous monitoring of breath biochemistry: a paper-based wearable sensor for real-time hydrogen peroxide measurement in simulated breath. ACS Sens. 4, 2945–2951 (2019).

    Article  Google Scholar 

  42. Hulme, C. H. et al. The developing landscape of diagnostic and prognostic biomarkers for spinal cord injury in cerebrospinal fluid and blood. Spinal Cord 55, 114–125 (2017).

    Article  Google Scholar 

  43. Boughton, C. K. & Hovorka, R. Advances in artificial pancreas systems. Sci. Transl. Med. 11, eaaw4949 (2019).

    Article  Google Scholar 

  44. Heinemann, L. et al. Benefits and limitations of MARD as a performance parameter for continuous glucose monitoring in the interstitial space. J. Diabetes Sci. Technol. 14, 135–150 (2020).

    Article  Google Scholar 

  45. Moonla, C. et al. An integrated microcatheter-based dual-analyte sensor system for simultaneous, real-time measurement of propofol and fentanyl. Talanta 218, 121205 (2020).

    Article  Google Scholar 

  46. Baker, L. B. et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci. Adv. 6, eabe3929 (2020).

    Article  Google Scholar 

  47. Vargas, E., Nandhakumar, P., Ding, S., Saha, T. & Wang, J. Insulin detection in diabetes mellitus: challenges and new prospects. Nat. Rev. Endocrinol. 19, 487–495 (2023).

    Article  Google Scholar 

  48. Keum, D. H. et al. Wireless smart contact lens for diabetic diagnosis and therapy. Sci. Adv. 6, eaba3252 (2020).

    Article  Google Scholar 

  49. Xu, Y. et al. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat. Biomed. Eng. 7, 1307–1320 (2023).

    Article  Google Scholar 

  50. Imani, S. et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016).

    Article  Google Scholar 

  51. Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    Article  Google Scholar 

  52. Moon, J. M. et al. Non-invasive sweat-based tracking of L-Dopa pharmacokinetic profiles following an oral tablet administration. Angew. Chem. Int. Ed. 60, 19074–19078 (2021).

    Article  Google Scholar 

  53. Stahlschmidt, S. R., Ulfenborg, B. & Synnergren, J. Multimodal deep learning for biomedical data fusion: a review. Brief. Bioinform. 23, bbab569 (2022).

    Article  Google Scholar 

  54. Nimri, R., Phillip, M. & Kovatchev, B. Closed-loop and artificial intelligence-based decision support systems. Diabetes Technol. Ther. 25, S70–S89 (2023).

    Article  Google Scholar 

  55. Di Trani, N. et al. Extending drug release from implants via transcutaneous refilling with solid therapeutics. Adv. Ther. 5, 2100214 (2022).

    Article  Google Scholar 

  56. Pons-Faudoa, F. P. et al. Long-acting refillable nanofluidic implant confers protection against SHIV infection in nonhuman primates. Sci. Transl. Med. 15, eadg2887 (2023).

    Article  Google Scholar 

  57. Pons-Faudoa, F. P. et al. Antiviral potency of long-acting islatravir subdermal implant in SHIV-infected macaques. J. Control. Release 366, 18–27 (2024).

    Article  Google Scholar 

  58. Pons-Faudoa, F. P. et al. Changes in local tissue microenvironment in response to subcutaneous long-acting delivery of tenofovir alafenamide in rats and non-human primates. J. Control. Release 358, 116–127 (2023).

    Article  Google Scholar 

  59. Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016).

    Article  Google Scholar 

  60. Zhou, T. et al. All-in-one second near-infrared light-responsive drug delivery system for synergistic chemo-photothermal therapy. ACS Appl. Bio Mater. 5, 3841–3849 (2022).

    Article  Google Scholar 

  61. Hoare, T. et al. Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release. Nano Lett. 11, 1395–1400 (2011).

    Article  Google Scholar 

  62. Wei, P., Cornel, E. J. & Du, J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv. Transl. Res. 11, 1323–1339 (2021).

    Article  Google Scholar 

  63. Choudhary, P. et al. Advanced hybrid closed loop therapy versus conventional treatment in adults with type 1 diabetes (ADAPT): a randomised controlled study. Lancet Diabetes Endocrinol. 10, 720–731 (2022).

    Article  Google Scholar 

  64. Lee, H. et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3, e1601314 (2017).

    Article  Google Scholar 

  65. Grattoni, A. et al. Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead. Nat. Rev. Endocrinol. 21, 14–30 (2025).

    Article  Google Scholar 

  66. Prausnitz, M. R. & Langer, R. Transdermal drug delivery. Nat. Biotechnol. 26, 1261–1268 (2008).

    Article  Google Scholar 

  67. Banga, A. K., Bose, S. & Ghosh, T. K. Iontophoresis and electroporation: comparisons and contrasts. Int. J. Pharm. 179, 1–19 (1999).

    Article  Google Scholar 

  68. Pikal, M. J. The role of electroosmotic flow in transdermal iontophoresis. Adv. Drug Deliv. Rev. 46, 281–305 (2001).

    Article  Google Scholar 

  69. Mirvakili, S. M. & Langer, R. Wireless on-demand drug delivery. Nat. Electron. 4, 464–477 (2021).

    Article  Google Scholar 

  70. Denet, A. R., Vanbever, R. & Préat, V. Skin electroporation for transdermal and topical delivery. Adv. Drug Deliv. Rev. 56, 659–674 (2004).

    Article  Google Scholar 

  71. Kougkolos, G. et al. Skin electroporation for transdermal drug delivery: electrical measurements, numerical model and molecule delivery. J. Control. Release 367, 235–247 (2024).

    Article  Google Scholar 

  72. Yang, Y. et al. Conductive microneedle patch with electricity-triggered drug release performance for atopic dermatitis treatment. ACS Appl. Mater. Interfaces 14, 31645–31654 (2022).

    Article  Google Scholar 

  73. Yang, J. et al. Smartphone-powered iontophoresis-microneedle array patch for controlled transdermal delivery. Microsyst. Nanoeng. 6, 112 (2020).

    Article  Google Scholar 

  74. Luo, X. et al. Closed-loop diabetes minipatch based on a biosensor and an electroosmotic pump on hollow biodegradable microneedles. ACS Sens. 7, 1347–1360 (2022).

    Article  Google Scholar 

  75. Cárcamo-Martínez, Á. et al. Hollow microneedles: a perspective in biomedical applications. Int. J. Pharm. 599, 120455 (2021).

    Article  Google Scholar 

  76. Hui, A. Contact lenses for ophthalmic drug delivery. Clin. Exp. Optom. 100, 494–512 (2017).

    Article  Google Scholar 

  77. Chaudhari, P., Ghate, V. M. & Lewis, S. A. Next-generation contact lenses: towards bioresponsive drug delivery and smart technologies in ocular therapeutics. Eur. J. Pharm. Biopharm. 161, 80–99 (2021).

    Article  Google Scholar 

  78. Khan, A. Iontophoretic drug delivery: history and applications. J. Appl. Pharm. 1, 11–24 (2011).

    Google Scholar 

  79. Yang, J., Liu, X., Fu, Y. & Song, Y. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm. Sin. B 9, 469–483 (2019).

    Article  Google Scholar 

  80. Li, W., Li, S., Fan, X. & Prausnitz, M. R. Microneedle patch designs to increase dose administered to human subjects. J. Control. Release 339, 350–360 (2021).

    Article  Google Scholar 

  81. Cobo, A., Sheybani, R. & Meng, E. MEMS: enabled drug delivery systems. Adv. Healthc. Mater. 4, 969–982 (2015).

    Article  Google Scholar 

  82. Fong, J., Xiao, Z. & Takahata, K. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery. Lab Chip 15, 1050–1058 (2015).

    Article  Google Scholar 

  83. Nafea, M., Nawabjan, A. & Mohamed Ali, M. S. A wirelessly-controlled piezoelectric microvalve for regulated drug delivery. Sens. Actuators A: Phys. 279, 191–203 (2018).

    Article  Google Scholar 

  84. Plano, D., Kibler, S., Rudolph, N., Zett, O. & Dressman, J. Silicon-based piezo micropumps enable fully flexible drug delivery patterns. J. Pharm. Sci. 113, 1555–1565 (2024).

    Article  Google Scholar 

  85. Borot, S. Accuracy of a new patch pump based on a microelectromechanical system (MEMS) compared to other commercially available insulin pumps. J. Diabetes Sci. Technol. 8, 1133–1141 (2014).

    Article  Google Scholar 

  86. Bußmann, A. et al. Piezoelectric silicon micropump for drug delivery applications. Appl. Sci. 11, 8008 (2021).

    Article  Google Scholar 

  87. Lai, B.-K., Kahn, H., Phillips, S. M. & Heuer, A. H. A comparison of PZT-based and TiNi shape memory alloy-based MEMS microactuators. Ferroelectrics 306, 221–226 (2004).

    Article  Google Scholar 

  88. Bußmann, A. B. et al. Microdosing for drug delivery application—a review. Sens. Actuators A: Phys. 330, 112820 (2021).

    Article  Google Scholar 

  89. Ni, J. et al. Analytical and experimental study of a valveless piezoelectric micropump with high flowrate and pressure load. Microsyst. Nanoeng. 9, 72 (2023).

    Article  Google Scholar 

  90. Wu, Y. et al. Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics and photopharmacology. Nat. Commun. 13, 5571 (2022).

    Article  Google Scholar 

  91. Avila, R., Li, C., Xue, Y., Rogers, J. A. & Huang, Y. Modeling programmable drug delivery in bioelectronics with electrochemical actuation. Proc. Natl Acad. Sci. USA 118, e2026405118 (2021).

    Article  Google Scholar 

  92. Zhang, Y. et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci. Adv. 5, eaaw5296 (2019).

    Article  Google Scholar 

  93. Joo, H. et al. Soft implantable drug delivery device integrated wirelessly with wearable devices to treat fatal seizures. Sci. Adv. 7, eabd4639 (2021).

    Article  Google Scholar 

  94. Rusli, M., Chee, P. S., Arsat, R., Lau, K. X. & Leow, P. L. Electromagnetic actuation dual-chamber bidirectional flow micropump. Sens. Actuators A: Phys. 282, 17–27 (2018).

    Article  Google Scholar 

  95. Di Trani, N. et al. Remotely controlled nanofluidic implantable platform for tunable drug delivery. Lab Chip 19, 2192–2204 (2019).

    Article  Google Scholar 

  96. Bruno, G. et al. The active modulation of drug release by an ionic field effect transistor for an ultra-low power implantable nanofluidic system. Nanoscale 8, 18718–18725 (2016).

    Article  Google Scholar 

  97. Fine, D. et al. A low-voltage electrokinetic nanochannel drug delivery system. Lab Chip 11, 2526–2534 (2011).

    Article  Google Scholar 

  98. Di Trani, N. et al. Electrostatically gated nanofluidic membrane for ultra-low power controlled drug delivery. Lab Chip 20, 1562–1576 (2020).

    Article  Google Scholar 

  99. Di Trani, N., Racca, N., Demarchi, D. & Grattoni, A. Comprehensive analysis of electrostatic gating in nanofluidic systems. ACS Appl. Mater. Interfaces 14, 35400–35408 (2022).

    Article  Google Scholar 

  100. Di Trani, N. et al. Silicon nanofluidic membrane for electrostatic control of drugs and analytes elution. Pharmaceutics 12, 679 (2020).

    Article  Google Scholar 

  101. Di Trani, N. et al. Long-acting tunable release of amlodipine loaded PEG-PCL micelles for tailored treatment of chronic hypertension. Nanomed.: Nanotechnol. Biol. Med. 37, 102417 (2021).

    Article  Google Scholar 

  102. Sharma, R., Singh, D., Gaur, P. & Joshi, D. Intelligent automated drug administration and therapy: future of healthcare. Drug Deliv. Transl. Res. 11, 1878–1902 (2021).

    Article  Google Scholar 

  103. Mage, P. L. et al. Closed-loop control of circulating drug levels in live animals. Nat. Biomed. Eng. 1, 0070 (2017).

    Article  Google Scholar 

  104. Soru, P. et al. MPC based artificial pancreas: strategies for individualization and meal compensation. Annu. Rev. Control 36, 118–128 (2012).

    Article  Google Scholar 

  105. Bruttomesso, D. et al. Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: preliminary studies in Padova and Montpellier. J. Diabetes Sci. Technol. 3, 1014–1021 (2009).

    Article  Google Scholar 

  106. Daskalaki, E., Diem, P. & Mougiakakou, S. G. An actor-critic based controller for glucose regulation in type 1 diabetes. Comput. Methods Programs Biomed. 109, 116–125 (2013).

    Article  Google Scholar 

  107. Fernandez de Canete, J., Gonzalez-Perez, S. & Ramos-Diaz, J. C. Artificial neural networks for closed loop control of in silico and ad hoc type 1 diabetes. Comput. Methods Programs Biomed. 106, 55–66 (2012).

    Article  Google Scholar 

  108. Bothe, M. K. et al. The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas. Expert Rev. Med. Devices 10, 661–673 (2013).

    Article  Google Scholar 

  109. Joosten, A. et al. Feasibility of fully automated hypnosis, analgesia, and fluid management using 2 independent closed-loop systems during major vascular surgery: a pilot study. Anesth. Analg. 128, e88–e92 (2019).

    Article  Google Scholar 

  110. Rinehart, J., Liu, N., Alexander, B. & Cannesson, M. Review article: closed-loop systems in anesthesia: is there a potential for closed-loop fluid management and hemodynamic optimization? Anesth. Analg. 114, 130–143 (2012).

    Article  Google Scholar 

  111. Wright, J., Macefield, V. G., van Schaik, A. & Tapson, J. C. A review of control strategies in closed-loop neuroprosthetic systems. Front. Neurosci. 10, 312 (2016).

    Article  Google Scholar 

  112. Sun, F. T. & Morrell, M. J. Closed-loop neurostimulation: the clinical experience. Neurotherapeutics 11, 553–563 (2014).

    Article  Google Scholar 

  113. Kovatchev, B. P., Breton, M., Man, C. D. & Cobelli, C. In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J. Diabetes Sci. Technol. 3, 44–55 (2009).

    Article  Google Scholar 

  114. Bhaiyya, M., Panigrahi, D., Rewatkar, P. & Haick, H. Role of machine learning assisted biosensors in point-of-care-testing for clinical decisions. ACS Sens. 9, 4495–4519 (2024).

    Article  Google Scholar 

  115. Niazkar, M. et al. Applications of XGBoost in water resources engineering: a systematic literature review (Dec 2018–May 2023). Environ. Model. Softw. 174, 105971 (2024).

    Article  Google Scholar 

  116. Ciatti, J. L. et al. An autonomous implantable device for the prevention of death from opioid overdose. Sci. Adv. 10, eadr3567 (2024).

    Article  Google Scholar 

  117. Huang, H.-W. et al. An implantable system for opioid safety. Device 2, 100517 (2024).

    Article  Google Scholar 

  118. Bally, L. et al. Day-and-night glycaemic control with closed-loop insulin delivery versus conventional insulin pump therapy in free-living adults with well controlled type 1 diabetes: an open-label, randomised, crossover study. Lancet Diabetes Endocrinol. 5, 261–270 (2017).

    Article  Google Scholar 

  119. Tauschmann, M. et al. Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: a multicentre, 12-week randomised trial. Lancet 392, 1321–1329 (2018).

    Article  Google Scholar 

  120. Weisman, A., Bai, J. W., Cardinez, M., Kramer, C. K. & Perkins, B. A. Effect of artificial pancreas systems on glycaemic control in patients with type 1 diabetes: a systematic review and meta-analysis of outpatient randomised controlled trials. Lancet Diabetes Endocrinol. 5, 501–512 (2017).

    Article  Google Scholar 

  121. Benhamou, P. Y. et al. Closed-loop insulin delivery in adults with type 1 diabetes in real-life conditions: a 12-week multicentre, open-label randomised controlled crossover trial. Lancet Digit. Health 1, e17–e25 (2019).

    Article  Google Scholar 

  122. Pasin, L. et al. Closed-loop delivery systems versus manually controlled administration of total IV anesthesia: a meta-analysis of randomized clinical trials. Anesth. Analg. 124, 456–464 (2017).

    Article  Google Scholar 

  123. Absalom, A. R., Sutcliffe, N. & Kenny, G. N. Closed-loop control of anesthesia using bispectral index: performance assessment in patients undergoing major orthopedic surgery under combined general and regional anesthesia. Anesthesiology 96, 67–73 (2002).

    Article  Google Scholar 

  124. Gardner, D. et al. The cost-effectiveness of an advanced hybrid closed-loop system compared to standard management of type 1 diabetes in a Singapore setting. Diabetes Technol. Ther. 26, 324–334 (2024).

    Article  Google Scholar 

  125. Babatain, W. et al. Expandable polymer assisted wearable personalized medicinal platform. Adv. Mater. Technol. 5, 2000411 (2020).

    Article  Google Scholar 

  126. Jiang, Y. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41, 652–662 (2023).

    Article  Google Scholar 

  127. Mostafalu, P. et al. Smart bandage for monitoring and treatment of chronic wounds. Small 14, 1703509 (2018).

    Article  Google Scholar 

  128. Shirzaei Sani, E. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9, eadf7388 (2023).

    Article  Google Scholar 

  129. Xu, G. et al. Battery-free and wireless smart wound dressing for wound infection monitoring and electrically controlled on-demand drug delivery. Adv. Funct. Mater. 31, 2100852 (2021).

    Article  Google Scholar 

  130. Wang, C. et al. Wound management materials and technologies from bench to bedside and beyond. Nat. Rev. Mater. 9, 550–566 (2024).

    Article  Google Scholar 

  131. Gao, Y. et al. A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci. Adv. 7, eabg9614 (2021).

    Article  Google Scholar 

  132. Garland, N. T. et al. A miniaturized, battery-free, wireless wound monitor that predicts wound closure rate early. Adv. Healthc. Mater. 12, 2301280 (2023).

    Article  Google Scholar 

  133. Shi, J. et al. Active biointegrated living electronics for managing inflammation. Science 384, 1023–1030 (2024).

    Article  Google Scholar 

  134. Song, J. W. et al. Bioresorbable, wireless, and battery-free system for electrotherapy and impedance sensing at wound sites. Sci. Adv. 9, eade4687 (2023).

    Article  Google Scholar 

  135. Dagdeviren, C. et al. Miniaturized neural system for chronic, local intracerebral drug delivery. Sci. Transl. Med. 10, eaan2742 (2018).

    Article  Google Scholar 

  136. Mahato, K. et al. Biosensor strip for rapid on-site assessment of levodopa pharmacokinetics along with motor performance in Parkinson’s disease. Angew. Chem. Int. Ed. 63, e202403583 (2024).

    Article  Google Scholar 

  137. Choi, Y. R. et al. A genome-engineered bioartificial implant for autoregulated anticytokine drug delivery. Sci. Adv. 7, eabj1414 (2021).

    Article  Google Scholar 

  138. Alexander, L. M. & van Pijkeren, J. P. Modes of therapeutic delivery in synthetic microbiology. Trends Microbiol. 31, 197–211 (2023).

    Article  Google Scholar 

  139. van der Meer, J. R. & Belkin, S. Where microbiology meets microengineering: design and applications of reporter bacteria. Nat. Rev. Microbiol. 8, 511–522 (2010).

    Article  Google Scholar 

  140. McNerney, M. P., Doiron, K. E., Ng, T. L., Chang, T. Z. & Silver, P. A. Theranostic cells: emerging clinical applications of synthetic biology. Nat. Rev. Genet. 22, 730–746 (2021).

    Article  Google Scholar 

  141. Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738 (2020).

    Article  Google Scholar 

  142. Bansal, A., Shikha, S. & Zhang, Y. Towards translational optogenetics. Nat. Biomed. Eng. 7, 349–369 (2023).

    Article  Google Scholar 

  143. Inda-Webb, M. E. et al. Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ. Nature 620, 386–392 (2023).

    Article  Google Scholar 

  144. Rivnay, J. et al. Integrating bioelectronics with cell-based synthetic biology. Nat. Rev. Bioeng. 3, 317–332 (2025).

    Article  Google Scholar 

  145. Shao, J. et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med. 9, eaal2298 (2017).

    Article  Google Scholar 

  146. Krawczyk, K. et al. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science 368, 993–1001 (2020).

    Article  Google Scholar 

  147. Manjakkal, L., Pullanchiyodan, A., Yogeswaran, N., Hosseini, E. S. & Dahiya, R. A wearable supercapacitor based on conductive PEDOT:PSS-coated cloth and a sweat electrolyte. Adv. Mater. 32, e1907254 (2020).

    Article  Google Scholar 

  148. Lima, N. et al. Carbon threads sweat-based supercapacitors for electronic textiles. Sci. Rep. 10, 7703 (2020).

    Article  Google Scholar 

  149. Bandodkar, A. et al. Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems. Nat. Electron. 3, 554–562 (2020).

    Article  Google Scholar 

  150. Yu, Y. et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 5, eaaz7946 (2020).

    Article  Google Scholar 

  151. Bandodkar, A. J. et al. Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat. Energy Environ. Sci. 10, 1581–1589 (2017).

    Article  Google Scholar 

  152. Luo, W., Luo, R., Liu, J., Li, Z. & Wang, Y. Self-powered electrically controlled drug release systems based on nanogenerator. Adv. Funct. Mater. 34, 2311938 (2024).

    Article  Google Scholar 

  153. Cheng, T., Shao, J. & Wang, Z. L. Triboelectric nanogenerators. Nat. Rev. Methods Primers 3, 39 (2023).

    Article  Google Scholar 

  154. Sukumaran, S. et al. Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. J. Intell. Mater. Syst. Struct. 32, 746–780 (2021).

    Article  Google Scholar 

  155. Zhao, J. et al. Self-powered implantable medical devices: photovoltaic energy harvesting review. Adv. Healthc. Mater. 9, 2000779 (2020).

    Article  Google Scholar 

  156. Zhu, S. et al. Review on wearable thermoelectric generators: from devices to applications. Energies 15, 3375 (2022).

    Article  Google Scholar 

  157. Reeder, J. T. et al. Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Sci. Adv. 5, eaau6356 (2019).

    Article  Google Scholar 

  158. Parrilla, M. & De Wael, K. Wearable self-powered electrochemical devices for continuous health management. Adv. Funct. Mater. 31, 2107042 (2021).

    Article  Google Scholar 

  159. Nair, V. et al. Miniature battery-free bioelectronics. Science 382, eabn4732 (2023).

    Article  Google Scholar 

  160. Del Bono, F. et al. Design of a closed-loop wireless power transfer system for an implantable drug delivery device. IEEE Sens. J. 24, 7345–7354 (2024).

    Article  Google Scholar 

  161. Yaqoob, T., Abbas, H. & Atiquzzaman, M. Security vulnerabilities, attacks, countermeasures, and regulations of networked medical devices—a review. IEEE Commun. Surv. Tutor. 21, 3723–3768 (2019).

    Article  Google Scholar 

  162. Desai, T. & Grattoni, A. Robotic self-modulation enhances implantable long-acting drug delivery devices. Sci. Robot. 8, eadj8292 (2023).

    Article  Google Scholar 

  163. Capuani, S. et al. The effect of the foreign body response on drug elution from subdermal delivery systems. Biomaterials 317, 123110 (2025).

    Article  Google Scholar 

  164. Maniam, G., Sampe, J., Jaafar, R. & Ibrahim, M. Smart monitoring system for chronic kidney disease patients based on Fuzzy Logic and IoT. Int. J. Adv. Comput. Sci. Appl. https://doi.org/10.14569/IJACSA.2022.0130238 (2022).

  165. Lin, P.-H. & Li, B.-R. Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 145, 1110–1120 (2020).

    Article  Google Scholar 

  166. Whyte, W. et al. Dynamic actuation enhances transport and extends therapeutic lifespan in an implantable drug delivery platform. Nat. Commun. 13, 4496 (2022).

    Article  Google Scholar 

  167. Robotti, F. et al. A micron-scale surface topography design reducing cell adhesion to implanted materials. Sci. Rep. 8, 10887 (2018).

    Article  Google Scholar 

  168. Wei, Q. et al. Protein interactions with polymer coatings and biomaterials. Angew. Chem. Int. Ed. 53, 8004–8031 (2014).

    Article  Google Scholar 

  169. Chen, S., Zheng, J., Li, L. & Jiang, S. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption:  insights into nonfouling properties of zwitterionic materials. J. Am. Chem. Soc. 127, 14473–14478 (2005).

    Article  Google Scholar 

  170. Shao, Q. & Jiang, S. Molecular understanding and design of zwitterionic materials. Adv. Mater. 27, 15–26 (2015).

    Article  Google Scholar 

  171. Duan, Y. et al. Unsaturated polyurethane films grafted with enantiomeric polylysine promotes macrophage polarization to a M2 phenotype through PI3K/Akt1/mTOR axis. Biomaterials 246, 120012 (2020).

    Article  Google Scholar 

  172. Capuani, S., Malgir, G., Chua, C. Y. X. & Grattoni, A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng. Transl. Med. 7, e10300 (2022).

    Article  Google Scholar 

  173. Chung, W. G. et al. Liquid-metal-based three-dimensional microelectrode arrays integrated with implantable ultrathin retinal prosthesis for vision restoration. Nat. Nanotechnol. 19, 688–697 (2024).

    Article  Google Scholar 

  174. Kim, S. et al. Three-dimensional electrodes of liquid metals for long-term, wireless cardiac analysis and modulation. ACS Nano 18, 24364–24378 (2024).

    Article  Google Scholar 

  175. Fink, M. & Akra, B. Comparison of the international regulations for medical devices-USA versus Europe. Injury 54, 110908 (2023).

    Article  Google Scholar 

  176. Vila Wagner, M. & Schanze, T. Comparison of approval procedures for medical devices in Europe and the USA. Curr. Dir. Biomed. Eng. 5, 605–608 (2019).

    Article  Google Scholar 

  177. Sizovs, A. et al. Trans-urocanic acid enhances tenofovir alafenamide stability for long-acting HIV applications. Int. J. Pharm. 587, 119623 (2020).

    Article  Google Scholar 

  178. VanEpps, J. S. & Younger, J. G. Implantable device-related infection. Shock 46, 597–608 (2016).

    Article  Google Scholar 

  179. Tarakji, K. G. et al. Antibacterial envelope to prevent cardiac implantable device infection. N. Engl. J. Med. 380, 1895–1905 (2019).

    Article  Google Scholar 

  180. Tipnis, N. P. & Burgess, D. J. Sterilization of implantable polymer-based medical devices: a review. Int. J. Pharm. 544, 455–460 (2018).

    Article  Google Scholar 

  181. Galante, R., Pinto, T. J. A., Colaço, R. & Serro, A. P. Sterilization of hydrogels for biomedical applications: a review. J. Biomed. Mater. Res. B 106, 2472–2492 (2018).

    Article  Google Scholar 

  182. Hoeg-Jensen, T. et al. Glucose-sensitive insulin with attenuation of hypoglycaemia. Nature 634, 944–951 (2024).

    Article  Google Scholar 

  183. Chen, Y.-S. et al. Insertion of a synthetic switch into insulin provides metabolite-dependent regulation of hormone–receptor activation. Proc. Natl Acad. Sci. USA 118, e2103518118 (2021).

    Article  Google Scholar 

  184. Zhang, J. et al. Week-long normoglycaemia in diabetic mice and minipigs via a subcutaneous dose of a glucose-responsive insulin complex. Nat. Biomed. Eng. 8, 1214–1225 (2024).

    Article  Google Scholar 

  185. Chua, C. Y. X. et al. Advanced material technologies for space and terrestrial medicine. Nat. Rev. Mater. 9, 808–821 (2024).

    Article  Google Scholar 

  186. Jiang, X., Wilkirson, E. C., Bailey, A. O., Russell, W. K. & Lillehoj, P. B. Microneedle-based sampling of dermal interstitial fluid using a vacuum-assisted skin patch. Cell Rep. Phys. Sci. 5, 101975 (2024).

    Article  Google Scholar 

  187. Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    Article  Google Scholar 

  188. Nyein, H. Y. Y. et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 12, 1823 (2021).

    Article  Google Scholar 

  189. Park, W. et al. In-depth correlation analysis between tear glucose and blood glucose using a wireless smart contact lens. Nat. Commun. 15, 2828 (2024).

    Article  Google Scholar 

  190. García-Carmona, L. et al. Pacifier biosensor: toward noninvasive saliva biomarker monitoring. Anal. Chem. 91, 13883–13891 (2019).

    Article  Google Scholar 

  191. Hilbel, T. & Frey, N. Review of current ECG consumer electronics (pros and cons). J. Electrocardiol. 77, 23–28 (2023).

    Article  Google Scholar 

  192. Milosevic, B., Benatti, S. & Farella, E. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017 1432–1437 (IEEE, 2017).

  193. Rashid, M. et al. Current status, challenges, and possible solutions of EEG-based brain-computer interface: a comprehensive review. Front. Neurorobot. 14, 25 (2020).

    Article  Google Scholar 

  194. Castaneda, D., Esparza, A., Ghamari, M., Soltanpur, C. & Nazeran, H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 4, 195–202 (2018).

    Google Scholar 

  195. Lee, J. et al. Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat. Commun. 10, 5205 (2019).

    Article  Google Scholar 

  196. Chen, M. C., Lin, Z. W. & Ling, M. H. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano 10, 93–101 (2016).

    Article  Google Scholar 

  197. Hardy, J. G. et al. Hydrogel-forming microneedle arrays made from light-responsive materials for on-demand transdermal drug delivery. Mol. Pharm. 13, 907–914 (2016).

    Article  Google Scholar 

  198. Zhou, Y. et al. An integrated Mg battery-powered iontophoresis patch for efficient and controllable transdermal drug delivery. Nat. Commun. 14, 297 (2023).

    Article  Google Scholar 

  199. Bonet-San-Emeterio, M., González-Calabuig, A. & del Valle, M. Artificial neural networks for the resolution of dopamine and serotonin complex mixtures using a graphene-modified carbon electrode. Electroanalysis 31, 390–397 (2019).

    Article  Google Scholar 

  200. Osinenko, P., Beckenbach, L., Göhrt, T. & Streif, S. A reinforcement learning method with closed-loop stability guarantee. IFAC-PapersOnLine 53, 8043–8048 (2020).

    Article  Google Scholar 

  201. Aiassa, S. et al. Continuous monitoring of propofol in human serum with fouling compensation by support vector classifier. Biosens. Bioelectron. 171, 112666 (2021).

    Article  Google Scholar 

  202. Joseph, J. I. Review of the long-term implantable senseonics continuous glucose monitoring system and other continuous glucose monitoring systems. J. Diabetes Sci. Technol. 15, 167–173 (2021).

    Article  Google Scholar 

  203. Teymourian, H., Barfidokht, A. & Wang, J. Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Soc. Rev. 49, 7671–7709 (2020).

    Article  Google Scholar 

  204. Clark, L. C. Jr & Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 29–45 (1962).

    Article  Google Scholar 

  205. Radhakrishnan, S. et al. Recent developments and future perspective on electrochemical glucose sensors based on 2D materials. Biosensors 12, 467 (2022).

    Article  Google Scholar 

  206. Alsaleh, F. M., Smith, F. J., Keady, S. & Taylor, K. M. Insulin pumps: from inception to the present and toward the future. J. Clin. Pharm. Ther. 35, 127–138 (2010).

    Article  Google Scholar 

  207. Kim, J., Campbell, A. S. & Wang, J. Wearable non-invasive epidermal glucose sensors: a review. Talanta 177, 163–170 (2018).

    Article  Google Scholar 

  208. Bindra, D. S. et al. Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Anal. Chem. 63, 1692–1696 (1991).

    Article  Google Scholar 

  209. Tierney, M. J., Tamada, J. A., Potts, R. O., Jovanovic, L. & Garg, S. Clinical evaluation of the GlucoWatch biographer: a continual, non-invasive glucose monitor for patients with diabetes. Biosens. Bioelectron. 16, 621–629 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

Support from NIAID R01AI167659, NIAID R01AI165372, NIDDK R01DK132104, NIDDK R01DK133610 (A.G.) and Houston Methodist Research Institute (A.G. and C.Y.X.C.). Further funding support from the UCSD Center of Wearable Sensors (J.W.). The authors thank V. Facciotto for the help with the conceptualization of graphics; N. Di Trani, S. Capuani, M. Farina and S. Conlan for their insightful discussions and valuable ideas; and S. P. Rodgers for help with the finalization of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.G., M.M.P., T.S. and J.W. conceived and outlined the manuscript. All authors researched data for the article and contributed to its writing and to the discussion of its content. M.M.P. and T.S. created the figures with contribution from all co-authors. A.G., J.W. and C.Y.X.C. reviewed, edited and finalized the manuscript before submission.

Corresponding authors

Correspondence to Joseph Wang or Alessandro Grattoni.

Ethics declarations

Citation diversity statement

We acknowledge that papers authored by scholars from historically excluded groups are systematically under-cited. Here, we have made every attempt to reference relevant papers in a manner that is equitable in terms of racial, ethnic, gender and geographical representation.

Competing interests

A.G. and C.Y.X.C. are inventors of intellectual property licensed by Continuity Biosciences. A.G. is a scientific advisor for Continuity Biosciences. J.W. is a scientific adviser for VitalTrace and Persperion Diagnostics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Xinge Yu, Mohsen Akbari and the other, anonymous, reviewers(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Medtronic Innovation Milestones: https://www.medtronicdiabetes.com/about-medtronic-innovation/milestone-timeline

Medtrum TouchCare Nano Pump: https://www.medtrum.com/product/nanopump.html

MiniMed 780G System User Guide: https://www.medtronicdiabetes.com/sites/default/files/library/download-library/user-guides/MiniMed-780G-system-user-guide-with-Guardian-4-sensor.pdf

Omnipod 5 Automated Insulin Delivery System User Guide: https://www.omnipod.com/sites/default/files/Omnipod%205%20Android%20G6%20UK%20mmol%20UG%20PT-001246-AW_001_02.pdf

PROMETRA II PROGRAMMABLE PUMP For use with Intrathecal Catheter: https://flowonix.com/sites/default/files/pl-31790-05_-_prometra_ii_programmable_pump_ifu_us_commercial.pdf

SynchroMed III Intrathecal Pump for Chronic and Cancer Pain: https://www.medtronic.com/content/dam/medtronic-wide/public/united-states/products/neurological/tdd-hcp-brochure.pdf

SynchroMed III Intrathecal Pump for Severe Spasticity: https://www.medtronic.com/content/dam/medtronic-wide/public/united-states/products/neurological/tdd-severe-spasticity-brochure.pdf

t:slim X2 Insulin Pump with Control-IQ Technology User Guide: https://www.tandemdiabetes.com/docs/default-source/user-guide/aw-1007704_b-user-guide-mobile-bolus-tslim-x2-control-iq-7-6-mgdl-artwork-web92e76d9775426a79a519ff0d00a9fd39.pdf?sfvrsn=18a507d7_233

YSI Life Sciences - The Gold Standard: https://www.ysi.com/applications/life-sciences?srsltid=AfmBOoo590H-XnTlBOXSBNgrZ2YCYY8tvaMINGWHvyH0rUTujgZPZUf_

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paci, M.M., Saha, T., Djassemi, O. et al. Smart closed-loop drug delivery systems. Nat Rev Bioeng (2025). https://doi.org/10.1038/s44222-025-00328-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-025-00328-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing