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A novel multigene panel (Sig27) robustly predicts poor
prognosis of renal cell carcinoma via high-level associations
with immunosuppressive features
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BACKGROUND: We investigated a 27-gene panel (Sig27), derived from prostate cancer, for risk stratification of RCC (clear cell RCC/
ccRCC, papillary RCC/pRCC, and chromophobe RCC/chRCC).
METHODS: Sig27 gene expressions were examined in 960 RCC and 201 kidney tissues. Sig27 was evaluated for predicting overall
survival (OS), association with immune checkpoints (IC), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSC), and
tumor-associated macrophages (TAM) in RCC.
RESULTS: Sig27 robustly predicts OS of ccRCC, pRCC, and chRCC. Sig27 stratifies high-risk ccRCCs: median survival month (MSM)
19.3 and 80.4% of deaths and high-risk pRCCs (MSM 19.6 and 58.6% of death) compared to low-risk ccRCCs (2.9% of death) and
pRCCs (2.7% of fatality). Sig27 contains several novel genes related to the RCC immunosuppressive features. FPR3, NOD2, MCTP1,
LAMP3, TFEC, and FAM65B are highly correlated with MDSC, Treg, TAM and multiple (≥12) ICs in RCCs. FPR3 and NOD2 are pattern
recognition receptors and initiate proinflammatory responses via sensing pathogen-associated molecular patterns and damage-
associated molecular patterns; their upregulations may contribute to chronic inflammation in RCC. The Sig27 metagene is
expressed in ccRCC-associated immune cells: exhausted CD8T cells, TAM, Treg, and others.
CONCLUSIONS: Sig27 is a novel and effective pan-RCC biomarker with high-level associations with RCC immunosuppressive
features.

BJC Reports; https://doi.org/10.1038/s44276-025-00128-3

INTRODUCTION
Kidney cancer is a major malignancy of the urinary system with
431,288 cases diagnosed and 179,368 deaths, ranking 13th

worldwide in cancer death in 2020 [1]. Renal cell carcinoma
(RCC) constitutes 85% of kidney cancer and consists of 3 major
subtypes: clear cell RCC (ccRCC, 80%), papillary RCC (pRCC, 15%),
and chromophobe RCC (chRCC, 5%) [2]. ccRCC is the most
prevalent and aggressive RCC and has thus been most widely
studied. Approximately, 20–40% of ccRCC patients will have
disease relapse following curative therapy [3] and 5–10% of
patients will develop metastasis [3]. Metastatic ccRCCs are
currently managed via immune checkpoint blockade (ICB) therapy
and targeted therapies using tyrosine kinase inhibitors to vascular
endothelial growth factor receptor (VEGFR) [4]. Targeting VEGFR is
based on the well-established loss of the von Hippel-Lindau (VHL)
tumor suppressor in ccRCC, which is in part due to chromosome
3p loss [5]. Loss of VHL stabilizes the hypoxia inducible factors
(HIF), leading to VEGF upregulation. Even with the relatively rich
knowledge of genetics, ICB, and targeted therapies, treatment of
metastatic ccRCC remains challenging [4]. One approach to
improve ccRCC management is via accurate risk stratification;
biomarkers have thus been explored on multiple properties of
ccRCC, including gene mutation, the immune checkpoints of PD-

1/PD-L1 status, and gene expression [6]. However, none has been
developed into clinical application [6].
The management of patients with non-ccRCC (pRCC and

chRCC) presents an even greater challenge, largely due to these
diseases being substantially under studied. While pRCC incidence
is significantly less than ccRCC, pRCC can be aggressive. The
recurrence rate of pRCC after surgery is approximately 40% [7].
The current management of pRCC is largely “borrowed” from
ccRCC knowledge; for instance, the utilization of sunitinib as the
standard of care for metastatic pRCC [8]; as expected, the
treatment is with limited benefits [9]. A similar situation occurs in
chRCC. Unlike ccRCC and pRCC, chRCC commonly affects young
women [10]. Organ-confined chRCC is significantly less aggres-
sive than ccRCC, which does not apply to metastatic chRCC
[11, 12]. Approximately 5.7% of patients with localized chRCC
developed recurrence in 5 years following surgery and 76.5% of
these patients progressed to distant metastases [13]. Treatment
options for metastatic chRCC are also extracted from ccRCC [11].
Given the heterogenous outcomes of pRCC and chRCC, accurate
risk stratification is also essential for patient management.
However, the identification of effective biomarkers for non-
ccRCC is challenging, given their rare incidence of disease
occurrence.

Received: 21 May 2024 Revised: 17 January 2025 Accepted: 8 February 2025

1Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada. 2Department of Surgery, McMaster University, Hamilton, ON
L8S 4K1, Canada. 3The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada. ✉email: damut@mcmaster.ca

www.nature.com/bjcreports

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s44276-025-00128-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44276-025-00128-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44276-025-00128-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44276-025-00128-3&domain=pdf
https://doi.org/10.1038/s44276-025-00128-3
mailto:damut@mcmaster.ca


ccRCC, pRCC, and chRCC are individual RCC subtypes with
different genetics. ccRCC is featured with 3p loss and somatic
mutations in tumor suppressors residing in the chromosome 3p
region: VHL, PBRM1, BAP1, and SETD2 [14]; pRCC has alterations
(activation) in the MET (mesenchymal epithelial transition) gene
[15] and mutations in the FH (fumarate hydratase) gene [16]; and
chRCC is associated with BDH (Birt-Hogg-Dube) syndrome and
tuberous sclerosis complex with the respective mutations in the
FLCN (folliculin) gene [17] and the TSC1/2 genes [18]. Differences
in genetics contribute to the behaviors of ccRCC, pRCC, and
chRCC. Nonetheless, we reasoned the existence of common
components contributing to poor prognosis of ccRCC, pRCC, and
chRCC. This notion is supported by the non-exclusive genetic
features among ccRCC, pRCC, and chRCC; the typical mutations in
PBRM1, BAP1, and SETD2 in ccRCC also occur in pRCC [19];
mutations in BAP1 were detected in chRCC [20]. Mutations in the
TP53 and PTEN tumor suppressor genes are established oncogenic
events in ccRCC [21], pRCC [22, 23], and chRCC [24]. Activation of
mTOR is a significant event in ccRCC, which is commonly targeted
in ccRCC therapy [25], and chRCC [26]. At the cellular level, an
immunosuppressive microenvironment contributes to RCC pro-
gression. Immunosuppressive tumor microenvironment (TME) is a
typical feature of many cancers. In this regard, we recently
identified a multigene panel Sig27 from prostate cancer, which
clearly contains component relevant to tumor immunity, for
instance FPR3 and NOD2 [27]. This feature with the belongingness
of prostate cancer and RCC to urogenital cancer implies the utility
of Sig27 in predicting prognosis of RCC.
In this research, we report Sig27 as a novel and effective pan-

RCC biomarker. Sig27 is highly associated with the immune factors
promoting RCC immune evasion, including TAMs (tumor-asso-
ciated macrophages), regulatory T cells (Tregs), myeloid-derived
suppressor cells (MDSC), and multiple immune checkpoints.
Collectively, our findings may contribute to the risk stratification
of ccRCC, pRCC, and chRCC, offering a promising avenue for the
future management of RCC.

RESULTS
Sig27 robustly stratifies poor OS and disease progression in
ccRCC, pRCC, and chRCC
The composition of Sig27 component genes is enriched in the
pathways relevant to RCC, including cell adhesion, chemotaxis,
and autophagy (Supplementary Fig. S1a), suggesting Sig27’s
biomarker potential in stratifying RCC risk. To investigate this
potential, we retrieved the expression data of all 27 component
genes of Sig27 along with relevant clinical data from the TCGA
PanCancer Altas cohorts of ccRCC (n= 512), pRCC (n= 283), and
chRCC (n= 65). Sig27 risk scores for ccRCC, pRCC, and chRCC were
then calculated using individual cohorts based on the formula:
∑(coefi x Geneiexp)n (coefi: Cox coefficient of genei in ccRCC, pRCC,
or chRCC, Geneiexp: expression of Genei in ccRCC, pRCC, or chRCC,
n= 27). Coefs were derived from ccRCC, pRCC, or chRCC using the
multivariate Cox model. Sig27 effectively stratifies the overall
survival (OS) probability in the TCGA PanCancer Atlas populations
of ccRCC, pRCC, and chRCC with cutoff points estimated by
maxstat (Supplementary Fig. S1b–d). Furthermore, Sig27 achieves
accurate risk stratification in all three subtypes of RCC with a range
of cutoff points estimated by the empirical, kernel, normal, and
maxstat methods (Fig. 1a–c). The risk stratification is particularly
impressive in chRCC (Fig. 1c; Supplementary Fig. S1d). However,
the rareness of chRCC attributed to relatively small population
size, which limits Sig27’s biomarker potential in chRCC (see
Discussion for details). The effectiveness in risk stratification by
prostate cancer-derived Sig27 in ccRCC, pRCC, and chRCC with a
range of cutoff points strongly validates Sig27 as a novel and
effective biomarker of RCC. This notion is further supported by
Sig27’s ability to robustly stratify the progression risk (progression-

free survival/PFS) of ccRCC and pRCC via a range of cutoff points
(Supplementary Fig. S1e, f).
We evaluated Sig27’s discriminative performance in stratifying

poor OS and PFS. Sig27 predicts the OS probability of ccRCC and
pRCC at ROC (receiver-operating characteristic)-AUC (area under
the curve) value of 0.79 and 0.80 respectively (Fig. 1d, e) as well as
PFS of ccRCC and pRCC at ROC-AUC value of 0.75 and 0.79
respectively (Supplementary Fig. S1g, h). Additionally, by using
time-dependent ROC, we noticed that Sig27 effectively predicts
the early poor OS in ccRCC, pRCC, and chRCC (Fig. 1f) and disease
progression in all three subtypes of RCC (Supplementary Fig. 1i).
Furthermore, Sig27’s biomarker potential is independent of age at
diagnosis, sex, and stage in both ccRCC and pRCC (Fig. 1g, h).
We further examined Sig27’s ability to estimate RCC’s OS

probability. For ccRCC, we divided the ccRCC PanCancer dataset
into 10 groups based on Sig27 risk score, combined those groups
with similar fatality risk, and allocated patients into four groups
(Fig. 2a). Groups 1–4 have increasing Sig27 risk score and thus
elevations of the risk of death (Fig. 2a). Patients in Group 4 have
the median survival month (MSM) 19.6 and death rate of 80.4%
(Fig. 2a); in comparison, only 3 patients in 102 patients of Group 1
died of ccRCC, which was 2.9% (Fig. 2a). The fatality rates for
patients in Group 2 and Group 3 are 26.5% (68/253) and 53.3%
(56/102), respectively (Fig. 2a). Sig27 also possesses the similar
effectiveness in predicting the OS probability of pRCC patients
(Fig. 2b). The death rate and MSM are 58.6% and 19.6 respectively
in the high-risk group in comparison to the fatality rate of 2.7% in
the low-risk group (Fig. 2b). Taken together, Sig27 can effectively
predict the fatality risk of ccRCC and pRCC patients. Considering
Sig27 being derived from prostate cancer, its impressive effec-
tiveness in the stratification of ccRCC and pRCC poor prognosis
(Fig. 2) may significantly improve the management of ccRCC
and pRCC.

The biomarker potential of Sig27 component genes
To characterize Sig27-derived risk stratification in RCCs, we
analyzed its individual component genes in predicting RCC risk.
In ccRCC, the ccB tumors are associated with poor prognosis
compared to ccA ccRCCs [28]. BIRC5, DCST2, LAMP3, MXD3, and
PRR7 are upregulated in ccB (Supplementary Fig. S2a). BIRC5,
LAMP3, MXD3, and PRR7 along with other 10 genes significantly
stratify ccRCCs OS probability (Supplementary Figs. S2b–e, S3).
Four (BIRC5, PI15, MCTP1, and ZFHX4) and three (BIRC5, DCST2,
and LAMP3) genes predict pRCC’s and chRCC’s OS probabilities
respectively as individual genes (Supplementary Fig. S4a, b).
BIRC5 effectively stratifies the poor OS of ccRCC, pRCC, chRCC
(Supplementary Figs. S2a, S4). BIRC5 or survivin is a well-
established anti-apoptotic factor [29]. Its upregulation has
recently been reported in ccRCC, pRCC, and chRCC [30]. BIRC5
expression predicts poor OS in ccRCC [31], pRCC [29], and chRCC
[32]. Our observations are thus in line with recent publications;
however, the biomarker potential of BIRC5 is substantially more
robust in our study compared to others, which was likely
attributable to differences in cutoff point estimation. Addition-
ally, MXD3 and NOD2 were also reported to predict poor OS in
ccRCC [33, 34]. The rest of Sig27 component genes are unknown
to RCC.

Differential expression of Sig27 component genes in RCC
Given the largely unexplored nature of Sig27 genes in RCC, we
demonstrated more than 2-fold upregulations of PRR7, HAGHL,
BIRC5, and MXD3 in pRCC (Supplementary Fig. S5a, b) and HAGHL
in chRCC (Supplementary Fig. S5c, d). Besides HAGHL as a
common DEG (differentially expressed gene) in both pRCC and
chRCC, PLXNA4 and LCN12 were downregulated ≥2 folds in pRCC
(Supplementary Fig. S5b), chRCC (Supplementary Fig. S5d), and
ccRCC (Supplementary Fig. S6a–d), further supporting common
alterations in all 3 subtypes of RCC.
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In two large and independent ccRCC cohorts (the TCGA dataset
consisting of 533 tumors and 72 kidney tissues, and the Tun-144
cohort containing 72 ccRCC and 72 kidney tissues), FPR3, LAMP3,
and NOD2 are among genes upregulated around 2-fold in tumors
(Supplementary Fig. S6a–d). In our own cohort, FPR3, TFEC,
LAMP3, and LCN12 were upregulated in ccRCC (Supplementary

Fig. S6e). FPR3 (formyl peptide receptor 3) and NOD2 are pattern
recognition receptors (PRRs) with established roles in immune
regulation [35, 36]. LAMP3 (lysosomal associated membrane
protein 3) plays a role in antigen presentation in dendritic cells
[37], implying Sig27 containing some immune components
in RCC.
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Wide distributions of Sig27 gene expression in human kidney
cells, including immune cells
ccRCC and pRCC are originated from kidney proximal tubule
epithelium [38], while chRCC is believed to arise from intercalated
cells [39]. Recent efforts in single cell RNA sequencing of human
kidney [40] identified immune cell populations, tubule epithelial
cells, endothelial cells, intercalated cells, and other cell types
(Supplementary Fig. S7a). Using this resource, we observed Sig27
gene expression in a wide range of cell populations in human
kidney (Supplementary Table S1); the immune cells (lymphoid and
myeloid), proximal tubule (PT), and endothelium are the major
kidney cell populations in which Sig27 genes are detected
(Supplementary Table S1). Their comparable, if not more, prevalent
presence in the immune cells compared to PT cells (Supplementary
Table S1) is intriguing, given the likelihood of PT cells as the origin of
ccRCC and pRCC [38]. While FPR3 is the most upregulated gene
among Sig27 genes in ccRCC (Supplementary Fig. S6a–d), it is not
expressed in PT but in the myeloid cells (Supplementary Table S1).
Among Sig27 genes, HAGHL is the only one expressed at a high
level in intercalated cells (Supplementary Table S1), the origin of
chRCC [39]. Given HAGHL unique upregulation in chRCC (Supple-
mentary Fig. S5c, d), its abundant presence in intercalated cells
indicates HAGHL being relevant to chRCC.

BIRC5 strongly predicts poor RCC OS (Supplementary Figs. S2b,
4a, 4b). It is only limitedly expressed in human PT (Supplementary
Fig. S7b), but its expression is largely in the proliferating proximal
tubular epithelial cells (Fig. 3e, Supplementary Table S1). While
TFEC is not apparently upregulated in ccRCC (Supplementary
Fig. S6c, d), it is most abundantly expressed in PT among Sig27
genes (Fig. 3c; Supplementary Table S1; Supplementary Fig. S7f).
We detected a major expression of FAM65B (also known as
RIPOR2) in the lymphoid and myeloid cells (Fig. 3a; Supplementary
Table S1; Supplementary Fig. S7c) and LTC4S in the endothelium
(Fig. 3b; Supplementary Table 1; Supplementary Fig. S7e). While
the long non-coding RNA LINC01089 displays a wide expression
pattern in human kidney (Supplementary Table S1; Supplemen-
tary Fig. S7d), it is the only gene among Sig27 genes with a clear
presence in epithelial progenitor cells (Fig. 3d; Supplementary
Table S1). Collectively, the above evidence suggests the presence
of Sig27 genes in multiple cell types, including immune cells, in
the kidney and RCC.

Sig27 gene expression in tumor and stromal cells of ccRCC
and chRCC
RCC pathogenesis and progression are affected by both tumor
and stromal cells; the wide distribution of Sig27 gene expressions
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in human kidney, as observed above, thus suggests the stromal
and tumor cell impact of Sig27 genes on RCC. To investigate this
possibility, we determined Sig27 gene expressions in RCC at the
single cell level. This task is feasible because of the single cell RNA
sequencing data of ccRCC (Supplementary Fig. S8a) and chRCC
(Supplementary Fig. S9a) [41]. Sig27 genes are expressed
prevalently in macrophages, endothelial cells, and tumor cells in
ccRCC (Supplementary Table S2), revealing their presence in
stromal and tumor cells. Among ccRCC cell populations (Supple-
mentary Fig. S8a) [40], BIRC5 is not abundantly expressed in
individual cell populations (Supplementary Table S2; Supplemen-
tary Fig S8b), but displays a focal expression pattern in CD8+ T
cells, MKI67 macrophages, and tumor cells (Supplementary
Fig S8b). While RRAGC is not mainly expressed in proximal tubular
epithelial cells in human kidney (Supplementary Table S1), it is
most abundantly expressed in tumor cells among Sig27 genes
(Fig. 3f; Supplementary Table S2; Supplementary Fig. S8f). FAM65B
is clearly detected in the endothelium and T cells of ccRCC
(Supplementary Fig. S8c), which is different from its dominant
expression in the immune cell domain in kidney (Supplementary
Fig. S7c). LINC01089 does not display a preference in expression in
ccRCC (Supplementary Fig. S8d), which is consistent with a minor
existence of cancer stem cells in a cancer mass. While LTC4S is
mainly expressed in the endothelium of human kidney (Supple-
mentary Fig. S7e), its gain of expression in ccRCC macrophages is
apparent (Fig. 3g; Supplementary Table S2; Supplementary
Fig. S8e). Collectively, alterations in Sig27 gene expression in
ccRCC from their expression in kidney occur in both tumor and
stromal cells.
In chRCC, HAGHL is most abundantly expressed in tumor cells

(Fig. 3h; Supplementary Table S3; Supplementary Fig. S9c),
consistent with its clear expression in intercalated cells (Supple-
mentary Table S1), the origin of chRCC [39]. BIRC5 displays a focal
expression in chRCC (Supplementary Fig. S9b); KCNN3 is mainly
detected in endothelial cells (Supplementary Fig. S9d) and LTC4S
is clearly expressed in macrophages in chRCC (Fig. 3i; Supple-
mentary Fig. S9e), which is consistent with LTC4S expression in
ccRCC macrophages (Fig. 3g; Supplementary Table S2; Supple-
mentary Fig. S8e). Taken together, the evidence above suggests
an unknown functions of HAGHL in chRCC and interactions
among individual cell types, including immune cells, in ccRCC and
chRCC pathogenesis.

High-level correlations of Sig27 genes in RCC-associated
immunosuppressive cells: population evidence
The abundant immune cell presence of Sig27 genes in RCC
stroma, as detected above, suggests their impact on RCC immune
evasion. Of note, FPR3 is limitedly expressed in macrophages in
human kidney (Fig. 4a; Supplementary Table S1; Supplementary
Fig. S10a) and is substantially expressed in tumor-associated
macrophages (TAMs) in ccRCC (Fig. 4b; Supplementary Table S2;
Supplementary Fig. S10b). Given FPR3 as the most upregulated
genes among Sig27 genes in ccRCC (Supplementary Fig. S6c, d),
its upregulation was likely attributable to FPR3 dominant
expression in TAMs. FPR3 is also abundantly expressed in TAMs
of chRCC (Fig. 4c; Supplementary Table S3; Supplementary
Fig. S10c), indicating an important role of FPR3 in facilitating
immune escape of ccRCC and chRCC.
To further investigate the above concepts, we detected

negative correlations of FPR3 with tumor purity in large
populations of ccRCC (n= 534), pRCC (n= 291), and chRCC
(n= 66) (Supplementary Fig. S10d), supporting the main presence
of FPR3 in the stromal compartment of RCC. In these datasets,
FPR3 is correlated at high levels with TAMs in ccRCC (Spearman
correlation/Corr 0.65, p < 2e−16) (Fig. 4e), pRCC (Corr 0.79, p < 2e
−16) (Fig. 4f), and chRCC (Corr 0.82, p < 2e−16) (Fig. 4g). The
above evidence supports an association of FPR3 with TAM in
ccRCC and chRCC; this concept agrees with FPR3 expression in

macrophages and tissue residence macrophages [42]. Besides
TAM, MDSC and Tregs are major immunosuppressive cells
contributing to tumour immune evasion [43]. In this regard,
FPR3 also displays high-level correlations with Tregs and MDSC, in
ccRCC, pRCC, and chRCC (Fig. 4d–g).
Sig27 also associates with immunosuppressive features of RCC

via other component genes. NOD2 and MCTP1 are correlated with
MDSC, Treg, or TAM in all 3 subtypes of RCC at Spearman
correlation ≥0.5 and p < 2e−16 (Fig. 4e–g). While LAMP3 is
correlated with MSDC in ccRCC and pRCC (Fig. 4e, f), TFEC and
FAM86B are correlated with MDSC, Treg, and macrophages in
chRCC (Fig. 4g). Collectively, in large populations and at the
population level, NOD2, MCTP1, LAMP3, TFEC, and FAM65B
contribute to Sig27’s relevance in facilitating RCC immune evasion.

Expression of the Sig27 metagene and its component genes
(FPR3, NOD2, LAMP3, MCTP1, TFEC) in RCC immune cells:
single cell evidence
To compensate the above population studies, we present
evidence and quantification of Sig27 and its component genes
with RCC-associated immune cells using multiple single-cell
studies. In a single-cell RNA (scRNA) chRCC dataset [41], FPR3,
TFEC, MCTP1, FAM65B, and LAMP3 are all detected in Mono/
Macrophages with FPR3 and TFEC being most clearly expressed
(Fig. 5a). MCTP1 is also observed in endothelial cells and FAM65B
is mainly expressed in exhausted CD8+ T cells (CE8Tex) (Fig. 5a).
Consistent with these observations, we detected the Sig27
metagene expression in immune cells, tumor cells and stromal
cells of chRCC with immune cells displaying the most abundant
expression (Fig. 5b). In immune cells, the Sig27 metagene is
present in both CD8Tex and Mono/Macrophages with the latter
being more dominant (Fig. 5c, d). The above evidence thus
supports the presence of FPR3, TFEC, and importantly Sig27 in
chRCC’s TAM and CD8Tex.
We also demonstrated the association of FPR3, MCTP1, TFEC,

and Sig27 with ccRCC TAMs and other immune cells in multiple
scRNA datasets with a total of n= 22 patients (Figs. 6, 7). In the
KIRC_GSE111360 [44], KIRC_GSE139555 [45], and KIRC_GSE145281
[46] datasets, FPR3, MCTP1, TFEC are expressed more in M2
macrophages (Fig. 6a, c, d). FAM65B is detected in multiple
immune cell populations in multiple scRNA ccRCC datasets
(Fig. 6a–e), implying a general involvement of FAM65B in
modulating the immune aspect of ccRCC; this notion is intriguing
considering that FAM65B’s oncogenic role has only been limitedly
studies (n= 4, PubMed on Dec 7, 2024) but not in kidney cancer.
In multiple datasets, LAMP3 is expressed in ccRCC-associated
dendritic cells (DCs) (Fig. 6b–d); LAMP3+ DCs were recently
identified in hepatocellular carcinoma (HCC), which may facilitate
T cell dysfunction in HCC [47]. The presence of FPR3, NOD2,
MCTP1, LAMP3, TFEC, and FAM65B in the immune cell populations
of ccRCC (Fig. 6) suggests an association of Sig27 with ccRCC-
associated immune cells. Indeed, in these 6 scRNA ccRCC datasets,
the Sig27 metagene, which was produced via collapsing its
individual genes by mean, was detected in all the immune cell
populations documented in these datasets, including CD8Tex,
Treg, DCs, M2 macrophages, and Mono/Macrophages (Fig. 7a–f).
The abundant expression of Sig27 in M2 macrophages occurred in
KIRC_GSE112360, KIRC_GSE139555, and KIRC_GSE145281 (Fig. 7a,
c, d). In the KIRC_GSE121636 [48], KIRC_GSE159115 [41], and
KIRC_GSE171306 [49] scRNA datasets, FPR3 is most abundantly
expressed in Mono/Macrophages in which both MCTP1 and TFEC
are also present (Fig. 6b, e, f). Sig27 is also mainly expressed in
Mono/Macrophages in these datasets (Fig. 7b, e, f).
We further analyzed the above set of Sig27 component genes

and the Sig27 metagene in tumor-infiltrating myeloid cells in pan-
Kidney cancer scRNA datasets. In the KIPAN-GSE154763 dataset
[50], FPR3, LAMP3, MCTP1, NOD2, TFEC, and Sig27 are either
mainly or clearly expressed in DC (Supplementary Figs. S11a–d,
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S12a–e). FAM65B, FPR3, MCTP1, NOD2, TFEC, and Sig27 are either
dominantly (FAM65B) or clearly present in Mono/Macrophages
(Supplementary Figs. S11a–d, S12a–f). Similar observations were
also obtained in an-independent renal carcinoma (RCC) scRNA
dataset KIPAN_GSE159913 [51] (Supplementary Figs. S11e, f,
S13a–h). Collectively, we provide comprehensive evidence for
the association of FPR3, LAMP3, MCTP1, NOD2, TFEC, FAM65B, and
the Sig27 metagene with RCC-associated immune cells possessing

immunosuppressive properties, including TAM, CD8Tex, Treg, and
others. These associations are likely relevant to RCC immune
evasion.

Broader associations of Sig27 component genes with immune
checkpoints of RCC
Immunosuppressive tumor microenvironment (TME) consists of an
array of features including the major immune cell populations of
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TAM, MDSC, and Tregs [43] as well as a set of immune checkpoints
(ICs). In this regard, FPR3 displays high-level correlations with
multiple ICs, including 6 ICs (ICOS, CD96, BTLA, CSF1R, PDCD1LG2/
PD-L2, and IL10) in ccRCC (Fig. 8b), 8 ICs in pRCC (Fig. 8c), and 13
ICs in chRCC (Fig. 8d), suggesting a broader impact of FPR3 on RCC
immune evasion. Among these ICs includes CSF1R, with which
FPR3 is robustly correlated in ccRCC (Corr 0.79, p= 1.76e−99)
(Fig. 8b), pRCC (Corr 0.77, p= 2.46e−99) (Fig. 8c), and chRCC (Corr
0.86, p= 9.12e−21) (Fig. 8a). CSF1R signaling is essential for
macrophage development [52] and plays critical roles in TAM,
evidenced by the CSF1R inhibitor Pexidartinib (PLX3397) being
approved by FDA in cancer therapy [53]. The association of FPR3
with CSF1R in RCC fits well with its clear expression in TAM or
Mono/Macrophages in RCC (Figs. 4–6).
Additionally, NOD2 exhibits high-level correlations with 13

immune checkpoints in ccRCC (Fig. 8a, b), 13 ICs in pRCC (Fig. 8c),
and 13 ICs in chRCC (Fig. 8d). LAMP3 is correlated at high levels
with 3 ICs in ccRCC (Figs. 8b) and 7 ICs in pRCC (Fig. 8c). FAM65B
correlates with 10 ICs only in chRCC at high levels (Fig. 8d).
TFEC is also uniquely associated with 13 ICs in chRCC (Fig. 8d),

implying its specific roles in chRCC immune escapes. At the single
cell level, TFEC is mainly expressed in proximal tubule (PT) cells
with minor presence in immune cells (myeloid and lymphoid cells)
(Supplementary Fig. S7f) and dominantly expressed in TAM of
chRCC (Supplementary Fig. S14a). TFEC belongs to the family of
microphthalmia-associated transcription factors (MiT/TEF or MiT)
[54] and is not known to function in RCC [55]. Nonetheless, TFEC
expression was reported in macrophage [56]; TFEC’s correlations
with TAMs, MDSC, and Treg in chRCC (Fig. 4g) indicate TFEC
facilitating chRCC immune evasion (see Discussion for details).
Taken together, Sig27 contains an immune evasion component,

which may contribute to its effective risk stratification across
ccRCC, pRCC, and chRCC.

DISCUSSION
RCC is the dominant contributor to kidney cancer deaths. Effective
risk stratification is crucial for optimizing RCC management, but it
remains ineffective due to the lack of accurate biomarkers. In our
novel approach to address this need, we investigated a multigene
biomarker, Sig27, derived from prostate cancer for its biomarker
potential in pan-RCC subtypes. This approach is not only based on
our hypothesis for the underlying commonality among the three
subtypes of RCC relevant to their poor prognosis but also extends
to another urogenital cancer: prostate cancer. If validated, this
approach will provide a more objective outcome compared to the
classic and cancer-type focused biomarker studies.
Our research validates this cross-cancer biomarker study. Sig27

is an effective prognostic biomarker for 3 subtypes of RCC. Given
the rareness of chRCC occurrence and the associated challenges in
performing predictive medicine research in chRCC, Sig27 is
particularly appealing. However, also attributable to the limitation
of small chRCC sample population size, Sig27’s clinical application
needs further investigations particularly in chRCC. Sig27 effectively
stratifies poor prognosis in ccRCC and pRCC, which should be
further studied.
Further exploration of Sig27 clinical applications in RCC is based

on multiple considerations. 1) The novelty of Sig27 in RCC. Except
for BIRC5, Sig27 genes remain largely unknown in RCC. Even for
BIRC5, its biomarker potential has yet to be thoroughly examined
in all 3 subtypes of RCC. Through optimizing cutoff point, our
research revealed BIRC5 as an effective biomarker of ccRCC, pRCC,
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and chRCC. Given its single gene status, BIRC5 as a potential RCC
biomarker is appealing and should be further examined. 2) The
association of Sig27 with immunosuppressive features of RCC.
Immune evasion is a hallmark of tumorigenesis and cancer
progression [57], a process that involves immune checkpoints and
immune cells conferring immune tolerance in cancer with MDSC,
Treg, and TAMs as the major immune cell populations [43]. This
knowledge has been translated into cancer therapy, evidenced by
the utilization of immune checkpoint blockade (ICB) in treating

multiple cancers [57]. Nonetheless, ICB-based immune therapy
needs significant improvements. Towards this goal, our research
revealed novel genes with possible impacts on RCC immune
escapes including FPR3, NOD2, LAMP3, FAM65B, MCTP1, TFEC,
and Sig27 metagene.
FPR3 and NOD2 are established pattern recognition receptors

(PRRs) [35, 36]; their activity in initiating proinflammatory
responses via sensing pathogens and tissue damage suggests
their upregulations in RCC result in chronic inflammation, which
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promotes RCC progression. In this regard, it is tempting to
propose targeting FPR3 and NOD2 in RCC immunotherapies.
FAM65B (RIPOR2) is expressed in T cells and suppresses T cell

activation via binding and inhibiting RHOA [58]. In line with this
knowledge, FAM65B is expressed in T cells infiltrated in chRCC at
single cell level (Supplementary Fig. S14b), supporting its associa-
tion with Treg in the TCGA chRCC cohort (Fig. 4g). While the
physiological relevance of MCTP1 in immune regulation is unclear, it
is expressed in myeloid cells in human kidney (Supplementary
Fig. S15a) and TAMs in both ccRCC and chRCC (Supplementary
Fig. S15b, c). At the single cell level, LAMP3 is expressed in immune
cells in human kidney and TAMs of ccRCC; it plays a role in antigen
presentation in dendritic cells [37], supporting its role in the
immune evasion of ccRCC and pRCC (Figs. 4–6 and 8).
Our observed high-level correlations between TFEC and TAMs,

MDSC, or Treg in chRCC (Fig. 4g) imply the functional role of the
MiT family in RCC. The MiT family contains four basic helix-loop-
helix leucine zipper (bHLH-LZ) transcription factors: MITF, TFE3,
TFEB, and TFEC [55]. Fusion of TFE3, TFEB, or MITF with partner
genes via chromosome translocation occurred in a rare group of
RCC: translocation RCC (tRCC) [55, 59]. tRCC shares similarities
with chRCC, including affecting young individuals and more
women than men [55] as well as association with the BHD
syndrome and tuberous sclerosis complex (TSC) [60, 61]. Within
the MiT family, TFEC is an exception with no observed
involvement in tRCC [55]. Nonetheless, our research suggests
that TFEC contributes to chRCC via facilitating immune evasion

within tumor microenvironment. However, whether TFEC plays a
role in ccRCC and pRCC remains to be determined. Although
TFEC is widely recognized for its restricted expression in
macrophages [56], we observed abundant expression of TFEC
in proximal tubule epithelial cells (Fig. 3c; Supplementary
Fig. S7f), the commonly regarded origin of ccRCC and pRCC [38].
Our study lays the ground for further investigations of the

mechanisms for BIRC5 actions in RCC and HAGHL roles in chRCC.
While BIRC5 accurately stratifies RCC risk, its expression in kidney,
ccRCC and chRCC is limited with a pattern of focal expression. Will the
limited number of cells expressing BIRC5 be important in RCC
pathogenesis and progression? Given the magnitude of HAGHL
upregulation in chRCC (Supplementary Fig. S5d), the potential impact
of HAGHL on chRCC should be investigated in the future. This research
is limited by its retrospective nature. The biomarker potentials of Sig27
revealed here should be examined prospectively in future.

METHODS
Patients
Tissues from ccRCC patients were obtained from Hamilton Health Sciences,
Hamilton, Ontario, Canada under approval from the local Research Ethics
Board (REB# 11114).

Semi-quantitative real-time PCR
Total RNA was isolated from ccRCC and adjacent non-tumor kidney tissues
with the Iso-RNA Lysis Reagent (5 PRIME). Reverse transcription was
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Fig. 7 Expression of the Sig27 metagene in ccRCC-associated immune cells. a–f Sig27 metagene expression in the indicated immune cells
within the indicated scRNA ccRCC datasets. Analyses were performed using the TISCH2 platform.
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performed using Superscript III (Thermo Fisher Scientific). Semi-
quantitative real-time PCR was conducted with the ABI 7500 Fast Real-
Time PCR System (Applied Biosystems, Foster, California, USA) using SYBR-
green (Thermo Fisher Scientific). Fold alterations were calculated using the
formula: 2−ΔΔCt. The real-time PCR primers for 4 of Sig27 component genes
are presented in Supplementary Table S4.

Programs and websites
This study used the following programs: R2: Genomics Analysis and
Visualization Platform (http://r2.amc.nl http://r2platform.com), UALCAN
[62], Metascape [63], TIMER [64], and TISIDB [65]. The R glmnet, survival,
Maxstat, and other packages were also utilized.

Data sources
The TCGA PanCancer Atlas datasets of ccRCC, pRCC, and chRCC organized
by cBioPortal were used in this study. Single cell RNA sequencing of
normal human kidney (https://www.kidneycellatlas.org/mature-kidney-

global) [40], ccRCC (https://cellxgene.cziscience.com/e/be39785b-67cb-
4177-be19-a40ee3747e45.cxg/) [41], and chRCC [41] were also utilized.

Assignment of risk scores to individual tumors
Coefficient (coef) of Sig27 component genes (n= 27) in predicting OS
probability was generated using multivariate Cox PH regression within the
R Survival package. Risk scores for individual tumors were determined as:
Sum (coef1 x Gene1exp + coef2 x Gene2exp+… …+ coefn x Genenexp),
where coef1 … coefn are the coefs of individual genes and Gene1exp … …
Genenexp are the expression of individual genes.

Statistical analysis
Kaplan–Meier curves, log-rank test, and Cox regressions were performed
with R Survival package and tools provided by cBioPortal. ROC profiles
were constructed using the PRROC package in R. Other statistical analyses
were performed using specific website programs and by GraphPad Prism 7
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and SPSS 26. Data were presented as mean ± SEM/SD. A value of p < 0.05
was considered statistically significant.

DATA AVAILABILITY
All data utilized and produced in this study are included in Supplementary materials
and are available upon request.
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