Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

All-solid-state lithium–sulfur batteries through a reaction engineering lens

Abstract

All-solid-state lithium–sulfur (Li–S) batteries have emerged as a promising energy storage solution due to their potential high energy density, cost effectiveness and safe operation. Gaining a deeper understanding of sulfur redox in the solid state is critical for advancing all-solid-state Li–S battery technology. In particular, the key electrochemical reactions of solid-state sulfur are distinct from those in the liquid state, yet discussion of such aspects remains lacking thus far. This Perspective provides a fundamental overview of all-solid-state Li–S batteries by delving into the underlying redox mechanisms of solid-state sulfur, placing a specific emphasis on key reaction engineering principles, such as mass transport, electrochemical kinetics and thermodynamics. The dimensionless Damköhler number is underscored to elucidate transport and kinetics limitations in solid-state sulfur. Furthermore, advanced characterization techniques, such as cryogenic electron microscopy, are highlighted as powerful tools to bridge the current gaps in understanding that limit the deployment of all-solid-state Li–S batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparing liquid Li–S batteries with all-solid-state Li–S batteries.
Fig. 2: Comparing the conversion mechanism of sulfur during discharge in liquid and solid-state electrolytes.
Fig. 3: Mapping the conversion pathway of sulfur in liquid and all-solid-state configurations.
Fig. 4: Schematic illustrations highlighting various unresolved questions concerning the discharge/charge products of all-solid-state Li–S batteries.
Fig. 5: Characterization tools for all-solid-state Li–S batteries.

Similar content being viewed by others

References

  1. Xie, J. & Lu, Y.-C. A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grey, C. P. & Hall, D. S. Prospects for lithium-ion batteries and beyond—a 2030 vision. Nat. Commun. 11, 6279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fleischmann, J. et al. Battery 2030: Resilient, Sustainable, and Circular (McKinsey & Company, 2023).

  4. Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 14, 420 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Newman, J. & Balsara, N. P. Electrochemical Systems 4th edn (Wiley, 2019)

  6. Krishna, G. Understanding and identifying barriers to electric vehicle adoption through thematic analysis. Transp. Res. Interdiscip. Perspect. 10, 100364 (2021).

    Google Scholar 

  7. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  CAS  Google Scholar 

  8. Zhou, G., Chen, H. & Cui, Y. Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7, 312–319 (2022).

    Article  CAS  Google Scholar 

  9. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article  CAS  Google Scholar 

  10. Fankhauser, S. et al. The meaning of net zero and how to get it right. Nat. Clim. Change 12, 15–21 (2022).

    Article  Google Scholar 

  11. Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  13. Park, M., Ryu, J., Wang, W. & Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2, 16080 (2016).

    Article  Google Scholar 

  14. Liang, Y., Dong, H., Aurbach, D. & Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 5, 646–656 (2020).

    Article  CAS  Google Scholar 

  15. Yang, X., Luo, J. & Sun, X. Towards high-performance solid-state Li–S batteries: from fundamental understanding to engineering design. Chem. Soc. Rev. 49, 2140–2195 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, J. T., Hao, X., Wang, C. & Sun, X. Cathode materials for single-phase solid-solid conversion Li–S batteries. Matter 6, 316–343 (2023).

    Article  CAS  Google Scholar 

  17. Hassoun, J. & Scrosati, B. Moving to a solid-state configuration: a valid approach to making lithium–sulfur batteries viable for practical applications. Adv. Mater. 22, 5198–5201 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  19. Chung, W. J. et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518–524 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, D. et al. Realizing high-capacity all-solid-state lithium–sulfur batteries using a low-density inorganic solid-state electrolyte. Nat. Commun. 14, 1895 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao, Q., Stalin, S., Zhao, C.-Z. & Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020).

    Article  CAS  Google Scholar 

  22. Diao, Y., Xie, K., Xiong, S. & Hong, X. Shuttle phenomenon – the irreversible oxidation mechanism of sulfur active material in Li–S battery. J. Power Sources 235, 181–186 (2013).

    Article  CAS  Google Scholar 

  23. Viswanathan, V. et al. The challenges and opportunities of battery-powered flight. Nature 601, 519–525 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Amici, J. et al. A roadmap for transforming research to invent the batteries of the future designed within the European large scale research initiative BATTERY 2030+. Adv. Energy Mater. 12, 2102785 (2022).

    Article  CAS  Google Scholar 

  25. Lu, Y., Rong, X., Hu, Y. S., Chen, L. & Li, H. Research and development of advanced battery materials in China. Energy Storage Mater. 23, 144–153 (2019).

    Article  Google Scholar 

  26. Bresser, D. et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. J. Power Sources 382, 176–178 (2018).

    Article  CAS  Google Scholar 

  27. Wang, C., Kim, J. T., Wang, C. & Sun, X. Progress and prospects of inorganic solid‐state electrolyte‐based all‐solid‐state pouch cells. Adv. Mater. 35, 2209074 (2023).

    Article  CAS  Google Scholar 

  28. Pang, M.-C. et al. Large-format bipolar and parallel solid-state lithium-metal cell stacks: a thermally coupled model-based comparative study. J. Electrochem. Soc. 167, 160555 (2020).

    Article  Google Scholar 

  29. Wild, M. et al. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 8, 3477–3494 (2015).

    Article  CAS  Google Scholar 

  30. Ren, W., Ma, W., Zhang, S. & Tang, B. Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Mater. 23, 707–732 (2019).

    Article  Google Scholar 

  31. Bradbury, R. et al. Visualizing reaction fronts and transport limitations in solid-state Li–S batteries via operando neutron imaging. Adv. Energy Mater. 13, 2203426 (2023).

    Article  CAS  Google Scholar 

  32. Ohno, S. & Zeier, W. G. Toward practical solid-state lithium–sulfur batteries: challenges and perspectives. Acc. Mater. Res. 2, 869–880 (2019).

    Article  Google Scholar 

  33. Huggins, R. A. Advanced Batteries: Materials Science Aspects (Springer, 2009); https://doi.org/10.1007/978-0-387-76424-5

  34. Deng, R. et al. All-solid-state thin-film lithium–sulfur batteries. Nanomicro Lett. 15, 73 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liang, X. et al. Solid-state electrolytes for solid-state lithium–sulfur batteries: comparisons, advances and prospects. J. Energy Chem. 73, 370–386 (2022).

    Article  CAS  Google Scholar 

  36. Deshmukh, A. et al. A review on recent advancements in solid state lithium–sulfur batteries: fundamentals, challenges, and perspectives. Prog. Energy 4, 042001 (2022).

    Article  Google Scholar 

  37. Bandyopadhyay, S. & Nandan, B. A review on design of cathode, anode and solid electrolyte for true all-solid-state lithium sulfur batteries. Mater. Today Energy 31, 101201 (2023).

    Article  CAS  Google Scholar 

  38. Wang, Z. et al. In situ TEM observations of discharging/charging of solid-state lithium–sulfur batteries at high temperatures. Small 16, 2001899 (2020).

    Article  CAS  Google Scholar 

  39. Sun, X. et al. High surface area N-doped carbon fibers with accessible reaction sites for all-solid-state lithium–sulfur batteries. Small 18, 2105678 (2022).

    Article  CAS  Google Scholar 

  40. Yan, H. et al. In situ generated Li2S–C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading. Nano Lett. 19, 3280–3287 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Yao, X. et al. High-performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7, 1602923 (2017).

    Article  Google Scholar 

  42. Kim, J. T. et al. Manipulating Li2S2/Li2S mixed discharge products of all-solid-state lithium sulfur batteries for improved cycle life. Nat. Commun. 14, 6404 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cao, D. et al. Understanding electrochemical reaction mechanisms of sulfur in all-solid-state batteries through operando and theoretical studies. Angew. Chem. Int. Ed. 62, e202302363 (2023).

    Article  CAS  Google Scholar 

  44. Dibden, J. W., Smith, J. W., Zhou, N., Garcia-Araez, N. & Owen, J. R. Predicting the composition and formation of solid products in lithium–sulfur batteries by using an experimental phase diagram. Chem. Commun. 52, 12885–12888 (2016).

    Article  CAS  Google Scholar 

  45. Pan, H., Cheng, Z., He, P. & Zhou, H. A review of solid-state lithium–sulfur battery: ion transport and polysulfide chemistry. Energy Fuels 34, 11942–11961 (2020).

    Article  CAS  Google Scholar 

  46. Zhou, L. et al. Sulfur reduction reaction in lithium–sulfur batteries: mechanisms, catalysts, and characterization. Adv. Energy Mater. 12, 2202094 (2022).

    Article  CAS  Google Scholar 

  47. Wang, P. et al. Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 11, 2002893 (2021).

    Article  CAS  Google Scholar 

  48. Liu, D. et al. Catalytic effects in lithium–sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5, 1700270 (2018).

    Article  Google Scholar 

  49. Lim, J. et al. Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles. Science 353, 566–571 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Li, Y. et al. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nat. Mater. 13, 1149–1156 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Park, J. et al. Fictitious phase separation in Li layered oxides driven by electro-autocatalysis. Nat. Mater. 20, 991–999 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Nemani, V. P. & Smith, K. C. Analysis of crossover-induced capacity fade in redox flow batteries with non-selective separators. J. Electrochem. Soc. 165, A3144–A3155 (2018).

    Article  CAS  Google Scholar 

  53. Jin, S. et al. Fast-charge, long-duration storage in lithium batteries. Joule 8, 746–763 (2024).

    Article  CAS  Google Scholar 

  54. Liu, R. et al. Establishing reaction networks in the 16-electron sulfur reduction reaction. Nature 626, 98–104 (2024).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, L. et al. A quantum-chemical study on the discharge reaction mechanism of lithium-sulfur batteries. J. Energy Chem. 22, 72–77 (2013).

    Article  Google Scholar 

  56. Holekevi Chandrappa, M. L., Qi, J., Chen, C., Banerjee, S. & Ong, S. P. Thermodynamics and kinetics of the cathode–electrolyte interface in all-solid-state Li–S batteries. J. Am. Chem. Soc. 144, 18009–18022 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, H. et al. Developing high-power Li||S batteries via transition metal/carbon nanocomposite electrocatalyst engineering. Nat. Nanotechnol. https://doi.org/10.1038/s41565-024-01614-4 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yang, X. et al. Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high-sulfur-loading Li–S batteries. Adv. Mater. 31, 1901220 (2019).

    Article  Google Scholar 

  59. Shen, Z. et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5, 555–563 (2022).

    Article  CAS  Google Scholar 

  60. Lorger, S., Usiskin, R. E. & Maier, J. Transport and charge carrier chemistry in lithium sulfide. Adv. Funct. Mater. 29, 1807688 (2019).

    Article  Google Scholar 

  61. Yu, C. et al. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte–electrode interface. Nat. Commun. 8, 1086 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Feng, Z. et al. Unravelling the role of Li2S2 in lithium–sulfur batteries: a first principles study of its energetic and electronic properties. J. Power Sources 272, 518–521 (2014).

    Article  CAS  Google Scholar 

  63. Fujita, Y. et al. Li2S–LiI solid solutions with ionic conductive domains for enhanced all-solid-state Li/S batteries. ACS Appl. Energy Mater. https://doi.org/10.1021/acsaem.2c00978 (2022).

    Article  Google Scholar 

  64. Park, H., Koh, H. S. & Siegel, D. J. First-principles study of redox end members in lithium–sulfur batteries. J. Phys. Chem. C 119, 4675–4683 (2015).

    Article  CAS  Google Scholar 

  65. Yang, G., Shi, S., Yang, J. & Ma, Y. Insight into the role of Li2S2 in Li–S batteries: a first-principles study. J. Mater. Chem. A 3, 8865–8869 (2015).

    Article  CAS  Google Scholar 

  66. Pan, H. et al. Carbon-free and binder-free Li–Al alloy anode enabling an all-solid-state Li–S battery with high energy and stability. Sci. Adv. 8, eabn4372 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, Q. et al. CNTs@S composite as cathode for all-solid-state lithium–sulfur batteries with ultralong cycle life. J. Energy Chem. 40, 151–155 (2020).

    Article  Google Scholar 

  68. Springborg, M. & Jones, R. O. Energy surfaces of polymeric sulfur: structure and electronic properties. Phys. Rev. Lett. 57, 1145–1148 (1986).

    Article  CAS  PubMed  Google Scholar 

  69. Fujimori, T. et al. Conducting linear chains of sulphur inside carbon nanotubes. Nat. Commun. 4, 2162 (2013).

    Article  PubMed  Google Scholar 

  70. Nelson, J. et al. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J. Am. Chem. Soc. 134, 6337–6343 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Ohno, S. et al. Observation of chemomechanical failure and the influence of cutoff potentials in all-solid-state Li–S batteries. Chem. Mater. 31, 2930–2940 (2019).

    Article  CAS  Google Scholar 

  72. Haldar, S. et al. Porous dithiine-linked covalent organic framework as a dynamic platform for covalent polysulfide anchoring in lithium–sulfur battery cathodes. J. Am. Chem. Soc. 144, 9101–9112 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Bai, S., Liu, X., Zhu, K., Wu, S. & Zhou, H. Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016).

    Article  CAS  Google Scholar 

  74. Lei, T. et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium–sulfur batteries. Joule 2, 2091–2104 (2018).

    Article  CAS  Google Scholar 

  75. Conder, J. et al. Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction. Nat. Energy 2, 17069 (2017).

    Article  CAS  Google Scholar 

  76. Yang, Z. et al. Phase separation of Li2S/S at nanoscale during electrochemical lithiation of the solid-state lithium–sulfur battery using in situ TEM. Adv. Energy Mater. 6, 1600806 (2016).

    Article  Google Scholar 

  77. Zhou, S. et al. Visualizing interfacial collective reaction behaviour of Li–S batteries. Nature 621, 75–81 (2023).

    Article  CAS  PubMed  Google Scholar 

  78. Cao, D., Zhang, Y., Ji, T. & Zhu, H. In operando neutron imaging characterizations of all-solid-state batteries. MRS Bull. 48, 1257–1268 (2023).

    Article  Google Scholar 

  79. Wu, X. et al. Operando visualization of morphological dynamics in all-solid-state batteries. Adv. Energy Mater. 9, 1901547 (2019).

    Article  Google Scholar 

  80. Lowe, M. A., Gao, J. & Abruña, H. D. Mechanistic insights into operational lithium–sulfur batteries by in situ X-ray diffraction and absorption spectroscopy. RSC Adv. 4, 18347–18353 (2014).

    Article  CAS  Google Scholar 

  81. Lang, S., Yu, S.-H., Feng, X., Krumov, M. R. & Abruña, H. D. Understanding the lithium–sulfur battery redox reactions via operando confocal Raman microscopy. Nat. Commun. 13, 4811 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lou, S. et al. Multi-scale Imaging of solid-state battery interfaces: from atomic scale to macroscopic scale. Chem 6, 2199–2218 (2020).

    Article  CAS  Google Scholar 

  83. Tan, D. H. S., Banerjee, A., Chen, Z. & Meng, Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Dixit, M. B., Park, J.-S., Kenesei, P., Almer, J. & Hatzell, K. B. Status and prospect of in situ and operando characterization of solid-state batteries. Energy Environ. Sci. 14, 4672–4711 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.T.K. thanks J. Peterson, S. Srivastava and J. B. Jang for fruitful discussions regarding the Damköhler number.

Author information

Authors and Affiliations

Authors

Contributions

J.T.K., Y.L. and Changhong Wang. conceived the Perspective. J.T.K. wrote the paper. Changhong Wang. conducted the gravimetric energy density calculations. Y.Z. drew the schematic illustrations. Y.L., Changhong Wang. and X.S. supervised the project. All authors reviewed, edited and enriched each section of the paper.

Corresponding authors

Correspondence to Changhong Wang, Xueliang Sun or Yuzhang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Jia-Qi Huang, Kyle Smith and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Fig. 1, Notes 1–3, Table 1 and refs. 1–19.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.T., Su, H., Zhong, Y. et al. All-solid-state lithium–sulfur batteries through a reaction engineering lens. Nat Chem Eng 1, 400–410 (2024). https://doi.org/10.1038/s44286-024-00079-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44286-024-00079-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing