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Gutmicrobiotametabolism disturbance is
associated with postoperative atrial
fibrillation after coronary artery bypass
grafting
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Postoperative atrial fibrillation (POAF) is a common complication after coronary artery bypass grafting
(CABG) surgery. Gut microbiota and its metabolites have been implicated in the development of AF.
However, whether the gut–host metabolic interaction contributes to POAF is still unknown. This study
aimed to investigate the POAF-associated gut microbiota metabolism biomarkers and related risk
model. The POAF (N = 30) patients and non-POAF (N = 60) patients from the discovery cohort
exhibited significantly differentmicrobiome andmetabolome profiles. The differentiated featureswere
mainly implicated in the bile acids (BAs) and short-chain fatty acids metabolism, inflammation, and
oxidative stress. Random forest analysis identified the combination of five secondary BAs showed a
powerful performance on predicting POAF in the discovery cohort, highlighting significant values of
area under the curve (AUC = 0.954) and correct classification rate (CCR, 93.3%). In addition, the five
secondary BAs-based risk model also exhibited good performance in differentiating the POAF
(N = 114) and non-POAF individuals (N = 253) in an independent validation cohort (AUC = 0.872;
CCR = 90.4%). This work revealed perturbed microbial and metabolic traits in POAF, providing
potential avenues for the prediction and prevention of POAF after CABG.

Postoperative atrial fibrillation (POAF) is a common complication after
cardiac surgery, and it also occurs after non-cardiac thoracic surgery1. In
general, atrial fibrillation (AF) events postoperatively developed
between days 2 and 4 after cardiac operation2. The incidence of POAF
varies from 20% to 50% depending on the type of cardiac surgery3.
Various pathological mechanisms have been reported to be associated
with POAF, such as vulnerable atrial substrate, activation of the auto-
nomic nervous system, inflammation, and oxidative stress2. Previous
studies have reported that POAF is associatedwith increased short-term
and long-term morbidity and mortality, as well as an elevated risk of
subsequent AF, stroke, and overall surgery costs4,5. Many preventive
treatments have been suggested in the clinical practice, but the pre-
valence of POAF remains substantial5,6. Therefore, the precise and

crucialmechanisms of POAF still need to be further explored in order to
find new therapeutic targets.

Metabolomics, aims to characterize diverse classes of the small mole-
cule chemical entities involved in metabolism, has been widely used to
identify biomarkers in the diagnosis and prognosis of disease and discover
active drivers of biological and pathological processes7,8. In the past decade,
the state-of-the-art metabolomic analyses performed on a variety of bio-
sample types have improved our ability to understand the pathologies of
various cardiovascular diseases9,10. More recently, by performing targeted
metabolite profiles on the pericardial fluid and serum samples frompatients
undergoing isolated coronary artery bypass grafting (CABG) with and
without POAF, we identified several oxidative stress-related metabolites
were significantly altered between POAF and non-POAF patients11.
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The gut microbiota is vital to maintaining human health12.
Human microbiome represents a metabolically bioactive community,
and its composition and function play an important role in regulating
host metabolism homeostasis and pathogenesis12. The gut micro-
biome produces a variety of metabolites, such as short-chain fatty
acids (SCFAs), indoles, and secondary Bas13–15. Gut-heart axis is a
novel emerging concept based on the interaction between the gut
microbiota and the heart that occurs via biologically active metabo-
lites of bacterial origin, which are resorbed in the intestine and dis-
tributed via the circulation16,17. Furthermore, accumulating evidence
revealed that the alterations in the gutmicrobiota-derivedmetabolites
could influence the pathophysiological processes of cardiovascular
disease, such as coronary heart diseases, arrhythmia, and heart
failure18–21.

Although several small-scale clinical studies demonstrated that
the perturbed gut microbiota composition or altered microbial
metabolites were associated with the onset and progression of atrial
fibrillation22,23, the changes in the microbiome and its derived meta-
bolites in POAF are poorly understood. Herein, we presented our
study to first and comprehensively explore the fecal microbiome and
plasma metabolome of patients undergoing isolated CABG with and
without POAF. We sought to explore the POAF-associated alterations
in the gut bacteria and metabolites and provide novel insights into
pathogenesis for POAF. We also aimed to identify early and precise
diagnosis markers for POAF and provide novel treatment avenues for
POAF prevention. The overall experimental design for this study is
shown in Fig. 1.

Results
Baseline characteristics of the discovery cohort
A total of 158 patients (male, 54.8%) undergoing isolated CABG were
enrolled in the discovery cohort (Fig. 1). Fifty patients developed POAF
in post-operation 2–4 days. The demographics and clinical char-
acteristics of patients with and without POAF are presented in Sup-
plementary Table 1. Notably, compared to patients without POAF,
patients who developed POAF had significantly longer hospital length
of stay (P < 0.05). Although there was no statistical significance in the
gender between the two groups, patients who developed POAF were
more likely to be male (P = 0.055). Due to the incomplete consistency
of baseline clinical features, we employed propensity score matching
(PSM) algorithm to select individuals for further omics analysis. After
1:2 PSM, a total of 30 patients with POAF and 60 patients without
POAF were included for plasma metabolome and fecal microbiome
analyses. No statistical differences were observed between the two
matched groups (Supplementary Table 1).

Patients with POAF are characterized by disordered gut
microbiota diversity
The gut microbiota profiling of 30 POAF patients and matched 60 no-
POAF patients were performed using 16 S rRNA sequencing. To
evaluate the microbial diversity differences between POAF and non-
POAF groups, alpha and beta diversity analyses were performed. As
shown in Fig. 2a, b, a significant difference in Shannon diversity and
Chao index was observed between POAF and non-POAF groups
(P values < 0.05), which demonstrated a significantly lower diversity

Fig. 1 | Flow chart of the study design. CABG
coronary artery bypass grafting, POAF post-
operative atrial fibrillation, SCFA short-chain
fatty acid.
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and community richness in the feces of patients with POAF than in
those without POAF. Furthermore, PCoA score plot demonstrated a
significant difference in β-diversity between the POAF and non-POAF
groups (P = 0.001), suggesting that the microbial composition in
patients with POAF was significantly shifted regarding OTUs (Fig. 2c).
Examination of the microbiome at the phylum level demonstrated that
Actinobacteria and Firmicutes were significantly enriched in patients
with POAF compared with non-POAF controls (Fig. 2d). At genus
level, Roseburia, Acinetobacter, Streptococcus, Coprococcus, Salinar-
imonas, and Coprobacillus were significantly enriched in POAF
(Fig. 2e).

ThemetabolomemapofpatientswithPOAF ischaracterizedbya
variety of alterations in bile acid metabolism
Given the interplay between the gut microbiome and host metabolism,
then, we performed untargeted metabolomics on plasma samples from
POAF and non-POAF groups. After data preprocessing, a total of 621
circulatingmetabolites and 125 unknown ion variables were detected in
the untargeted metabolomic profiling. The identified metabolites
mainly include carnitines, fatty acids, BAs, purines, amino acid and
their derivatives, organic acids, carbohydrate and their derivatives,
nucleotide and their derivates, lysophospholipids and phospholipids.

To test whether the plasma metabolite profiles could discriminate
patients with POAF from those without POAF, we employed unsu-
pervised PCA to distinguish the group separation. The resultant PCA
score plot demonstrated a clear clustering separation between the two
groups (Fig. 3a).

Then, the volcano plot was constructed to identify the differentiated
metabolic variables responsible for group separation. Altogether, a total of
31 metabolic alterations, including 17 annotated metabolites and 14
unknown ion variables (Fig. 3b). Based on these differentiated metabolic
alterations, the calculated PCA score plot could remarkably differentiate
POAF and non-POAF subjects (Fig. 3c). The expression levels of the 17
annotated metabolites were plotted as heat map (Fig. 3d). Notably, the
resultant graph indicated that these alteredmetaboliteswere dominatedby a
variety of gutmicrobiotametabolism-related bile acid (BA) species. Patients
with POAF had higher levels of three primary BAs (glycochenodeoxycholic
acid, taurochenodeoxycholic acid, and cholic acid) and six secondary BAs
(7−ketolithocholic acid, hyocholic acid, deoxycholic acid, taurodeoxycholic
acid, lithocholic acid, and ursodeoxycholic acid) than patients without
POAF. Furthermore, we also observed patients with POAF exhibited
increased levels of TMAO and decreased levels of arginine, methionine
sulfoxide, benzoic acid, guanosine, inosine, indoleacrylic acid than non-
POAF subjects.
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Fig. 2 | Fecal microbiota profiles of subjects with and without POAF.
a, bDifferences in alpha-diversity of gut microbiota between POAF and non-POAF
patients, including Shannon index (diversity) and Chao 1 index (microbial com-
munity richness). c The β diversity of POAF and non-POAF patients based on the

PCoA analysis. dDifferentiated microbiome composition at phylum level in POAF
and non-POAF fecal samples. e Relative abundance comparison at genus level
between the POAF and non-POAF patients, the box plot indicates the mean pro-
portions, the bar plot indicates the proportion differences between two groups.
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Plasma levels of short-chain fatty acids are increased in patients
with POAF
Short-chain fatty acids (SCFAs), the metabolic productions from the fer-
mentation of glucose and non-digestible dietary fiber by gut microbiota,
have been as the potential contributors to atrial fibrillation pathogenesis.
Therefore, the quantitative SCFAs profiling was also performed to explore
whether the SCFA species are associated with POAF in patients undergoing
isolated CABG. The plasma concentrations of seven SCFAs, including
valeric acid, isovaleric acid, butyric acid, caproic acid, acetic acid, propionic
acid, and isobutyric acid of thematching two groups were depicted in Fig. 4.
The results demonstrated that patients with POAF had higher plasma levels
of acetic acid, propionic acid, and isobutyric acid thanpatientswho survived
from POAF events. However, no differences were observed in valeric acid,
isovaleric acid, butyric acid, and caproic acid between the two groups.

POAF-altered metabolites are associated with a variety of gut
microbiota and functional pathways
We subsequently performed Spearman’s rank correlation analysis to assess
the correlation of the POAF-associated serummetaboliteswithmicrobiome
at the phylum and genus levels (Fig. 5a). The results indicated that the three
SCFAs, including acetic acid, propionic acid, and isobutyric acid, were
positively correlated with Bacteroidota and Proteobacteria. In addition, we
observed that most of primary and secondary BA species were significantly

associated with Firmicutes and Actinobacteria. To characterize the biolo-
gical function and latent diseases of POAF-associated metabolites, the
functional relationship network was constructed based on the database of
Ingenuity Pathway Analysis. The resultant network revealed that those
POAF-altered metabolites were significantly related to coronary heart dis-
ease, atrial fibrillation, arrhythmia, and heart failure, and were associated
with bile BAmetabolism, oxidative stress, and inflammation (Fig. 5b).Most
strikingly, the accumulation of BA species, TMAO, acetic acid, propionic
acid, and the reduction of arginine andmethionine sulfoxide in the serumof
patients with POAF was closely associated.

A small panel of secondary bile acids exhibited significant
performance in predicting POAF events
In the untargeted metabolite profiles, the most prominent metabolomic
characteristics of patients with POAF events were the increasedTMAOand
nine BA species (Fig. 3d). BAs and TMAO are important metabolic sub-
strates or derivatives in gut microbiota metabolism. In order to verify the
qualitative and quantitative accuracy of BAs and TMAO and test whether
their real concentrations in the plasma samples were statistically changed
between patients with and without POAF, MRM-based targeted analysis of
these altered metabolites was performed. As shown in Fig. 5c, all of these
metabolites in absolutely quantitative analysiswere also statistically different
between patients with and without POAF (all P values < 0.05).
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Then, we collected the differentiated gut microbiota-associated meta-
bolites (nineBAs, three SCFAs, andTMAO) in targetedmetabolite profiling
for further POAF-related metabolite marker selection and risk model
construction. Random forest (RF), an ensemble supervised learningmethod
for variable reduction and selection, was employed to calculate the variable
importance and select the optimal marker panel in predicting POAF. The
variable importance of each metabolic measure was ranked by using the
values of mean decrease accuracy and summarized in Fig. 6a. The results
demonstrated that the top eightmetaboliteswere consistedoffive secondary
BAs and three primary BAs.

Based on the different numbers of top importantmetabolic variables in
mean decrease accuracy plot (from 2 to 13), the Monte Carlo cross vali-
dation analysis of multivariable RF models were performed to select the
optimal marker panel that can maintain a maximized performance in
predictingPOAFevents.As shown inFig. 6b, the combinationof the topfive
metabolites (including 7-ketolithocholic acid, deoxycholic acid, lithocholic
acid, taurodeoxycholic acid, and hyocholic acid) showed a significant per-
formance in predicting POAF (AUC-ROC value = 0.954), while the addi-
tional features had little effect on the values ofAUC-ROC. Furthermore, the
posterior classification probability plot (Fig. 6c) of these five secondary BAs
demonstrated that correct POAF prediction rate was 93.3% (28 in 30). The
reliability of the established RF model was also confirmed by the permu-
tations plot (P values < 0.00001; Fig. 6d). These results indicated that the
secondary BAs produced by the gut microbiota (Fig. 6e) might play a key
role in the development of POAF.

Evaluation of the marker panel in predicting POAF events in an
independent validation cohort
In the discovery cohort, the combination of five gut microbiota-derived
secondary BAs showed powerful performance in predicting POAF events.
To test thepredictive performanceof this selectedmarker panel, the targeted
analysis of these five secondary BAs and RF model evaluation were per-
formed in an independent validation cohort. A total of 367 patients
undergoing isolated CABG constituted the validation cohort. 114 patients
developed an POAF event in post-operation 1–6 days. As shown in

Supplementary Table 2, no statistical differences were observed in the
demographics and clinical characteristics of patients with and without
POAF in the validation cohort.

Notably, in the targeted analysis of five secondary BAs (Fig. 7a), the
plasma levels of 7-ketolithocholic acid, deoxycholic acid, lithocholic acid,
taurodeoxycholic acid, and hyocholic acid were also identified to be dif-
ferentially expressed at baseline (all P values < 0.05) between subjects who
developed POAF events and patients without events. RF model using the
selected five secondary BAs was highlighted with a significant prediction
performance (Fig. 7b; AUC-ROC value = 0.872). In the posterior classifi-
cation probability analysis (Fig. 7c), 103 patients (90.4%, 103 in 114) were
correctly predicted with an occurrence of POAF event. The predictive
accuracy of five secondary BAs-based RF model in validation cohort was
also validated by the 1000-times randompermutation test with a significant
P value < 0.000016 (Fig. 7d).

Discussion
The gut microbiota and its metabolites have been proposed as cofactors in
the progression and development of AF through their interaction with
multiple functional pathways via the gut–heart axis. In this study, for the
first time, we employed 16S rRNA sequencing and targeted/untargeted
metabolomic profiling to identify the prospective alterations in the fecal
microbiome and plasma metabolome that discriminate POAF from non-
POAF in patients undergoing isolatedCABG.Wedemonstrated that POAF
was associated with a variety of gut microbial alterations, mainly including
bacteria Actinobacteria and Firmicutes and specific SCFAs and BAs pro-
duced by gut microbiome. Furthermore, we found that the perturbed gut
microbiota-dependent metabolites were significantly enriched in atrial
fibrillation, secondary bile acid metabolism, and inflammation processes.
Finally, theRFmodel demonstrated the combination offive gutmicrobiota-
derived secondary BAs provided high accuracy in determining POAF event
in two prospective cohorts, suggesting the prognostic potential of microbial
markers for the prediction and intervention of POAF.

Epidemiological studies have identified several major risk factors for
the development of POAF, but large-scale studies have shown that
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preoperative, intraoperative, and postoperative factors can only explain a
small portion of the variation in POAF risk2. The gut microbiota was
considered as a metabolic organ that not only contributes to nutrient
absorption and energy production but also generates various metabolites
(such as BAs, SCFAs, and indole derivatives) that can be distributed
throughout the host via the circulation, affecting multiple biological
processes24. Recent studies have strongly supported the role of micro-
organisms in POAF and cardiovascular disease through the interaction
between metabolites and the host11,25.

In this study, our results revealed significant differences in microbiota
abundance and diversity in the gut microbiota structure in patients who
developed POAF compared to those survived POAF. At phylum-level, we
found that two gut microbiota Actinobacteria and Firmicutes were sig-
nificantly increased in POAF patients compared to non-POAF patients.

Firmicutes (also known as Bacillota) and Actinobacteria (also known as
Actinomycetota) have been reported to be the major bacteria involving the
secondary BAmetabolism via convert primary BAs to the major secondary
BAs. BAs can be categorized as free or conjugated, as well as primary or
secondary based on their source. Interestingly, the correlation analysis also
indicated that the plasma concentrations of primary BAs (including cholic
acid, taurochenodeoxycholic acid, and glycochenodeoxycholic acid) and
secondary BAs (e.g., hyocholic acid, taurodeoxycholic acid, deoxycholic
acid) were significantly increased in POAF and were positively related to
Actinobacteria and Firmicutes. These findings demonstrated a remarkable
perturbed gut microbiota-bile acid axis in POAF.

Primary BAs as the essential components of bile, are directly synthe-
sized in the liver from cholesterol, while secondary BAs are produced by
intestinal bacteria through the 7α dehydroxylation of primary BAs.
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Dysbiosis of gut microbiota can lead to abnormal BAmetabolism, resulting
in pathologically elevated BAs that can affect cardiac electrical activity and
induce arrhythmias through various mechanisms26–28. Studies have shown
that pro-bile acids like chenodeoxycholic acid can induce cardiac fibrosis
through inflammation29. BAs rely on muscarinic M2 receptors to induce
arrhythmias30. Additionally, Gorelik et al.31 showed that BAs stimulate the
release of calcium ions, which may cause arrhythmias through calcium-
activated currents or the Na+ /Ca2+ exchanger (NCX). Moreshwar et al.32

found that excess BAs can also impair fatty acid oxidation in cardiomyo-
cytes, leading to cardiac dysfunction known as cholestatic heart disease.

In most cases, the clinical used POAF-related biomarkers, such as
N-terminal pro-B-type natriuretic peptide, C-reactive protein, high-
sensitivity cardiac troponin T, interleukin 6, cannot accurately predict
POAF after cardiac surgery33,34. Therefore, the identification of effective
biomarkers tomonitor susceptibility is crucial for preventing POAF. In this
study, we used the quantitative metabolomics and multivariable RF model
to explore whether the gut microbiota-dependent metabolites could accu-
rately differentiate POAF and non-POAF in patients undergoing isolated
CABGsurgery.Our results indicated that the combination offive secondary
BAs exhibited remarkable performances in predicting POAF events in the
matched discovery cohort set as well as the independent larger validation
cohort set. These findings indicated that gut microbiota and its associated
secondary BAs hold promise as diagnostic biomarkers or therapeutic tar-
gets. Further research is needed to investigate the mechanisms of action of
the gut–bile acids axis in the progression and development of POAF.

Another important finding of our study was that the plasma con-
centrations of three SCFAs including acetic acid, propionic acid, and iso-
butyric acid were significantly higher in patients with POAF compared to
patients without POAF. SCFAs are produced by the gutmicrobiota through
the metabolism of resistant starch, polysaccharides, and proteins in dietary
fiber19. However, SCFAs differ in their harmful and beneficial properties.
Previous studies found that acetate could affect blood pressure and lower
heart rate and had a negative inotropic effect on cardiac contractility35.
Additionally, acetatemight contribute to dyslipidemia and promote obesity
by enhancing the secretion of insulin and ghrelin36,37. Propionate might
stimulate neuronal firing and norepinephrine (NE) synthesis and release
and promote inflammation via free fatty acid receptor (FFAR)-338. Fur-
thermore, propionate could also reduce susceptibility to ventricular tachy-
cardia by affecting connexin 43 in cardiomyocytes39. Thus, the increased
plasma levels of acetate andpropionatemight play a role in thedevelopment
of POAF through modifying the atrial fibrillation risk factors and inflam-
mation processes.

Our results also identified that several inflammation and oxidative
stress-related metabolites were differentially expressed between POAF and
non-POAF patients. Trimethylamine N-oxide (TMAO), a well-studied
harmful microbial metabolite, has been suggested to play a role in the
pathogenesis of cardiovascular disease Possible mechanisms mainly inclu-
ded inflammation, oxidative stress, andDNAdamage40.Notably, our results
revealed a significant elevation of TMAO in the plasma samples from
patientswithPOAFcompared topatientswithoutPOAF.Previous evidence
incited that raised TMAO might enhance the infiltration of M1 macro-
phages in atria and increase the expression of Casp1-p20 and cleaved-
GSDMD41, leading to atrial structural remodeling and increasing suscept-
ibility to POAF. In addition, we also observed two antioxidant and anti-
inflammatory metabolites, arginine and methionine sulfoxide were sig-
nificantly decreased in the plasma samplesof POAFpatients. Thesefindings
were in according to our recent study on investigating the POAF-associated
metabolite alterations in the pericardial fluid and serum samples using the
targeted metabolite profiling11.

Our study has several limitations. First, 16S amplicon sequencing
provided limited taxonomy for functional analysis, and future studies
should consider performing microbial metagenome analysis. Second,
since POAF manifests as a distant postoperative relapse, future studies
should explore changes in flora andmetabolites in patients with distant
POAF relapse. Clinical intervention studies involving dietary

manipulation (including probiotics) and fecal transplantation in POAF
patients are needed to determine whether the gut microbiota and
microbial-derived metabolites can be modified as risk factors for the
development and progression of POAF. Finally, although our sample
size was larger than previous reports, the two-cohort set of patients was
collected from single center. A larger and multi-center studies are
needed to validate our main findings.

In summary, the present study demonstrated profound alterations in
gut microbiota and its metabolites were associated with POAF. The com-
bination of specific secondary BAs had significant potential for predicting
POAF events after CABG procedure. These findings revealed a potential
role of gut-heart axis in the causes of POAF, providing potential therapeutic
target and intervention strategy after cardiac surgery.

Methods
Ethics statement
The study protocol was approved by the Medicine Ethics Committee of
Beijing An-Zhen Hospital (Beijing, China) and adhered to the Declaration
of Helsinki (Approval no. 2022128X). Written informed consent was
obtained from all participants.

Subjects and study design
A total of 184 patients in Beijing Anzhen Hospital were included as the
discovery cohort between January 2022 and December 2022. Another
425 patients in Beijing AnzhenHospital were included in the validation
cohort between January 2023 and January 2023. Inclusion criteria were:
participants who received isolated CABG in Beijing Anzhen Hospital.
Exclusion criteria for the study were: (1) patients with gastrointestinal
diseases; (2) patients with long-term antibiotic therapy or probiotics;
(3) patients with preoperative arrhythmia. After screening, 158 indi-
viduals were enrolled in the discovery cohort, and 367 patients were
enrolled in the validation cohort. All patients in the research signed
informed consent before sample collection. The study was approved by
the Ethics Committee of Beijing Anzhen Hospital and was conducted
following the Declaration of Helsinki.

POAF is defined as a new onset of AF after cardiac surgery sustained
for 30 seconds or more42 Patients were placed on continuous 24-h cardiac
monitoring after surgery until patients were discharged from the hospital
and 12-lead ECGs were obtained to confirm rhythm abnormalities. The
occurrence of the first documented POAF episode was the study end point.
After surgery, there were 50 patients with POAF and 108 patients without
POAF in the discovery cohort and 114 patientswith POAF and 253 patients
without POAF in the validation cohort. Patients matched based on the
propensity score matching (PSM) by the nearest neighbor matching algo-
rithm, and the optimal parameters (caliper and ratio) were determined
through the covariate balance analysis using the standardized mean dif-
ference. “Caliper” defines the maximum distance of the propensity score
between 2 samples, and “ratio” defines howmany control samples could be
matched to each disease sample. Finally, the optimal parameters (caliper =
0.25 and ratio = 2) of the 1:2 PSM were determined through the covariate
balance analysis. According to the above matching process, a total of 90
patients were obtained, including 30 POAF (+) and 60 POAF (−) in the
discovery cohort by matching the clinical variables with statistical differ-
ences and variables with non- statistical difference but may have a potential
impact, including ages, sex, hospital length of stay, LVEF, number of grafts,
and TSH.

Fecal microbiome and plasma metabolome profiling
After signing the informed consent, we requested that the participants
follow a uniform diet for 3 consecutive days and maintain an overnight
fasting state of 10–12 h before blood and fecal sample collection. The blood
sample was collected from the antecubital vein of patients. All samples were
stored at−80 °C until further analysis. Detailedmethods of 16S rRNA gene
sequencing, and untargeted/targetedmetabolomics analysis are available in
the Supporting Information.
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Statistical analysis
Continuous variables with a normal distribution are presented as the
mean ± standard deviation (SD); otherwise, abnormally distributed data are
presented as the median (interquartile range). Student’s t test and
Mann–Whitney U test were used for the comparison of normally dis-
tributed data and non-normally distributed data, respectively. Categorical
variables were summarized by frequency (N) and percentages (%) and
compared using Chi-square test. P < 0.05 was considered significant. All
analyses were performed by SPSS Statistics Version 25 (IBM Corp.,
Armonk, NY, USA).

The raw untargetedmetabolomic data were transformed to Progenesis
QI (Waters,Manchester,U.K.) fordeconvolution, alignment, retention time
correction, and metabolite identification (based on the QI MetaScope
database, METLIN database, HMDB database, LIPIDMAPS database, and
in-house metabolite library). The normalized metabolite features that were
absent in more than 10% of pooled quality control (QC) injections
throughout analysis were removed. From the remaining features, thosewith
more than 20% relative standard deviation (RSD) in peak intensity across
pooled QC injections were also removed. The multivariate statistical ana-
lysis for the metabolomic data matrix was performed using SIMCA-P
software (v14.1, Umetric, Umeå, Sweden). Unsupervised principal com-
ponent analysis (PCA) was applied to gain a comprehensive view of the
sample distribution, group separation, and assess the outlier samples using
the pareto-calculation of principal components (PCs). The optimized
number of principal component (PC) was determined by R2 andQ2 values
as follows: more than 50% of original variables have been explained by the
selected PCs (cumulative R2 values > 0.5), and the cumulative Q2 values of
the selected PCs were decreased after adding a new PC. Differentiated
metabolites were selected by using a volcano plot (log2-fold change vs.
-Log10 FDR-adjusted P value), and a fold change value > 2.0 or 0.5 and an
adjustedPvalue < 0.05 represent the significant importanceof themetabolic
variables in differentiating POAF from non-POAF. The latent relationship
network between POAF-associated metabolites and functional pathways/
diseases was generated based on Function Analysis, Connect Analysis, and
Path Explorer by using Ingenuity Pathway Analysis (IPA, QIAGEN Inc.,
German).

Spearman’s rank coefficients were used to investigate the correlation
between differentiatedmetabolites and alterations at the genus and phylum
levels. The random forest (RF) algorithm was used to estimate the asso-
ciation between differentiated metabolites and POAF events and select the
important biomarker panel using R software (https://cran.r-project.org/
index.html). The functionRandomOver-Sampling Examples (ROSE) from
theRpackage ‘ROSEpackage’was applied to reduce thedata imbalance rate.
The ntree value andmtry valuewere set at 500 and 5, respectively. The other
hyperparameters were set at default settings of the R package ‘Random
Forest’. The variable importance was evaluated by using the values of mean
decrease accuracy. Monte Carlo cross-validation (MCCV) was used to
generate a multivariate RF model for selecting the optimal metabolite
marker panel. The performance of multivariate RF models was assessed
using the values of area under the receiver-operating characteristic curve
(AUC-ROC). The reliability of the optimal RF model was evaluated by the
number of misclassifications in the posterior classification probability plot
(100 cross-validation) and permutation test (n = 1000 times).

Data availability
Data are available upon reasonable request.

Code availability
The data in this study are available from the corresponding author for
academic purpose-request.
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