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Metal additive manufacturing (AM) faces challenges in rapid selection and optimization of
manufacturing parameters for desired part quality. As a more efficient alternative to experiments and
high-fidelity physics-based models, data-driven modeling is effective in understanding
process–structure–property relationships. This brief review explores data-driven modeling in metal
AM, focusing on “process”, “structure”, and “property”, further identifying limitations in current
applications and accordingly presenting future outlook on the possible advancements in this domain.

Metal additivemanufacturing (AM)has developed rapidly in recent decades
due to its incomparable capabilities in fabricating parts. Specifically, instead
of removingmaterials from a solid block in traditional subtractive methods,
AM adds materials layer-by-layer to produce the desired geometry from a
computer-aided-design (CAD) model. Such a precise layered approach
allows for the creation of intricate structures with a high degree of custo-
mization and minimal material waste. However, the as-built parts by AM
may not always possess satisfactory mechanical properties. This mostly
stems from improper selection of process parameters, undesirable micro-
structure evolution, andunexpecteddefect formation, all ofwhich essentially
attribute to the incomplete understanding of process–structure–property
(PSP) relationships in metal AM.

The challenge in establishing connections between “process”, “struc-
ture”, and “property” arises from various physical phenomena occurring
simultaneously or sequentially, including but not limited to powder
dynamics, laser ray reflection, heat transfer, fluid flow, phase transition
between solid, liquid, and gas, solid-state phase transformation (SSPT),
plastic deformation, fracture, and so on. These physical phenomena interact
with each other, resulting in extremely complex PSP relationships. For
example, under steep temperature gradients and frequent heating and
cooling cycles, certain materials may undergo SSPT. Such a phenomenon
could result in unusual thermal stress and local deformation, hence
impacting mechanical properties like stiffness and strength, which may
further lead to geometric inaccuracy and cracking. In addition, the gradients
of temperature and the temperature history are determined by various fac-
tors, including laser power, scan speed, scan strategy, andmaterial properties
such as energy absorption, thermal conductivity, and specific heat.

A straightforward way to advance the understanding of PSP is to
rationally design and carefully conduct experiments (particularly in situones)
and/or develop high-fidelity physics-based simulations incorporatingmost if
not all the major physical factors1. However, experiments are costly while
performing multi-physics simulations is also time-consuming. Such a

dilemma hinders further investigations on PSP.More importantly, these two
approaches are not feasible in the rapid selection and optimization of the
manufacturing parameters, which is a critical requirement in industrial
applications. In this case, leveraging data-driven models is believed to be a
promising solution, especially in the era when machine learning techniques
are well developed. Compared to traditional manufacturing processes like
casting, AM significantly enhances design freedom and customization
through its layer-by-layermanufacturing scheme. Thismanufacturing ability
enables theproductionof complex geometries and internal structures that are
beyond the capabilities of traditional methods. However, the layer-by-layer
manufacturing scheme also introduces multiple challenges in data-driven
modeling. Firstly, the complex combination of process parameters in AM
allows for unprecedented flexibility and variability in manufacturing; how-
ever, this flexibility and variability also result in a large and high-dimensional
data space that demands rigorous and thorough data collection for effective
data-driven models. Secondly, quality inconsistencies inherent in AM, such
as variations in porosity, surface roughness, and grain structures, challenge
the reliability of collected data. Thirdly, the complex physics involved in AM
processes makes it difficult to develop physics-informed data-drivenmodels,
hence challenging the physical interpretability of these models. Lastly, the
developing but still nascent understanding of AM impedes the establishment
of a unified experimental platform and simulation setup, which undermines
the accuracy and reliability of collected data, further adding to the burden of
data collection. Nevertheless, these challenges present opportunities for
leveraging advanced data-driven techniques to fully explore the potential of
AM. By refining data-driven modeling practices, these challenges can be
mitigated to help enhance the AM for improved performance and reliability.
Successful applications of data-driven modeling for AM have proven the
appealingpotential to optimize process parameters, to predictmicrostructure
evolution, and to fine-tune the properties of final parts.

Recently, somereviewpapers elaborateon theutilizationofdata-driven
models in AM. Wang et al.2 reviewed the machine learning applications in
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structural design for AM parts, process parameter optimization, process
monitoring, and quality control. In the review by Jin et al.3, the authors
focused on the machine learning-assisted topology optimization for struc-
tural design and thepotential ofmachine learning inmaterial design forAM,
as well as machine learning applications in process parameter optimization
and in situ anomaly detection. Meng et al.4 reviewed process parameters
optimization, defect detection, quality and property prediction, and geo-
metric deviations control with the aid of machine learning. Qi et al.5 spe-
cifically focused on the applications of neural networks in AM, e.g.,
structural design and geometric compensation, in situ monitoring, and
connecting process parameters with properties of final parts. Wang et al.6

reviewedmachine learning-based processmodeling, in situ defect detection,
and process optimization and control. Liu et al.7 emphasized the machine
learning techniques for process and performance optimization. Li et al.8

presented the machine learning applications in the pre-processing design
stage, e.g., structural design, during the processing stage, e.g., process
parameter optimization and in-processmonitoring optimization, and in the
post-processing stage, e.g., surface quality prediction. Wang et al.9 reviewed
the data-driven process modeling, e.g., geometry of molten pool and bead,
data-driven structure modeling, e.g., grain structure and geometric distor-
tion, and data-driven mechanical property modeling, e.g., tensile strength.
Particularly, they gave a detailed introduction of various data-drivenmodels
being used and discussed how to select suitable data-drivenmodels for PSP
modeling. Kouraytem et al.10 reviewed data-driven applications for

process–structure relationship, structure–property relationship, and the
vision for data-driven PSP adopted from Yan et al.11 and Wang et al.12.

Different from the existing reviews in the literature, this paper is
aimed not only at presenting representative successful data-driven
applications in studying PSP, but also at elaborating on the current
challenges of linking PSP through data-driven techniques and discussing
the future prospects and possibilities of data-driven modeling in AM.
Instead of a very comprehensive overview like that by Wang et al.9, this
review is confined to classical and pioneering literatures and provides a
more concise yet insightful exploration of landmark studies in the field.
Most data-driven techniques are broadly applicable to various AM tech-
niques. For example, a data-driven application developed for one specific
AM technique, e.g., directed energy deposition (DED), can often be
generalized to another AM technique, e.g., laser powder bed fusion
(LPBF). Therefore, we avoid confining our scope to data-driven appli-
cations of a specific AM technique. It is also important to highlight that
this cross-applicability not only showcases the generalization capacity of
data-driven applications in AM but also fosters advancements in com-
prehending PSP as a whole. In the following, successful data-driven
applications in the literature are firstly reviewed from process modeling,
e.g., process parameter optimization and characteristics ofmolten pool, to
structure modeling, e.g., evolution of grain structure, and property
modeling, e.g., prediction of ultimate tensile strength (UTS) and yield
strength, as schematically illustrated in Fig. 1. Particularly, we try to
leverage these examples to shed light on the essential reasons behind the
indispensability of data-driven modeling for PSP. Furthermore, we try to
specifically identify the limitations of current data-driven applications and
outlook future directions to address these issues.

Data-driven applications for process, structure, and
property modeling
In this section, we discuss representative data-driven modeling for “pro-
cess”, “structure”, and “property”. Figure 2 serves as a preview, illustrating
specific applications related to these aspects.

Data-driven modeling of process
To model AM processes, researchers commonly use thermal-fluid simu-
lations within the computational fluid dynamics (CFD) framework. This
approach offers two key advantages: (1) it eliminates the need for numerous
trial-and-error experiments, thus largely reducing costs; (2) it is more
accurate than conventional pure thermal simulations based on the finite
element method (FEM) due to its incorporation of molten pool flow
dynamics and other significant physical factors13. However, it is noteworthy
that such high-fidelity simulations are inherently time-consuming, e.g., the
computational timeof a typical simulation caseof lasermelting a single track
is on the order of hundreds of CPU hours. Consequently, researchers have
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Fig. 2 | Schematic of data-driven applications for process, structure, and prop-
erty modeling. a Data-driven process modeling with training data mainly from
simulations (in red). b Data-driven structure modeling with training data mainly
from simulations (in red). c Data-driven property modeling (from “process” to
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property modeling (from “structure” to “property”) with training data mainly from
experiments (in red).
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Fig. 1 | Schematic of data-driven modeling of PSP in metal AM. Data-driven
models are leveraged to help comprehensively understand PSP and rapidly establish
mappings for PSP under the interaction of complex physical phenomena occurring
concurrently or sequentially. Figures are reprinted from refs. 31,33,69–71 with
permission from Springer Nature and Elsevier.
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leveraged data-driven techniques to directly establish relationships between
process parameters and corresponding process features, such as the geo-
metry of the molten pool, as illustrated in Fig. 2a. In this section, our focus
narrows to ahandful of seminal studies out of the extensive literature, so that
we offer a glimpse into representative applications for data-drivenmodeling
of process.

The geometry of themolten pool is commonly adopted as an indicator
of the quality of as-built parts, as concerns like porosity and lack-of-fusion
are closely associated with the characteristics of themolten pool. Therefore,
capturing the relationships between theprocess parameters and geometryof
the molten pool can help optimize the process parameters for better quality
of as-built parts. In addition, since the geometry of themoltenpool is easy to
measure in both experiments and high-fidelity simulations, this quantity
becomes a widely usedmetric inmetal AM.With limited experimental data
and high-fidelity simulations available, Tapia et al.14 built a Gaussian
process-based surrogate model to predict the molten pool depth given
different combinations of laser power, scan speed, and laser beam size in
LPBF. The proposed surrogate model was then used in AM processes
planning to obtain the desirable conduction mode rather than the keyhole
mode for the molten pool. The same methodology was also used in Tapia
et al.15 to predict the porosity and to find an optimized combination of laser
power and scan speed to achieve low porosity in LPBF. It should be noted
thatGaussian process regression iswidely used in such prediction tasks, as it
is a non-parametric statistical tool capable of accurately capturing nonlinear
mappings from inputs to outputs16, without demanding large amounts of
training data. Xie et al.17 applied a Gaussian process regression model to
predictmolten pool and keyhole sizes, and a deep neural network (DNN) to
recognize molten pool melting regime, keyhole stability, and keyhole type,
where the database comes from a high-fidelity thermal-fluid flow model18.
For selective laser sintering, Garg et al.19 proposed a new ensemble-based
multi-gene genetic programming model that uses statistical approaches of
stepwise regression and classification methods, including support vector
machines, Bayesian classifiers, and DNNs, for improving its generalization.
They used experimental data to train the model and predicted the open
porosity based on three uncertain process parameters: layer thickness, laser
power, and scan speed. Garg et al.20 also applied the same methodology to
predict the variation of bead width with respect to layer thickness, laser
power, and scan speed for LPBF. For electron beam powder bed fusion,
Aoyagi et al.21 utilized the support vector machine to predict the porosity
and surface roughness from the combinations of beam current and scan
speed. Based on the experimental data obtained from literature, Akbari
et al.22 used various machine learning algorithms, i.e., neural network,
gradient boosting, random forest, Gaussian process model, support vector
machine, and ridge/lasso/logistic regression to predict the geometry of the
molten pool, and also for classification tasks that identify the defect modes
within the molten pool, such as lack of fusion and keyhole porosity. The
authors concluded that neural network, gradient boosting, and random
forest outperform the other machine learning algorithms on the two tasks.
Some researchers also utilized data-driven techniques to predict the bead
geometry. Xiong et al.23 investigated the relationship between the process
parameters and the bead geometry through a neural network and a second-
order regression for gas metal arc welding. While these data-driven models
demonstrate good accuracy in prediction under carefully controlled lab/
simulation conditions, their applicability and transferability in real manu-
facturing situations remain questionable. The practical viability of these
approaches hinges on several factors, including the robustness of data-
driven models across different material types, machine precision, and
environmental conditions in actual manufacturing settings. Assessing the
reliability and adaptability of these approaches outside controlled condi-
tions, as discussed in a later section (“Complete integration of PSP in data-
drivenmodeling”) through uncertainty quantification, is an essential step to
validate their practical utility.

Besides, thermal history during AM processes significantly influences
microstructure evolution and mechanical properties by inducing micro-
scopic phase transformations and grain growth, along with the evolution of

thermal and residual stresses during the layer-by-layerdeposition.However,
it is very challenging, if not impossible, to experimentallymeasure the three-
dimensional (3D) temperature field. Therefore, accurate prediction of
thermal history is the foundation tooptimizemicrostructural characteristics
and mechanical properties. Mozaffar et al.24 presented a stacked recurrent
neural network with a gated recurrent unit formulation to predict the
thermalhistoryof anygivenpointduring theDEDprocess. Roy andWodo25

developed a neutral network-based surrogate model for predicting the
thermal history during fused filament fabrication process. The datasets in
refs. 24,25 are both generated through physics-based simulations using the
FEM. However, FEM-based thermal analysis incorporates only heat con-
duction and normally omits the effects of fluid flow, powder melting, etc.
Zhu et al.26 proposed a physics-informed neural network that makes use of
both training data from simulations and physical principles, i.e., conserva-
tion laws of momentum, mass, and energy and corresponding boundary
conditions, to predict temperature field and molten pool dynamics.
Although the authors did consider complex thermal behaviors beyond heat
conduction, the free surface of the molten pool was not captured, which
compromised the accuracy. The aforementioned oversimplifications in
refs. 24–26 lead to somewhat inaccurate temperature field, and ref. 13
presented detailed assessment of inaccuracies in FEM-based heat transfer
models by benchmarking various models against experimental results and
theoretically analyzing the assumptions of eachmodel. Consequently, some
researchers chose to developdata-drivenmodels on the basis of high-fidelity
CFDmodels. Chen et al.27 used a number of isotherms instead of a pattern-
basedfield to represent the temperature profile around themolten pool, and
respectively applied Gaussian process regression, quadratic regression, lin-
ear regression, and support vector regression to predict the isotherm
dimensions based on different combinations of absorbed laser power and
scan speed.Only a small amountof trainingdata fromhigh-fidelity thermal-
fluid CFDmodel is needed. The predicted isotherms are used to reconstruct
the temperature field, which is then applied in the thermal stress and grain
growth models. Through verification, Gaussian process regression and
quadratic regression perform better than the other two algorithms. Strayer
et al.28 presented a CFD imposed FEM framework to simulate the thermal
profile in LPBF. The thermal profile near the molten pool is calculated
through the CFD simulations, and heat diffusion elsewhere is computed via
the FEM. To further accelerate the simulation, DNNs are trained with the
CFD simulations as the ground truth, and the trained DNNs replace the
CFD simulations to yield the thermal profile near the molten pool. Hem-
masian et al.29 trained a 3D convolutional neural network (CNN) via the
CFD simulations for single track LPBF. This CNN outputs the thermal
profile based on the inputs of laser power, scan speed, and time step. Since
the incorporation of time step as one of the inputs, the thermal profile for
any arbitrary time step can be obtained immediately without iterations.

Data-driven modeling of structure
Given the scarcity of in situ experimental results, physics-based simulations
stand out as the primary avenue for studying microstructure evolution in
metal AM. Physics-based models commonly use kinetic Monte Carlo
method30, cellular automata method31,32, or phase-field method33. However,
due to sufficiently small mesh size needed to resolve the microstructure
features, physics-based simulations are computationally expensive. In this
case, data-driven modeling can be utilized to accelerate the computation of
microstructure evolution so as to more easily correlate process parameters
with the formation and characteristics of grain structures, as illustrated in
Fig. 2b. Despite the extensive applications for data-driven processmodeling
discussed in the section “Data-drivenmodeling of process”, there are limited
literatures available on data-driven structure modeling. Popova et al.34

proposed a low-dimensional, data-driven approach to link manufacturing
processes with predicted microstructure. Specifically, the authors applied
themultivariate polynomial regression to establish the relationship between
various parameters, such as temperature field, scan speed, and dimensions
of the molten pool and heat-affected zone, along with the chord length
distribution of the grains calculated using the Potts-kinetic Monte Carlo
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method35. By conducting the principal component analysis on the chord
length distribution, they found that only four principal components are
already sufficient to accurately reconstruct the chord length distribution.
Therefore, the regression task shifts from predicting the detailed chord
length distribution to simply predicting the four principal components of
the distribution. This simpler, low-dimensional regression reduces both
computational time and storage demands. Xue et al.36 leveraged a physics-
embedded graph neural network (PEGN) to accelerate the phase-field
simulations for grain growth33 in LPBF, that is, mapping the phase-field
physics into the framework of the graph neural network through incor-
porating each individual grain and adjacent grain interactions. This incor-
poration is achieved by interpreting the polycrystalline structure as an
undirected graph, with associated node features such as the volume or the
centroid position of grains and edge features such as contact faces and
thermal conductivity between grains. The same PEGN is also applied to
solve temperature field and liquid/solid phase fraction, and this proposed
framework is confirmed to be at least 50 times faster than the direct
numerical simulation in computation. Utilizing small-scale phase-field
simulations, Choi et al.37 trained a 3DCNN to predict the grain orientation
of the next time step given the current grain orientation and the temperature
fields at the current andnext time step.Toperform full simulations using the
trained small-scale CNN, the local grain structure at the current laser
position is sampled from the entire domain, and only the local temperature
field within this small volume of interest needs to be calculated to enable the
CNN to generate the resulting grain orientations. Through spatio-temporal
composition, integrating small-scale predictions with the movement of the
laser, the grain orientation of the entire domain is updated progressively.

Data-driven modeling of property
As the final step of PSP, “property” is affected by both “process” and
“structure”. Particularly, we would like to clarify that besides strength,
fatigue resistanceandothers, thermal/residual stresses are also considered as
“property” here, while some researchers classify them as “structure”. The
tensile strength is not only determined by the microstructure, but also
influencedby the thermal/residual stresses originatingmainly fromthe large
temperature gradient during the process. Therefore, performing full-scale
simulations together with comprehensive experimental observations is
indispensable to provide insight into the impact of process parameters and
microstructure on mechanical properties. However, it is extremely chal-
lenging to perform fast and accurate full-scale simulations with current
computational resources as well as carrying out massive experiments. In
such circumstances, leveraging data-driven techniques provides valuable
assistance in overcoming these difficulties. In this section, we review some
representative data-driven applications for property modeling. Figure 2c
illustrates that many data-driven models establish a direct relationship
between “process” and “property”, often overlooking “structure”. In con-
trast, as illustrated inFig. 2d, aminority ofmodels exclusivelyuse “structure”
information to predict “property”, theoretically offering a more rigorous
approach as “property” is directly determined by “structure” and indirectly
by “process”. Despite the theoretical rigorousness of the PSP framework,
current research predominantly focuses on direct mappings from “process”
(e.g., laser power and scan speed) to “property” (e.g., ultimate tensile
strength, yield strength). This direct approach achieves good prediction
accuracy but typically bypasses detailed “structure” information. Challenges
in obtaining comprehensive microstructural data, such as grain morphol-
ogy, through experimental techniques like two-dimensional (2D) electron
backscattered diffraction (EBSD), hinder accurate and in-depth analysis,
especially for materials with non-equiaxed grain shapes common in AM
processes38. Although 3D EBSD offers more accurate morphology insights,
its extensive requirements in labor, cost, and time limit its widespread use.
Similarly, in simulations, 2D physics-based models inadequately capture
grain growth during AM processes, while 3D models are extremely time-
consuming33, even for single-track simulations. Given these challenges,
establishing direct process-property linkage is understandable and justifi-
able. Additionally, this approach is more of practical value in engineering

applications, as it provides direct guidanceonprocess parameter selection to
obtain desired properties.

Tensile properties such as UTS and yield strength of AM parts are
criticalmechanical propertieswith significant implications for the structural
integrity and performance during engineering service. Accurate prediction
of such properties is essential in assessing the material’s ability to withstand
maximum service loading before failure. Zhang et al.39 proposed a con-
catenated neural network, including a long short-term memory (LSTM)
network and a fully connected neural network, to predict the UTS based on
144 specimens by fused depositionmodeling (FDM). In the LSTMnetwork,
each LSTM cell corresponds to the experimentally measured temperature
and vibration data of a FDMprinting layer, and the LSTMoutputs feed into
the fully-connected network, along with process parameters and material
properties for final UTS prediction. Although the material is polylactic acid
(PLA) notmetals, the concatenated neural network is worthmentioning, as
it reflects the inter-layer influence during printing by communications
betweenLSTMcells.Marmarelis andGhanem40utilizeddiffusionmapson a
lower-dimensional Riemannian manifold to infer the dependence between
process parameters (hatch spacing, scan speed, and laser power) and part
properties (UTS, yield strength, and elongation) based on 51 AlSi10Mg
specimens by LPBF. On the lower manifold the authors further conducted
stochastic optimization of the process parameters to achieve minimum
chance of failure. Ponticelli et al.41 proposed a fuzzy-multi-objective genetic
model using the NSGA-II algorithm42. They used themodel to find the best
combinationof buildingorientationandvolumetric energydensity,with the
latter being directly influenced by laser power, scan speed, hatch spacing,
and layer thickness, for the highest mechanical performances, i.e., UTS,
roughness, and hardness, based on 30 AlSi10Mg specimens by LPBF.
Hertlein et al.43 developed a Bayesian neural network to relate process
parameters (laser power, scan speed, hatch spacing, and layer thickness) and
part properties (density, hardness, top layer surface roughness, UTS in the
build direction and perpendicular to the build direction) based on 349 316L
stainless steel specimens by LPBF collected from literature. Unlike tradi-
tional neural networks that offer single value estimates, Bayesian neural
networks provide predictions as probability distributions, which indicate
both themost likely value and the uncertainty level for each prediction. This
effectively enhances the capability for uncertainty quantification of the
predictions. Xie et al.44 predicted the distribution ofUTS, yield strength, and
elongation from the local thermal history via the infrared (IR) thermal
measurement by integrating wavelet transforms and CNNs based on
135 selected local regions from 12 Inconel 718 specimens built by DED.
Similarly, Fang et al.45 used CNNs to predict UTS, yield strength, failure
stress, and Young’s modulus of Inconel 718 by DED directly from the
thermal history obtained from the FEM simulation rather than the IR
measurement.

Fatigue life of AM parts directly influences the long-term structural
integrity and durability. Employing data-driven modeling enables rapidly
assessing the fatigue performance on different selection of process para-
meters. Zhang et al.46 adopted aneuro-fuzzy-based neural network to realize
high-cycle fatigue life prediction for 316L stainless steel by LPBF. Both
process-based model and property-based model are developed for fatigue
life prediction. The inputs of the process-based model consist of cyclic
stresses, process parameters (laser power, scan speed, and layer thickness),
and post-processing treatments (annealing and hot isostatic pressing) while
the inputs of the property-basedmodel consist ofUTS and elongation. Zhan
andLi47first derived a continuumdamagemechanics-based formulation for
fatigue life calculation and then implemented three machine learning
techniques, i.e., neural network, randomforest, and support vectormachine,
to predict the fatigue life of 316L stainless steel by LPBF with sufficient data
generated by the theoretical formulation. In this study, the inputs for fatigue
life prediction include four process parameters (laser power, scan speed,
hatch spacing, and layer thickness) and two fatigue loading parameters
(maximumstress and stress ratio).These efforts onpredicting the fatigue life
directly from “process”while neglecting “structure” further implies practical
complexities and challenges in establishing complete PSP for property
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prediction. The scarcity of reliable physics-based models to capture fatigue
behaviors based on microstructure adds to these challenges. Even when
comprehensive microstructural data can be obtained, the prediction of
fatigue life remains less reliable. Therefore, combined efforts to integrate
“structure” and develop advanced physics-based models for fatigue are
necessary to achieve better prediction performance.

Some researchers develop data-driven models to predict mechanical
properties based on microstructure instead of process parameters. By
applying random forest and watershed segmentation, Kusano et al.48 first
analyzed the morphology and size of the microstructure of Ti-6Al-4V alloy
producedbyLPBF followedbypost-heat treatment, using scanning electron
microscopy images. They then used multiple linear regression analysis to
establish a connection between the microstructure and both UTS and yield
strength. Based on the microstructure dataset generated by the elasto-
viscoplastic fast Fourier transform approach in ref. 49, Herriott and Spear50

implemented ridge regression, XGBoost, andCNN to predict yield strength
of 316L stainless steel based on microstructure information. The inputs for
ridge regressionandXGBoost consist ofmorphological and crystallographic
features to characterize the local microstructure. In contrast, CNN utilizes
3D images of the microstructure as the inputs, with crystal orientation
assigned to each voxel as the primary feature, complemented by taking the
micromechanical Taylor factor as the auxiliary feature. In this setup, CNN
outperforms the other two methods. This superior performance may be
attributed to the remarkable ability of CNN to extract spatial information
from images.

Despite these advancements, several issues are worth mention-
ing. The indices of mechanical properties in current data-driven
models remain limited, with very few reports on properties such as
creep, high-temperature properties, and high-strain-rate properties,
not to mention functional properties like electrical conductivity.
However, these properties are particularly important in target
applications such as aerospace engineering. Moreover, the amount of
training data, whether from experiments or simulations, is generally
small. This scarcity is due to the high cost of systematic material
characterizations and tests. These challenges will be further discussed
in a later section (“Deficiency and reliability of training data”).

Research limitations and future outlook
From the above review, data-drivenmodels leverage datasets obtained from
simulations and/or experiments to identify complex correlations between
“process” and “structure”, between “process” and “property”, and between
“structure” and “property”. These successful applications foster a deeper
comprehension of PSP and facilitates the optimization of process para-
meters. This would further enable researchers to tailor AM materials and
design AM parts with enhanced engineering performance, such as
improvedUTS and fatigue life. In addition, a comprehensive understanding
of the relationships between process parameters, microstructure, and
mechanical properties aids in quality control, ensuring the quality con-
sistency of AM parts. Such insight is significant for industries that demand
precision and reliability, such as aerospace and healthcare. However, there
are some limitations in current data-driven applications that may impede
further understanding of PSP, and we elaborate on these limitations and
outlook possible solutions worthy of endeavor in the following content, as
illustrated in Fig. 3.

Complete integration of PSP in data-driven modeling
As mentioned in the section “Data-driven modeling of property”, most of
the reported data-driven applications for propertymodeling39–41,43–47 tend to
predict mechanical properties directly from process parameters, and the
other applications48,50 map the relationships between microstructure and
mechanical properties. Nevertheless, since mechanical properties are
affected by a multitude of factors, including microstructure evolution and
temperature profile, integrating both process data and microstructure
information tends to yield a more comprehensive understanding and
consequently better prediction ofmechanical properties. In this case, PSP is

fully leveraged, and this holistic approach acknowledges the interplay of
various factors affecting mechanical properties, enhancing accuracy and
reliability in predicting mechanical properties.

Particularly, thermal/residual stresses arising from rapid heating and
cooling cycles during AM processes profoundly affect mechanical proper-
ties, such as UTS, yield strength, ductility, and fatigue life. This is actually
one of the most concerned problems in current industrial applications.
Firstly, high-level thermal/residual stresses tend to concentrate at specific
locations, such as defects and geometric irregularities. Such stress con-
centrations may lead to crack initiation and propagation, significantly
compromising the overall mechanical integrity. Secondly, the constant
presence of high thermal/residual stresses often results in macroscopic
dimensional distortions of as-built parts51. Substantial geometric deviations
from the intended geometry adversely impact the desired mechanical
properties and overall mechanical performance. Thirdly, complex interac-
tions occur between microstructure evolution and microscopic residual
stresses. For example, unusual microstructure formation during non-
equilibrium solidification and solid-state phase transformations affect the
distribution and magnitude of residual stresses52, and thermal/residual
stresses can also induce microstructure evolution, e.g., recrystallization.
These further complicate the relationships betweenmicrostructure, residual
stresses, and mechanical properties53. Therefore, comprehensively con-
sidering thermal/residual stresses is crucial for advancing the understanding
of PSP to the next level, yet there is a notable absence of relevant data-driven
models for multi-scale stress analysis, which is a critical gap in current
research efforts.

Besides, another critical issue inAM is quality inconsistency of as-built
parts, which significantly hampers industrial applications. The incon-
sistency initially arises from uncertainties of process parameters and
material properties, for example, due to machine calibration and powder
oxidation54. Such uncertainties cannot be eliminated at the very beginning
and would naturally propagate and accumulate along PSP, and ultimately
affect the final mechanical properties55,56. As a result, there is a critical
demand for collecting reliable and consistent datasets involving “process”,
“structure”, and “property” and carefully conducting uncertainty quantifi-
cation on data-driven PSP. Both uncertainties from datasets and prediction
variances from data-driven models should be assessed. This can system-
atically reveal the impacts of uncertain factors, e.g., laser power and thermal
conductivity, on the outputs of interest, e.g., molten pool size and UTS.
Accordingly, the understanding of PSP will be further improved, resolving
conflicting experimental observations and improving the prediction accu-
racy of both the physics-based and data-driven models. More importantly,
valuable guidance can be provided to experiments and machine develop-
ment to better ensure quality consistency. For example, some significant
factors, like laser diameter, should bemore carefully calibrated and precisely
controlled if possible for each printing job, while the efforts and investment
on insignificant factors can be reduced.

data
process structure

data
property

inverse design

interpretation
&

uncertainty 
quantification

standardization

augmentation

interpretation
&

uncertainty 
quantification

Fig. 3 | Future outlook for advancing data-driven PSP, including complete linkage of
“process”, “structure”, and “property” with interpretation and uncertainty quanti-
fication, data standardization and augmentation, and inverse design applications.
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Active learning is another data-driven technique that can be leveraged
effectively for linking PSP. In supervised learning, active learning reduces
the need for a large number of labeled data pairs of inputs and outputs by
selectively querying for labels on specific data pairs4. This selective inquiry
enhances training efficiency and performance. For example, in investigating
the relationship between process parameters, e.g., laser power and scan
speed, and defect modes within the molten pool, e.g., keyhole porosity and
lack of fusion, active learning can identify critical data points (only a portion
of the whole dataset) that require labeling for defect modes during the
training stage. This active learning-assisted procedure reduces the demand
for a large labeled dataset in metal AM.

In addition, with superior capabilities in information comprehension,
particularlybymeansof the advanced self-attentionmechanismandparallel
processing capabilities for efficient identification of internal relationships,
large languagemodels (LLMs) hold significant potential in establishing PSP
for AM. Moreover, the interactive capabilities of LLMs through text-based
or voice-based57 prompts facilitate the seamless integration of the entire
workflow—from design through manufacturing to performance
evaluation58. This capability would significantly improve the efficiency and
decision-making processes in AM. Furthermore, with the active LLM
community, fine-tuning open-source models such as LLaMa-13B59 sig-
nificantly reduces the effort required to customize more specializedmodels
for specific AM tasks. These customized models are expected to surpass
conventional LLMs, which are often inclined to simple analyses on the
problems at hand rather than sophisticated investigations58. Such over-
simplification, for example in evaluating mechanical properties of as-built
engineering structures, could potentially raise issues related to structure
integrity.

Deficiency and reliability of training data
Data-driven modeling of PSP demands ample and reliable training data.
However, the harsh conditions and complex physical mechanisms during
AMprocesses collectively lead to the difficulty in obtaining comprehensive,
reliable, and accurate data from experiments and simulations. Firstly,
extreme conditions, e.g., high temperature and rapid solidification, highly
affect the accuracy and reliability of data collection in experiments. In
addition, conducting high-fidelity simulations ofAMprocesses is extremely
computationally demanding, necessitating substantial computational
resources and storage. This is attributed to the integration of various
complex physical mechanisms, including powder dynamics, laser ray
reflection, heat transfer, and fluid flow, etc. The computational expense and
the effectiveness of theoretical models for these physical mechanisms
impede the acquisition of available data in the simulations.Moreover, due to
machine calibration and other environmental factors, even adopting exactly
the same process parameters but on different machines yields different
experimental results60. This inconsistency also applies to simulations as
different physics-based models have different simplifications with various
implementation details60, which further highlights the significance of
uncertainty quantification55 mentioned in the section “Complete integra-
tion of PSP in data-driven modeling”. Under such lack of available and
reliable data derived from experiments and high-fidelity simulations, it is
hard to compare the trustworthiness and utility of different data-driven
models, hindering the selection of the most suitable one for linking PSP, as
the scarcity of reliable data significantly undermines the model ability to
capture the complexity of underlying PSP.

One effective approach to address the challenge of limited and unre-
liable data is through data sharing and standardization practices. By fos-
tering a collaborative environment where researchers openly share their
experimental results and simulation outcomes, the collective dataset grows
more comprehensive, spanning sufficient variability in parameter space for
metal AM. Furthermore, implementing standardized formats for data
representation ensures compatibility, facilitating seamless integration of
data acquired from different sources. This concerted effort in data sharing
and standardization not only enhances the reliability of data-drivenmodels
but also promotes a more robust understanding of PSP across the scientific

community. Developing more precise measurements, proposing more
accurate and efficient theoretical models, and establishing an engaged
community committed to data sharing and standardization are the fun-
damental steps to push forward the understanding of PSP to the next stage,
and, in turn, optimizing the performance and reliability of AM techniques.
Moreover, collectingFAIR (findable, accessible, interoperable, and reusable)
data61,62 and establishing ontology-based knowledge map63–65 play a sig-
nificant role in this endeavor. By structuring and integrating FAIR data
within a formalized ontology, it becomes feasible to systematically map the
interconnected relationships between process parameters, microstructure
evolution, and resultant mechanical properties. This not only facilitates
effective data sharing and standardization but also enhances automateddata
retrieval and reasoning64, further improving the accuracy and robustness of
data-driven PSP models. Interested readers are referred to the Additive
Manufacturing Materials Database (AMMD66) at National Institute of
Standards andTechnology, which is one such initiative aimed at providing a
centralized data repository for the AM community.

Interpretation of data-driven-based PSP
While various neural networks have been developed to effectively investi-
gate PSP, the “black-box” nature of neural networks, characterized by the
lack of transparency in the mapping from input to output, largely hinders
the interpretation and trustworthiness of the newly discovered PSP. To
address this challenge, various strategies can be employed. Firstly, the
implementation of feature attribution techniques offers a solution by
identifying the specific input features that wield the largest influence on the
corresponding output. This approach provides a clearer understanding of
the influential factors, hence facilitating the understanding of PSP with
enhanced interpretability. Secondly, the development of physics-informed
neural networks (PINNs), via the integration of fundamental physical
principles into neural networks, emerges as a promising direction26,36. This
not only improves the interpretability of theneural networks but alsohas the
potential to boost the accuracy by aligning the learned relationships more
closely with the governing physical principles. Further, with the ability to
incorporateunderlyingphysical principles (or governing equations) into the
learning process, PINNs reduce the need for a large amount of training data,
which, to some extent, could ease the challenge of limited and unreliable
training data discussed in the section “Deficiency and reliability of training
data”. Nevertheless, due to the iterative nature of gradient descent and the
computation of higher-order derivatives, especially when involving com-
plex physical principles in PINNs, high computational cost and numerical
instability, e.g., vanishing or exploding gradients, may arise. Hence, addi-
tional endeavors to enhance the performance of PINNs are required.

PSP applications in inverse design
Unlocking the potential for inverse design in metal AM highly depends on
the understanding of PSP and powerful software tools. This is particularly
significant for structural design, topology optimization, and the exploration
of new material designs. Researchers can achieve desired outcomes by
untangling the complex interplay among process parameters, micro-
structure, and mechanical properties. This advanced knowledge derived
from PSP serves as a guide to achieve specific mechanical performance,
through tailoring of process parameters, fine-tuningmaterial compositions,
and designing structural and topological configurations.

Despite the seamless connection between CAD and manufacturing in
AM, challenges arise with the complex geometries generated through
structural design and topology optimization. For example, printability
issues, such as overhang and connectivity constraints, become prominent
concerns67. To address this, future studies should incorporate manu-
facturing feasibility into the optimization process, ensuring that the gen-
erated geometries not only exhibit structural efficiency but are also
conducive to successful manufacturing.

Furthermore, thepursuit ofnewmaterial designs introduces challenges
due to the extremely large search domain. Efficient machine learning
algorithms and substantial computational resources are essential to tackle
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these challenges.A recent study byGoogle68 showcased the use of large-scale
graph neural networks, achieving unprecedented efficiency in material
discovery and surpassing human chemical intuition significantly. However,
effective data-driven frameworks for material design remain notably scarce
in the current literature. Therefore, there is a need to develop efficient
machine learning algorithms that explore the design space while simulta-
neouslymaking large-scale computationsmore accessible, possibly through
cloud computingordistributed computing systems.This joint effort ensures
the optimal utilization of advanced machine learning algorithms, con-
tributing to a significant leap forward in data-driven material design.
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