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The broad integration of 3D sensors into devices like smartphones and AR/VR headsets has led to a
surge in 3D data, with point clouds becoming amainstream representationmethod. Efficient real-time
learning of point cloud data on edge devices is crucial for applications such as autonomous vehicles
and embodied AI. Traditional machine learning models on digital processors face limitations, with
software challenges like high training complexity, and hardware challenges such as large time and
energy overheads due to vonNeumann bottleneck. To address this, we propose a software-hardware
co-designed randommemristor-based dynamic graphCNN (RDGCNN). Software-wise, we transform
point cloud into graph, and propose random EdgeConv for efficient hierarchical and topological
features extraction. Hardware-wise, leveraging memristor’s intrinsic stochasticity and in-memory
computing capability, we achieve significant reductions in training complexity and energy
consumption. RDGCNN demonstrates high accuracy and efficiency across various point cloud tasks,
paving the way for future edge 3D vision.

With the widespread adoption of 3D sensors in everyday devices, such as
mixed reality headsets, automobiles, drones, and even smartphone cameras,
there has been an explosive growth in the volume of 3D data. Point clouds1

have emerged as a mainstream method for representing the shape and
geometry of 3D objects through a series of discrete points (Fig. 1a). The easy
accessibility of point cloud data has significantly expanded its applications
across a wide range of fields such as augmented and virtual reality (AR/VR),
autonomous driving, robotics, and photography. Often operating at the
edge, where computing resources and battery life are limited, these appli-
cation scenarios underscore the importance of accurately, promptly, and
efficiently learning of point cloud data.

However, conventional software-hardware pairs face significant
challenges. In terms of software, so far there are multiple methods to
learn 3D points (Fig. 1b). The first method involves voxelizing the point
cloud data. Voxelization converts the point cloud into a regular grid of
3D voxels, transforming the irregular point cloud into a structured
format that can be processed using 3D convolutional operations2,3.
However, voxelization can result in high memory consumption and
computational cost, especially with fine-grained voxel grids. The

second is to directly process point cloud data4,5 by grouping and sam-
pling within the point cloud to form a point set representation, which
allows for the extraction of point cloud features without converting
them into a different representation. While these approaches avoid the
information loss associated with voxelization, they can still be expen-
sive in training and struggle with capturing fine-grained geometric
relationships between points.

In terms of hardware, conventional processors struggle to deliver the
energy efficiency required for edge processing point cloud data (Fig. 1c).
Traditional von Neumann architectures feature physically separated pro-
cessing andmemory units. This separation leads to substantial data transfer
overheads, known as the von Neumann bottleneck6. Moreover, due to the
complexity of processing point cloud data, even high-performance GPUs
struggle tomeet the requirements for real-timeprocessing7. This challenge is
more pronounced in edge devices, where computational resources are sig-
nificantly constrained.

To address the aforementioned challenges, we have co-designed soft-
ware and hardware, random memristor-based dynamic graph CNN
(RDGCNN).
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Firstly, we transform point cloud data into graph data8,9, where points
serve as vertices of the graph (Fig. 1d). The edges are computed and
dynamically updated based on vertex features, facilitating the flow of
information among neighboring nodes. This transformation into a graph
naturally accommodates the irregular structure of point clouds, eliminating
the need for voxelization and thereby avoiding information loss. Moreover,
graph data adeptly captures the geometric structural features of the 3D
point cloud.

On the software front, we have developed a random dynamic graph
CNN to learn point clouds (Fig. 1e). Graph Neural Networks10 (GNNs)
update graph node feature representations through information propaga-
tion among nodes, capturing both local structures and global topologies
within point data. To reduce training cost, we devised a randomEdgeConv9

to create a local neighborhood graph in feature space and perform con-
volutional operations on the connections between adjacent points. Unlike
traditional GNNs, the edges in the point cloud graph dynamically update
during embedding. Additionally, the weights of EdgeConv are fixed and
random, avoiding the tedious training of conventional GNNs. Through
iterative updates of vertex and edge embeddings via randomEdgeConv, the
feature representations obtained can serve various downstream tasks
through a lightweight trainable task-dependent head.

At the hardware level, we leverage the in-memory computing cap-
ability of memristor and its intrinsic randomness to physically implement

random EdgeConv layers (Fig. 1f). As a non-volatile memory device11–19,
each memristor not only embodies the synaptic weight through analog
conductance but also computes in-situ utilizing Ohm’s law and Kirchhoff’s
current law formultiplication and accumulation (MAC)20–27. This approach
significantly reduces the energy and time expenditures associated with
traditional vonNeumann architectures28–36. Furthermore, the uncertainty in
ion migration during the electroforming process in memristor devices can
cause variations in conductance values37–39. This intrinsic randomness often
complicates the precise mapping of weights, deemed a disadvantage.
However, we turn this into an advantage by utilizing the intrinsic ran-
domness to realize truly random, large-scale and low-cost hardware random
weights.

We implemented our co-design on a 40 nm memristor macro and
validated the effectiveness of our approach on three canonical point cloud
tasks: classification, part segmentation, and semantic segmentation. On the
ModelNet4040, we achieved classification accuracy of 89.75%. On
ShapeNet41, and S3DIS42 datasets, we achieved mean Intersection over
Union43 (mIoU) of 83.67%, and 46.35%, respectively. Furthermore, the
energy consumption of our system is reduced by 54.2%, 39.5%, and 35.3%
compared to state-of-the-art (SOTA) GPUs. Moreover, the training com-
plexity is reduced by 96.4%, 53.5%, and 68.1% compared to fully trainable
baseline. Our co-design paves the way for future efficient and rapid point
cloud applications at the edge.

Fig. 1 | Randommemristor based dynamic graph CNN (RDGCNN) for efficient
point cloud learning. a Point cloud data, represented by a series of discrete points, is
widely applied in everyday life with the popularization of 3D sensors in devices like
mixed reality headset, automobiles, drones, and smartphone cameras. b Traditional
machine learning approaches for handling point clouds: Left: Method of voxelizing
point clouds and using 3D convolutional operations for processing; Right: Method
of representing point clouds as point sets and directly processing them through
neural networks. c The traditional von Neumann architecture of processors, with
separate computation and storage units, introduces significant data transfer over-
head. dWe convert the point cloud into a graph representation, where each point
serves as a vertex in the graph, and the edges are determined by the features of the

points. eOur random dynamic graph CNNmethod. Left: The network dynamically
updates the vertex features and connections, extracting hierarchical information.
Right: The random EdgeConv operation. The central vertex features and neigh-
boring vertex features are concatenated and passed through a random CNN to
obtain edge features. The updated central node features are calculated by aggregating
the edge features associated with edges emanating from all neighbouring vertices,
and new graph connections are computed based on the updated features. f Our
memristor-based Computing-In-Memory (CIM) system. Leveraging the in-
memory computing capability of memristor, it reduces data transfer overhead and
utilizes the intrinsic stochasticity to obtain a random conductance matrix for the
physical implementation of random CNN weights.
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Results
Software-hardware co-design of RDGCNN
Our RDGCNN algorithm, as shown in Fig. 1d, e, first constructs a graph
G = (V, E) for the input point cloud data. Each point in the point cloud
becomes a center vertex in the sub-graph, and edges are created to connect
each point with its n nearest neighboring points determined by the rela-
tionships of the neighbouring points. We use the K-Nearest Neighbors
(KNN) algorithm to construct the local graph structure. For each pair of
adjacent points, the edge features are defined by a non-linear function hθ
(xi, xj − xi), where xi represents the feature of the center point for cap-
turing global information, and xj − xi represents the feature difference of
theneighbor for extracting local geometric information.The functionhθ is
parameterized by a CNNwith random weights, implemented by random
analogmemristors, to obtain the edge features eij. After extracting features
for the n nearest neighbors of the center point xi, the edge features are
aggregated using a permutation-invariantmax pooling function to obtain
the updated center point feature xi

′. After completing the feature update
process, the new graph G′ = (V′, E′) is obtained by recalculating the n-

nearest neighbors based on the updated node features. This dynamic
construction of G(l) = (V(l), E(l)) is iteratively performed at each layer l,
gradually extracting higher-level features and gathering points in
semantic space. For downstream tasks, the hierarchical features are con-
catenated and passed to lightweight trainable task-dependent heads in
digital domain, enabling applications such as classification and
segmentation.

Inspired by matrix decomposition methods such as Singular Value
Decomposition44 (SVD) and low-rank decomposition45, we split a random
EdgeConv layer with a k ×k ×c filter size and d filters into two random sub-
layers (Fig. 2a). Thefirst layer hasd′filterswith a k×k× cfilter size, while the
second layer has d filters with a 1 × 1 × d′ filter size (d′ is much smaller than
d). The first layer compress n×c features to a low-rank intermediate feature
subspace of dimension n×d′. The second layer then approximates the ori-
ginal output features of dimension n×d. This splitting approach reduces the
parameter size to d0 × k× k× cþd0 × d

d × k× k × c , and the computational complexity chan-
ges fromO(dk2c) toO(d′k2c)+O(dd′). By adjusting the subspace dimension
d′, a tradeoff between parameter size and performance can be achieved.

Fig. 2 | Hardware implementation of random EdgeConv layers and intrinsic
stochasticity of memristor. a Schematic of random EdgeConv splitting to reduce
parameter count. We split one EdgeConv layer into two sub-layers. b Hardware
implementation of in-memory matrix multiplication on memristor macro. Inputs
are converted to voltages and fed into bit-lines, carrying vector-matrix multi-
plication via Ohm’s and Kirchhoff’s laws. Output currents from source lines are

accumulated frommemristor array and reference resistor output. cOptical photos of
the memristor array and cross-sectional Transmission Electron Micrograph (TEM)
of a single 1-transistor-1-memristor cell (scale bar: 200 nm and 50 nm). d Physical
origin of intrinsic stochasticity inmemristor. eConductance map ofmemristor sub-
array. f Histogram of the conductance. g Retention of memristors.
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Figure 2b schematically illustrates the in-memory matrix multi-
plication realized on a memristor macro. The random weights are realized
with the intrinsic stochasticiy provided by memristor array, where each
memristor cell is subtracted from a fixed reference resistor (with a con-
ductance of 30 µS) to obtain positive and negative weights. The inputs are
converted to voltages throughdigital-analogue convertors (DACs) and then
fed into the bit-lines. The vector-matrix multiplication is achieved based on
Ohm’s law and Kirchhoff’s law. The output currents from the memristors
and the reference resistors are accumulated and digitized (see Supplemen-
tary Fig. 1 for memristor based hybrid analog-digital computing platform).

Figure 2c shows the chip photograph and transmission electron
microscope (TEM) cross-sectional imaging of the memristor array, as well
as nanoscale TaN/TaOx/Ta/TiN memristor devices integrated with com-
plementary metal-oxide-semiconductor (CMOS) at the back-end-of-line
process, fabricated in a test chip using the 40 nm technology node (see
Supplementary Fig. 2 for memristor device characterization). The con-
ductance of the memristor is controlled by the formation of conductive
channels based on oxygen vacancies in the TaOx layer. Under the same
electrical breakdown conditions, oxygen vacancies are generated in TaOx,
which then migrate to form conductive channels and eventually transition
to a high-conductance state. The heterogeneity in the position, shape, and
vacancy concentration of the conductive channels across different devices
leads to a random conductance (i.e., write noise) distribution within the
memristor array (Fig. 2d). Figure 2e shows the conductance map of a
360 × 488 memristor sub-array. The resistance distribution follows a
Gaussian distribution with a mean value around 30.9 µS and standard

deviation around4.9 µS (Fig. 2f). Figure 2gdemonstrates the retentionof the
memristor devices over 40,000 reading cycles,where thedevice conductance
fluctuations (i.e., read noise) are relatively small compared to write noise.

3D point cloud classification
First, we validated the effectiveness of our co-design on point cloud classi-
fication tasks with ModelNet4040 dataset. ModelNet40 is a widely used
dataset for point cloud classification, consisting of 12,311 models from 40
different categories. Each model contains 1024 points, with each point
having coordinate information (x, y, z). The system is expected to assign the
entire point cloud to a specific category, such as recognizing it as a table,
chair, laptop, motorbike, etc. Each point cloud model is first transformed
into a graph with a selected number of nearest neighbors (n = 20). The
model architecture is shown in Fig. 3a, where the graph first goes through
4 splitted random EdgeConv layers to extract features. Then, the hier-
archical features are concatenated together through residual connections
and further aggregated through a fusion layer. Finally, a lightweight train-
able classification head is used for predicting the class (see Supplementary
Fig. 3 for detailednetwork structure).During themodel trainingprocess, the
splitted randomEdgeConv layers’weights stayfixed.Only theweights of the
classification head need to be updated, resulting in substantially reduced
computational complexity compared to the baseline dynamic graph CNN
(DGCNN)9 model with fully trainable EdgeConv layers.

Figure 3b illustrates the experimental input and feature evolutionof the
point cloud graph after random EdgeConv layers, as revealed by the color
variations of different nodes in a sample selected from the chair category of

Fig. 3 | Experimental point cloud classification on ModelNet40 dataset.
a Schematic of RDGCNN for point cloud classification task onModelNet40 dataset.
b Experimental input and feature evolution of a chair model from the ModelNet40
dataset. cWeight distributions of different random EdgeConv layers. d Testset
classification results and parameter count comparisons of trainable software

DGCNN baseline and our co-design. eConfusion matrix of the classification results
of our co-design onModelNet40, with dominating diagonal elements. fComparison
of training complexity between the fully trainable DGCNN, DGCNN with splitted
EdgeConv, and RDGCNNwith splitted random EdgeConv (ours). gComparison of
inference energy between GPU, NPU, and our co-design.
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ModelNet40. The color variations are calculated based on the distance to a
specific node in the feature space. The node features are accumulated from
dynamically generated graph neighboring edges, gradually extracting
higher-level information such as topological structure. Finally, the classifi-
cation head predicted the class label. Figure 3c illustrates the random
EdgeConv weights following Gaussian distributions in different layers. The
first layer does not undergo splitting, while the second to fourth layers
employ splitted random EdgeConv. The testset classification results and
parameter comparisons are shown in Fig. 3d. The baseline DGCNNmodel
with fully trainable EdgeConv layers on the GPU achieves an accuracy of
91.45%. Meanwhile, our co-design achieves a classification accuracy of
89.75%, with only 1.7% decrease. In terms of trainable parameter count, our
co-design exhibits a reduction of 92.5% compared to the trainable model
(see Supplementary Fig. 6a for detailed parameter count comparison),
making it highly favorable for edge hardware deployments with limited
computing resources. Figure 3e presents the confusion matrix of the pre-
diction results of our co-design on ModelNet40, showing dominant diag-
onal elements for most categories.

In addition to demonstrating its classification performance, we also
analyzed the training costs and energy efficiency. We compared the fully
trainable software baseline with trainable splitted EdgeConv and splitted
random EdgeConv in terms of training costs (as shown in Fig. 3f).

Compared to the software baseline, splitted EdgeConv and splitted random
EdgeConv reduced the training workload by 56.6% and 96.4%, respectively.
We also compared the inference energy reduction of our co-design relative
to the GPU (Nvidia A100) and NPU (Nvidia Jetson Nano). As is shown in
Fig. 3g, compared to theGPUandNPU, our co-design reduces the inference
energy consumption by 54.2% and 37.3%, respectively, requiring only
9.51mJ per sample (see Supplementary Table. 1 for detailed energy
breakdown).

3D point cloud part segmentation
We extended our co-design approach to the part segmentation task on the
ShapeNet41 part dataset. Compared to classification, part segmentation is a
more fine-grained task that involves segmenting different parts of objects,
commonly used in fields such as robot grasping and object modeling. For
example, given a model of an airplane, the system is expected to identify key
components such as the fuselage, wings, tail, and engines. The ShapeNet
dataset consists of 16,8813Dshapes from16object categories, annotatedwith
a total of 50 parts.As is shown inFig. 4a, the point clouddata isfirst processed
by a spatial transformation network, followed by three splitted random
EdgeConv modules for feature extraction. The hierarchical features are
concatenated through residual connections andpassed througha fusion layer
for aggregation. Subsequently, they are fed into a lightweight segmentation

Fig. 4 | Experimental point cloud part segmentation on ShapeNet dataset.
a Schematic of RDGCNN for the part segmentation task on the ShapeNet dataset.
b Experimental feature evolution of points in an airplane model from the ShapeNet
dataset. c Comparison of part segmentation results of software trainable DGCNN
baseline and our co-design. d Parameter count comparisons of trainable software

DGCNN baseline and our co-design. e Representative segmentation results of our
co-design. f Comparison of training costs between the fully trainable DGCNN,
DGCNN with splitted EdgeConv, and RDGCNN with splitted random EdgeConv
(ours). g Comparison of inference energy between GPU, NPU, and our co-design.
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head for point-wise classifications (see Supplementary Fig. 4 for detailed
network structure). Figure 4b presents the experimental results showing the
feature evolution of points in an airplane model from the ShapeNet dataset.
The color of each point represents the distance to the red point in the feature
space. It can be observed that in deeper layer feature space, even if there is a
significant distance between them in the original input space, semantically
similar structures canbe captured. For example, thewings gradually converge
to the same color in thefigure.Wemeasure the performance of segmentation
through mIoU and compare it with the trainable software baseline. Our co-
design achieved a mIoU of 83.67%, with only an 1.90% decrease (Fig. 4c). In
most categories, our co-design can achieve performance similar to that of the
software. In specific categories such as motorbike, due to the imbalance in
sample numbers between categories and the analogue computing noise, our
co-design shows amore noticeable decline compared to the software baseline
(see Supplementary Fig. 7a for accuracy metrics). Compared to the baseline,
our co-designhas a 89.8%reduction in thenumber of parameters (Fig. 4d, see
Supplementary Fig. 6b for detailed parameter count comparison). Figure 4e
visualizes randomly selectedpart segmentation results usingour co-designon
ShapeNet. Different colors represent different parts.

We also analyzed the training cost and energy efficiency for the part
segmentation task. We compared the fully trainable DGCNN software
baseline with splitted trainable EdgeConv and RDGCNN in terms of
training complexity (as shown in Fig. 4f). Compared to the fully trainable
DGCNN, splitted EdgeConv and RDGCNN reduced the training cost by
36.8% and 53.5%, respectively. We also compared the inference energy
reduction of our co-design relative to the GPU (Nvidia A100) and NPU
(Nvidia Jetson Nano). As is shown in Fig. 4g, compared to the GPU and
NPU, our co-design reduces the inference energy consumption by 39.5%
and 28.7%, respectively, requiring only 64.12 mJ per sample (see Supple-
mentary Table. 1 for detailed energy breakdown).

3D point cloud semantic segmentation
We further validated the effectiveness of our co-design on a more complex
semantic segmentation task.Unlikepart segmentation,which focusesonparts
within a single object, semantic segmentation aims to understand the scene at
a higher level by identifying and labeling entire objects. It is pivotal for
applications that require scene understanding and contextual awareness, such
as autonomous navigation and environmental mapping. We evaluated our
co-design’s efficacy on the Stanford Large-Scale 3D Indoor Spaces Dataset
(S3DIS)42 for the semantic segmentation task. This dataset consists of 3D
scanned point clouds from six indoor areas, totaling 272 rooms. Each point
belongs to one of thirteen semantic categories, such as floor, bookshelf, chair,
ceiling, beam, andclutter.Thenetworkarchitectureused for this task is similar
to the part segmentation model, with the difference being that the model’s
output is a probability distribution for the semantic object category for each
input point, rather than a category vector. As is shown in Fig. 5a, the point
cloud data undergoes feature extraction through three splitted random
EdgeConv modules, followed by aggregation of hierarchical features. The
aggregated features then enter the lightweight trainable segmentation head to
output theprobability distributionofpoint categories (see Supplementary Fig.
5 for detailed network structure).

To evaluate the performance of our co-design, we use 6-fold cross-
validation.As shown inFig. 5b, compared to the trainableDGCNNbaseline,
our co-design achieved an overall mIoU of 46.35%, with a 12.73% decrease
(see Supplementary Fig. 7b for accuracymetrics). In terms of the number of
parameters, our co-design saw a reduction of 89.8% compared to the fully
trainable baseline (Fig. 5c, see Supplementary Fig. 6c for detailed parameter
count comparison). Figure 5d visualizes the semantic segmentation results
of our co-design on S3DIS dataset, where different colors represent different
semantic regions. We also analyzed the training overhead and energy effi-
ciency on the semantic segmentation task. We compared the training costs

Fig. 5 | Experimental semantic segmentation on S3DIS dataset. a Schematic of
RDGCNN for the semantic segmentation task on S3DIS dataset. b Comparison of
semantic segmentation results of each test area in a 6-fold cross-validation between
software trainable baseline and our co-design. c, Parameter comparison of trainable
software baseline and our co-design. d, Representative semantic segmentation

results of our co-design. e, Comparison of training costs between the fully trainable
DGCNN, DGCNN with splitted EdgeConv, and RDGCNN with splitted random
EdgeConv (ours). f, Comparison of inference energy between GPU, NPU, and our
co-design.
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of a fully trainable DGCNN, a DGCNN with trainable splitted EdgeConv,
andourRDGCNN(as shown inFig. 5e).Compared to the software baseline,
DGCNN with trainable splitted EdgeConv and RDGCNN reduced the
training complexity by 46.9%and68.1% respectively.We also compared the
inference energy reductionof our co-design relative to aGPU(NvidiaA100)
and an NPU (Nvidia Jetson Nano). As is shown in Fig. 5f, compared to the
GPU and NPU, our co-design reduced inference energy consumption by
35.3% and 21.9% respectively, requiring only 53.75mJ per sample (see
Supplementary Table. 1 for detailed energy breakdown).

Noise robustness analysis on conductance fluctuation
We further demonstrate the robustness of our co-design to read noise in
memristors.Memristorprimarilyhas two types of noise:write noise due to
programming stochasticity and read noise due to fluctuation in charge
transport. In our co-design, we utilize the former as a source for random
weights to physically implement randomEdgeConv. The latter, caused by
thermal fluctuations or Random Telegraph Noise (RTN), leads to sto-
chasticity in chargemovement, resulting in slight changes in conductance
over time (Fig. 6a). Figure 6b shows the conductance fluctuations of
memristor after 10,000 reads. As the number of reads increases, the
fluctuations slightly increase, but the overall fluctuation remains around
1.5% (the amplitude is determined by the standard deviation divided by
themean).We simulated various levels of readnoise (Fig. 6c) from1.5% to
9%, andmodeled the impact of this noise on network performance across
three tasks. Figure 6d, e, f respectively show the impact of different levels of
noise onperformance in point cloud classification, part segmentation, and
semantic segmentation tasks. As the level of disturbance increases, the
performance of the network gradually decreases. In the classification task,
the model maintains a relatively good classification accuracy (over 80%)
when the disturbance amplitude is within 4.5%. In the part segmentation
task, the model is more robust to noise, still achieving an overall mIoU of
about 80% even under a 6% fluctuation amplitude. For semantic seg-
mentation, the model is more sensitive to read noise compared with
classification and part segmentation, attaining in less than 20% mIoU

when noise level exceeds 4.5% (see Supplementary Fig. 8 for more results
with smaller noise fluctuation levels).

Discussion
In this research, we introduce a novel hardware-software co-designed sys-
tem using RDGCNNandmemristor for efficient and affordable learning of
point clouddata, suited for edge applications likemixed reality, autonomous
vehicles, and embodied AI. In this work, we implemented RDGCNN on a
40 nm fully integrated memristor array, which performed point cloud
classification, part segmentation, and semantic segmentation tasks. Com-
pared to state-of-the-art digital hardware, our co-design delivers energy
consumption (training complexity) reduction of 54.2%, 39.5%, and 35.3%
(96.4%, 53.5%, and 68.1%) on these three representative tasks, while
achieving high classification accuracy and segmentation mIoU comparable
to the software. Our co-design not only reduces the energy consumption
substantially but also minimizes the training overhead, making it sig-
nificantly more efficient and economical for real-time, high-performance
edge applications. This innovative approach leverages the inherent ran-
domness ofmemristor to enhance processing capabilities and paves theway
for future edge computing in handling complex 3D datasets.

Method
Fabrication of randommemristor chips
The memristor array was fabricated using 40 nm technology and features a
1T1Rconfiguration.Eachcell is locatedbetween themetal 4andmetal 5 layers
in thebackend-of-lineprocess,with a structure comprisingabottomelectrode
(BE), a topelectrode (TE), anda transition-metaloxidedielectric layer.TheBE
via was created using photolithography and etching techniques, filled with
TaN through physical vapor deposition, and toppedwith a 10 nmTaNbuffer
layer. Subsequently, a 5 nmTa layer was deposited and then oxidized to form
an 8 nmTaOx dielectric layer. Finally, a 3 nmTa layer and a 40 nmTiN layer
were sequentially addedviaphysical vapordeposition toconstruct theTE.The
remaining interconnectionmetals were added using a standard logic process.
BE connections were shared by cells in the same row, while TE connections

Fig. 6 | Conductance noise robustness analysis on point cloud classification, part
segmentation, and semantic segmentation tasks. a Physical origin of conductance
fluctuation in memristor. b Experimental read noise of memristor over 10,000
cycles. c, Illustration of simulated conductance fluctuation of different levels.

d Classification accuracy on ModelNet40 under various conductance fluctuation
levels. e Part segmentation performance on ShapeNet under various conductance
fluctuation levels. f Semantic segmentation performance on S3DIS under various
conductance fluctuation levels.

https://doi.org/10.1038/s44335-024-00006-0 Article

npj Unconventional Computing |             (2024) 1:6 7



were shared by cells in the same column, forming a 512 × 512 crossbar array.
The 40 nm memristor chip exhibited high yield and strong endurance after
being post-annealed at 400◦C for 30minutes in a vacuum.

The hybrid analog-digital computing system
The hybrid analog-digital computing system includes a 40 nm memristor
computing-in-memory chip and a Xilinx ZYNQ system-on-chip (SoC)
mounted on a printed circuit board (PCB). This setup delivers parallel 64-
way analog voltage inputs, produced by an 8-channel digital-to-analog
converter (DAC80508, TEXAS INSTRUMENTS) with 16-bit resolution,
covering a range from 0V to 5 V. For signal collection, the convergence
current is converted to voltages using trans-impedance amplifiers
(OPA4322-Q1, TEXAS INSTRUMENTS) and readwith a 14-bit resolution
analog-to-digital converter (ADS8324, TEXAS INSTRUMENTS). The
system integrates both analog and digital conversions onboard. During
vector-matrix multiplications, a DC voltage is applied to the bit lines of the
RRAM chip via a 4-channel analog multiplexer (CD4051B, TEXAS
INSTRUMENTS) and controlled by an 8-bit shift register (SN74HC595,
TEXAS INSTRUMENTS). The result current from the source line is con-
verted to voltages and transferred to the Xilinx SoC for further processing.

Training details of classification on ModelNet40
The detailed network architecture used for the classification task is shown in
Supplementary Fig. 3. In our model, we employ four random EdgeConv
layers to capture geometric features, each supported by three splitted con-
volutional layers with dimensions of 32, 32, 64, and 128, with rank of 12.
Following the computation in each EdgeConv layer, we update the graph
using the new features to guide the next layer. For all EdgeConv layers, we set
the nearest neighbor count, k, to 20. Multi-scale features are harvested
through shortcut connections, and an additional splitted random 1D con-
volutional layer with a size of 1024 and rank of 12 is used to integrate these
features into a 512-dimensional point cloud bymerging outputs from earlier
layers. Global features of the point cloud are extracted via global max/sum
pooling and then transformed through two subsequent fully-connected
layers sized 512 and 256. The last two layers include dropout at a 50% keep
rate and feature LeakyReLUactivation andbatchnormalization.We employ
Stochastic Gradient Descent (SGD) with an initial learning rate of 0.1, gra-
dually decreasing it to 0.001 through cosine annealing. The momentum
setting for batch normalization is maintained at 0.9. Our batch size is set at
32, with the momentum at 0.9. We train the model for 250 epochs.

Training details of part segmentation on ShapeNet
The detailed network structure is depicted in Supplementary Fig. 4. Following
a spatial transformer network, three EdgeConv modules are implemented.
The first module include a splitted convolutional layer with dimension of 64
and rank of 12. The following two modules each consist of two splitted
convolutional layers with dimension of 64 and rank of 12. Information from
these layers is concatenated using a splitted random 1D convolutional layer
withs dimension of 1024 and rank of 12. The neighbour count k is set to 40.
Shortcut connections integrate outputs from all EdgeConv layers as local
feature descriptors. Subsequently, the pointwise features are processed
through three shared fully-connected layers with dimensions of 256, 256, and
128. Similar to our classification network, batch normalization, dropout, and
ReLU are incorporated throughout this configuration. We adopt the same
training setting as the classification task. We train the model for 200 epochs.

Training details of semantic segmentation on S3DIS
The network structure used for semantic segmentation is similar to classi-
fication model, as is shown in Supplementary Fig. 5. Three EdgeConv
modules are used. The first module include a splitted convolutional layer
with dimension of 64 and rank of 12. The following two modules each
consist of two splitted convolutional layerswith dimensionof 64 and rankof
12. Information from these layers is concatenated using a splitted random
1D convolutional layer with dimension of 1024 and rank of 12. The
neightbour count k is set to 20. Shortcut connections integrate outputs from

all EdgeConv layers as local feature descriptors. Subsequently, the pointwise
features are processed through a shared fully-connected layers with
dimensions of 256. Similar to our part segmentation network, batch nor-
malization, dropout, and ReLU are incorporated throughout this config-
uration. We adopt the same training setting as the classification task. We
train the model for 100 epochs for each test area.

Data availability
TheModelNet40 dataset, ShapeNet dataset, and S3DIS dataset are publicly
available. All other measured data are available from the corresponding
author upon reasonable request.

Code availability
The code used in this study is available from the corresponding author upon
reasonable request.
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