Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Conserving seagrass ecosystems to meet global biodiversity and climate goals

Abstract

Despite being relatively neglected until the early 2000s, seagrass ecosystems are now recognized as critical habitats supporting biodiversity and ecosystem services including carbon sequestration, coastal protection and food supply. In this Review, we discuss the structure and function of seagrass beds, the ways that they support biodiversity and ecosystem services, their dominant threats, and the most promising conservation and restoration opportunities. Seagrass ecosystems support biologically diverse communities, and food web integrity within these communities can reciprocally maintain healthy seagrass ecosystems. Numerous anthropogenic pressures caused persistent declines of 1% to 2% per year in global extent during the twentieth century, but a range of policies, primarily focused on reducing coastal water pollution, have attenuated or reversed losses in some regions. Uncertainty about the global and regional distributions of seagrasses and their trajectories, as well as the high costs of restoration, undermine conservation progress. An escalation in research effort is required to improve projections of seagrass responses to climate change and to identify cost-effective and scalable restoration approaches.

Key points

  • In shallow coastal waters, seagrasses form meadows that persist through clonal growth and, in some species, sporadic sexual reproduction. The configuration of the meadows reflects seagrass health, with patchy landscapes indicating biological or chemical disturbance.

  • Seagrass meadows are critical habitats for biodiversity, supporting 121 megafauna species of conservation concern and 746 reported fish species contributing over 20% of fishery landings.

  • Seagrass meadows have an estimated global extent of at least 277,000 square kilometres. Owing to several human pressures, seagrass extent has declined at an annual rate of about 1–2% over the past century. Five per cent of seagrass species are currently listed as endangered.

  • The ecosystem services provided by seagrass are valued at US $6.4 trillion annually. Awareness of this value has propelled efforts to conserve and restore seagrass to deliver climate mitigation, climate adaptation and biodiversity benefits.

  • In many locations, seagrass ecosystems are on a path to recovery owing to water quality improvement, area-based protection and restoration. Of known seagrass area, 23.9% is now included in marine protected areas, and nearly 2,000 seagrass restoration projects are reported.

  • Future research priorities include using novel technologies to complete gaps in the global inventory of seagrass ecosystems, and to control seagrass reproductive output and design cost-effective, scalable restoration techniques. Management plans should focus on delivering balanced seagrass food webs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Milestones and monetary investment.
Fig. 2: Seagrass supports biodiversity and ecosystem services.
Fig. 3: Known global seagrass extent and regional trends.

Similar content being viewed by others

References

  1. Hemminga, M. A. & Duarte, C. M. Seagrass Ecology (Cambridge Univ. Press, 2000).

  2. Short, F., Carruthers, T., Dennison, W. & Waycott, M. Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol. 350, 3–20 (2007).

    Google Scholar 

  3. United Nations Environment Programme. Out of the Blue: The Value of Seagrasses to the Environment and to People (UNEP, 2020).

  4. Hughes, A. R., Williams, S. L., Duarte, C. M., Heck, K. L. Jr & Waycott, M. Associations of concern: declining seagrasses and threatened dependent species. Front. Ecol. Environ. 7, 242–246 (2009).

    Google Scholar 

  5. Unsworth, R. K., Nordlund, L. M. & Cullen‐Unsworth, L. C. Seagrass meadows support global fisheries production. Conserv. Lett. 12, e12566 (2018).

    Google Scholar 

  6. Ruiz-Frau, A., Gelcich, S., Hendriks, I. E., Duarte, C. M. & Marba, N. Current state of seagrass ecosystem services: research and policy integration. Ocean Coast. Manag. 149, 107–115 (2017).

    Google Scholar 

  7. Duarte, C. M., Dennison, W. C., Orth, R. J. & Carruthers, T. J. The charisma of coastal ecosystems: addressing the imbalance. Estuar. Coasts 31, 233–238 (2008).

    Google Scholar 

  8. Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).

    CAS  Google Scholar 

  9. Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Google Scholar 

  10. Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5, 505–509 (2012).

    CAS  Google Scholar 

  11. Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).

    CAS  Google Scholar 

  12. Gattuso, J. P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 410554 (2018).

    Google Scholar 

  13. The Habitats Directive. European Union https://environment.ec.europa.eu/topics/nature-and-biodiversity/habitats-directive_en (1992).

  14. Water Framework Directive. European Union https://environment.ec.europa.eu/topics/water/water-framework-directive_en (2000).

  15. The Marine Strategy Framework Directive. European Union https://research-and-innovation.ec.europa.eu/research-area/environment/oceans-and-seas/eu-marine-strategy-framework-directive_en (2008).

  16. The OSPAR Agreement. OSPAR Commission https://www.ospar.org/convention/agreements (2018).

  17. The Posidonia Decree. Parliament of the Balearic Islands https://atlasposidonia.com/en/conservation-in-the-balearic-islands/ (2018).

  18. Fortes, M. D. Seagrass ecosystem conservation in Southeast Asia needs to link science to policy and practice. Ocean. Coast. Manag. 159, 51–56 (2018).

    Google Scholar 

  19. Fu, C., Steckbauer, A., Mann, H. & Duarte, C. M. Achieving the Kunming–Montreal global biodiversity targets for blue carbon ecosystems. Nat. Rev. Earth Environ. 5, 538–552 (2024).

    Google Scholar 

  20. Orth, R. J. & Heck, K. L. Jr. The dynamics of seagrass ecosystems: history, past accomplishments, and future prospects. Estuar. Coasts 46, 1653–1676 (2023).

    Google Scholar 

  21. Nordlund, L. M. et al. One hundred priority questions for advancing seagrass conservation in Europe. Plants People Planet 6, 587–603 (2024).

    Google Scholar 

  22. Duarte, C. M. Seagrass depth limits. Aquat. Bot. 40, 363–377 (1991).

    Google Scholar 

  23. Marbà, N., Jordà, G., Bennett, S. & Duarte, C. M. Seagrass thermal limits and vulnerability to future warming. Front. Mar. Sci. 9, 860826 (2022).

    Google Scholar 

  24. Plaisted, H. K. et al. Influence of rising water temperature on the temperate seagrass species eelgrass (Zostera marina L.) in the northeast USA. Front. Mar. Sci. 9, 920699 (2022).

    Google Scholar 

  25. York, P. H. et al. Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: investigating the interactive effects of light and temperature. PLoS ONE 8, e76377 (2013).

    CAS  Google Scholar 

  26. Touchette, B. W. Seagrass–salinity interactions: physiological mechanisms used by submersed marine angiosperms for a life at sea. J. Exp. Mar. Biol. Ecol. 350, 194–215 (2007).

    Google Scholar 

  27. Dennison, W. C. et al. Assessing water quality with submersed aquatic vegetation: habitat requirements as barometers of Chesapeake Bay health. BioScience 43, 86–94 (1993).

    Google Scholar 

  28. Jahnke, M. et al. Should we sync? Seascape‐level genetic and ecological factors determine seagrass flowering patterns. J. Ecol. 103, 1464–1474 (2015).

    CAS  Google Scholar 

  29. Diaz-Almela, E., Marbà, N. & Duarte, C. M. Consequences of Mediterranean warming events in seagrass (Posidonia oceanica) flowering records. Glob. Chang. Biol. 13, 224–235 (2007).

    Google Scholar 

  30. Marbà, N. & Duarte, C. M. Rhizome elongation and seagrass clonal growth. Mar. Ecol. Prog. Ser. 174, 269–280 (1998).

    Google Scholar 

  31. Sintes, T., Marbà, N. & Duarte, C. M. Modeling nonlinear seagrass clonal growth: assessing the efficiency of space occupation across the seagrass flora. Estuar. Coasts 29, 72–80 (2006).

    Google Scholar 

  32. Sintes, T., Marbà, N., Duarte, C. M. & Kendrick, G. A. Nonlinear processes in seagrass colonisation explained by simple clonal growth rules. Oikos 108, 165–175 (2005).

    Google Scholar 

  33. Weatherall, E. J., Jackson, E. L., Hendry, R. A. & Campbell, M. L. Quantifying the dispersal potential of seagrass vegetative fragments: a comparison of multiple subtropical species. Estuar. Coast. Shelf Sci. 169, 207–215 (2016).

    Google Scholar 

  34. Lai, S. et al. An agent-based model approach to assessing the role of vegetative fragments in seagrass connectivity. Ecol. Model. 487, 110528 (2024).

    Google Scholar 

  35. Arnaud-Haond, S. et al. Implications of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrass Posidonia oceanica. PLoS ONE 7, e30454 (2012).

    CAS  Google Scholar 

  36. Marbà, N., Hemminga, M. A. & Duarte, C. M. Resource translocation within seagrass clones: allometric scaling to plant size and productivity. Oecologia 150, 362–372 (2006).

    Google Scholar 

  37. Roiloa, S. R., Xue, W., Dong, B. C. & Yu, F. H. Ecological implications of plant clonality. Flora 309, 152420 (2023).

    Google Scholar 

  38. Marbà, N., Cebrián, J., Enríquez, S. & Duarte, C. M. Migration of large-scale subaqueous bedforms measured with seagrasses (Cymodocea nodosa) as tracers. Limnol. Oceanogr. 39, 126–133 (1994).

    Google Scholar 

  39. Ruiz-Reynes, D. et al. Fairy-circle landscapes under the sea. Sci. Adv. 3, e1603262 (2017).

    Google Scholar 

  40. Rozenfeld, A. F. et al. Spectrum of genetic diversity and networks of clonal organisms. J. R. Soc. Interf. 4, 1093–1102 (2007).

    Google Scholar 

  41. Arnaud-Haond, S. et al. Disentangling the influence of mutation and migration in clonal seagrasses using the genetic diversity spectrum for microsatellites. J. Heredity 105, 532–541 (2014).

    Google Scholar 

  42. Barrett, S. C. Influences of clonality on plant sexual reproduction. Proc. Natl Acad. Sci. USA 112, 8859–8866 (2015).

    CAS  Google Scholar 

  43. Vallejo-Marín, M., Dorken, M. E. & Barrett, S. C. The ecological and evolutionary consequences of clonality for plant mating. Annu. Rev. Ecol. Evol. Syst. 41, 193–213 (2010).

    Google Scholar 

  44. Kendrick, G. A. et al. The central role of dispersal in the maintenance and persistence of seagrass populations. Bioscience 62, 56–65 (2012).

    Google Scholar 

  45. Clay, K. & Kover, P. X. The Red Queen hypothesis and plant/pathogen interactions. Annu. Rev. Phytopathol. 34, 29–50 (1996).

    CAS  Google Scholar 

  46. Duffy, J. E. Biodiversity and the functioning of seagrass ecosystems. Mar. Ecol. Prog. Ser. 311, 233–250 (2006).

    Google Scholar 

  47. Boström, C., Pittman, S. J., Simenstad, C. & Kneib, R. T. Seascape ecology of coastal biogenic habitats: advances, gaps, and challenges. Mar. Ecol. Prog. Ser. 427, 191–217 (2011).

    Google Scholar 

  48. Bell, S. S., Fonseca, M. S. & Stafford, N. B. in Seagrasses: Biology, Ecology and Conservation (eds Larkum, A. W. D. et al.) 625–645 (Springer, 2007).

  49. Borum, J. et al. Eelgrass fairy rings: sulfide as inhibiting agent. Mar. Biol. 161, 351–358 (2014).

    CAS  Google Scholar 

  50. Ruiz-Reynés, D. et al. Self-organized sulfide-driven traveling pulses shape seagrass meadows. Proc. Natl Acad. Sci. USA 120, e2216024120 (2023).

    Google Scholar 

  51. Scott, A. L., York, P. H. & Rasheed, M. A. Herbivory has a major influence on structure and condition of a Great Barrier Reef subtropical seagrass meadow. Estuar. Coasts 44, 506–521 (2021).

    Google Scholar 

  52. Christianen, M. J. et al. Seagrass ecosystem multifunctionality under the rise of a flagship marine megaherbivore. Glob. Change Biol. 29, 215–230 (2023).

    CAS  Google Scholar 

  53. Samper-Villarreal, J., Moya-Ramírez, J. & Cortés, J. Megaherbivore exclusion led to more complex seagrass canopies and increased biomass and sediment Corg pools in a tropical meadow. Front. Mar. Sci. 9, 945783 (2022).

    Google Scholar 

  54. Campbell, J. E. et al. Herbivore effects increase with latitude across the extent of a foundational seagrass. Nat. Ecol. Evol. 8, 663–675 (2024).

    Google Scholar 

  55. Gangal, M. et al. Sequential overgrazing by green turtles causes archipelago-wide functional extinctions of seagrass meadows. Biol. Conserv. 260, 109195 (2021).

    Google Scholar 

  56. van der Heide, T. et al. Ecosystem engineering by seagrasses interacts with grazing to shape an intertidal landscape. PLoS ONE 7, e42060 (2012).

    Google Scholar 

  57. Gutiérrez, J. L. et al. in Functioning of Estuaries and Coastal Ecosystems Vol. 7 Treatise on Estuarine and Coastal Science Series (eds Heip, C. H. R. et al.) Ch. 5, 53–81 (Elsevier, 2011).

  58. Unsworth, R. K., Cullen-Unsworth, L. C., Jones, B. L. & Lilley, R. J. The planetary role of seagrass conservation. Science 377, 609–613 (2022).

    CAS  Google Scholar 

  59. Alsaffar, Z. et al. The role of seagrass vegetation and local environmental conditions in shaping benthic bacterial and macroinvertebrate communities in a tropical coastal lagoon. Sci. Rep. 10, 13550 (2020).

    CAS  Google Scholar 

  60. McHenry, J. et al. Modelling the biodiversity enhancement value of seagrass beds. Divers. Distrib. 27, 2036–2049 (2021).

    Google Scholar 

  61. Barnes, R. S. K. Biodiversity differentials between seagrass and adjacent bare sediment change along an estuarine gradient. Estuar. Coast. Shelf Sci. 274, 107951 (2022).

    Google Scholar 

  62. Sievers, M. et al. The role of vegetated coastal wetlands for marine megafauna conservation. Trends Ecol. Evol. 34, 807–817 (2019).

    Google Scholar 

  63. Tarquinio, F., Hyndes, G. A., Laverock, B., Koenders, A. & Säwström, C. The seagrass holobiont: understanding seagrass–bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiol. Lett. 366, fnz057 (2019).

    CAS  Google Scholar 

  64. Borowitzka, M. A., Lavery, P. S. & Keulen, M. in Seagrasses: Biology, Ecology and Conservation (eds Larkum, A. W. D. et al.) 441–461 (Springer, 2007).

  65. Thomsen, M. S. et al. Secondary foundation species enhance biodiversity. Nat. Ecol. Evol. 2, 634–639 (2018).

    Google Scholar 

  66. Boström, C., Jackson, E. L. & Simenstad, C. A. Seagrass landscapes and their effects on associated fauna: a review. Estuar. Coast. Shelf Sci. 68, 383–403 (2006).

    Google Scholar 

  67. Jones, B. L., Nordlund, L. M., Unsworth, R. K., Jiddawi, N. S. & Eklöf, J. S. Seagrass structural traits drive fish assemblages in small-scale fisheries. Front. Mar. Sci. 8, 640528 (2021).

    Google Scholar 

  68. Yarnall, A. H., Byers, J. E., Yeager, L. A. & Fodrie, F. J. Comparing edge and fragmentation effects within seagrass communities: a meta‐analysis. Ecology 103, e3603 (2022).

    Google Scholar 

  69. Boström, C., O’Brien, K., Roos, C. & Ekebom, J. Environmental variables explaining structural and functional diversity of seagrass macrofauna in an archipelago landscape. J. Exp. Mar. Biol. Ecol. 335, 52–73 (2006).

    Google Scholar 

  70. Ren, L., Jensen, K., Porada, P. & Mueller, P. Biota‐mediated carbon cycling — a synthesis of biotic‐interaction controls on blue carbon. Ecol. Lett. 25, 521–540 (2022).

    Google Scholar 

  71. Maxwell, P. S. et al. The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems — a review. Biol. Rev. 92, 1521–1538 (2017).

    Google Scholar 

  72. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  Google Scholar 

  73. de Fouw, J. et al. Drought, mutualism breakdown, and landscape-scale degradation of seagrass beds. Curr. Biol. 26, 1051–1056 (2016).

    Google Scholar 

  74. Atwood, T. B. et al. Predators help protect carbon stocks in blue carbon ecosystems. Nat. Clim. Change 5, 1038–1045 (2015).

    Google Scholar 

  75. do Amaral Camara Lima, M., Bergamo, T. F., Ward, R. D. & Joyce, C. B. A review of seagrass ecosystem services: providing nature-based solutions for a changing world. Hydrobiologia 850, 2655–2670 (2023).

    Google Scholar 

  76. Nordlund, L. M., Unsworth, R. K., Gullström, M. & Cullen‐Unsworth, L. C. Global significance of seagrass fishery activity. Fish Fish. 19, 399–412 (2018).

    Google Scholar 

  77. Cullen-Unsworth, L. C. et al. Seagrass meadows globally as a coupled social–ecological system: Implications for human wellbeing. Mar. Pollut. Bull. 83, 387–397 (2014).

    CAS  Google Scholar 

  78. Mtwana Nordlund, L., Koch, E. W., Barbier, E. B. & Creed, J. C. Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE 11, e0163091 (2016).

    Google Scholar 

  79. Burckhalter, D. Eelgrass: a traditional Comcaac (Seri) seafood and a revolutionary source of grain. J. Southwest. 63, 369–384 (2021).

    Google Scholar 

  80. Kim, D. H. et al. Nutritional and bioactive potential of seagrasses: a review. South Afr. J. Botany 137, 216–227 (2021).

    CAS  Google Scholar 

  81. Manfra, L. et al. Towards sustainable management of beach-cast seagrass in Mediterranean coastal areas. Sustainability 16, 756 (2024).

    Google Scholar 

  82. Grimm, K. E., Archibald, J. L., Bonilla-Anariba, S. E., Bood, N. & Canty, S. W. Framework for fostering just and equitable seagrass policy, management, and social-ecological outcomes: lessons learned from Belizean marine resource managers. Mar. Policy 152, 105606 (2023).

    Google Scholar 

  83. Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2, 826–839 (2021).

    CAS  Google Scholar 

  84. de Smit, J. C. et al. Habitat-forming species trap microplastics into coastal sediment sinks. Sci. Total. Environ. 772, 145520 (2021).

    Google Scholar 

  85. Sanchez-Vidal, A., Canals, M., De Haan, W. P., Romero, J. & Veny, M. Seagrasses provide a novel ecosystem service by trapping marine plastics. Sci. Rep. 11, 254 (2021).

    CAS  Google Scholar 

  86. Gacia, E. & Duarte, C. M. Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuar. Coast. Shelf Sci. 52, 505–514 (2001).

    Google Scholar 

  87. de Mendoza, F. P. et al. Sediment dynamics and resuspension processes in a shallow-water Posidonia oceanica meadow. Mar. Geol. 404, 174–186 (2018).

    Google Scholar 

  88. Forrester, J., Leonardi, N., Cooper, J. R. & Kumar, P. Seagrass as a nature-based solution for coastal protection. Ecol. Eng. 206, 107316 (2024).

    Google Scholar 

  89. James, R. K. et al. Tropical biogeomorphic seagrass landscapes for coastal protection: persistence and wave attenuation during major storms events. Ecosystems 24, 301–318 (2021).

    Google Scholar 

  90. Christianen, M. J. et al. Low-canopy seagrass beds still provide important coastal protection services. PLoS ONE 8, e62413 (2013).

    CAS  Google Scholar 

  91. James, R. K. et al. Maintaining tropical beaches with seagrass and algae: a promising alternative to engineering solutions. BioScience 69, 136–142 (2019).

    Google Scholar 

  92. Krause-Jensen, D., Serrano, O., Apostolaki, E. T., Gregory, D. J. & Duarte, C. M. Seagrass sedimentary deposits as security vaults and time capsules of the human past. Ambio 48, 325–335 (2019).

    Google Scholar 

  93. Costanza, R. et al. Turner changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Google Scholar 

  94. Macreadie, P. I. et al. Operationalizing marketable blue carbon. One Earth 5, 485–492 (2022).

    Google Scholar 

  95. McKenzie, L. J. et al. The global distribution of seagrass meadows. Environ. Res. Lett. 15, 074041 (2020).

    Google Scholar 

  96. Dunic, J. C., Brown, C. J., Connolly, R. M., Turschwell, M. P. & Côté, I. M. Long‐term declines and recovery of meadow area across the world’s seagrass bioregions. Glob. Change Biol. 27, 4096–4109 (2021).

    CAS  Google Scholar 

  97. Orth, R. J. et al. A global crisis for seagrass ecosystems. BioScience 56, 987–996 (2006).

    Google Scholar 

  98. Turschwell, M. P. et al. Anthropogenic pressures and life history predict trajectories of seagrass meadow extent at a global scale. Proc. Natl Acad. Sci. USA 118, e2110802118 (2021).

    CAS  Google Scholar 

  99. Gallagher, A. J. et al. Tiger sharks support the characterization of the world’s largest seagrass ecosystem. Nat. Commun. 13, 6328 (2022).

    CAS  Google Scholar 

  100. UNESCO Marine World Heritage: custodians of the globe’s blue carbon assets. UNESCO https://whc.unesco.org/en/blue-carbon-report/ (2020).

  101. Gouvêa, L., Fragkopoulou, E. B., Araújo, M., Serrão, E. A. & Assis, J. Seagrass biodiversity under the latest‐generation scenarios of projected climate change. J. Biogeogr. 52, 172–185 (2024).

    Google Scholar 

  102. Ralph, P. J., Durako, M. J., Enriquez, S., Collier, C. J. & Doblin, M. A. Impact of light limitation on seagrasses. J. Exp. Mar. Biol. Ecol. 350, 176–193 (2007).

    Google Scholar 

  103. de Los Santos, C. B. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 3356 (2019).

    Google Scholar 

  104. Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding — a global assessment. PLoS ONE 10, e0118571 (2015).

    Google Scholar 

  105. Fourqurean, J. W. & Robblee, M. B. Florida Bay: a history of recent ecological changes. Estuaries 22, 345–357 (1999).

    CAS  Google Scholar 

  106. Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338–344 (2018).

    CAS  Google Scholar 

  107. Grech, A. et al. A comparison of threats, vulnerabilities and management approaches in global seagrass bioregions. Environ. Res. Lett. 7, 024006 (2012).

    Google Scholar 

  108. McArthur, L. C. & Boland, J. W. The economic contribution of seagrass to secondary production in South Australia. Ecol. Model. 196, 163–172 (2006).

    Google Scholar 

  109. Zhang, Y. et al. A review of seagrass bed pollution. Water 15, 3754 (2023).

    CAS  Google Scholar 

  110. Fredley, J., Durako, M. J. & Hall, M. O. Multivariate analyses link macrophyte and water quality indicators to seagrass die-off in Florida Bay. Ecol. Indic. 101, 692–701 (2019).

    CAS  Google Scholar 

  111. Walker, D. I. & McComb, A. J. Seagrass degradation in Australian coastal waters. Mar. Pollut. Bull. 25, 191–195 (1992).

    Google Scholar 

  112. González-Correa, J. M. et al. Recovery of deep Posidonia oceanica meadows degraded by trawling. J. Exp. Mar. Biol. Ecol. 320, 65–76 (2005).

    Google Scholar 

  113. Herrera, M. et al. Trade-offs and synergies between seagrass ecosystems and fishing activities: a global literature review. Front. Mar. Sci. 9, 781713 (2022).

    Google Scholar 

  114. Fanoro, T. F. R., Scarlet, M. P. & Bandeira, S. O. Intertidal gleaning exclusion as a trigger for seagrass species and fauna recovery and passive seagrass rehabilitation. Diversity 15, 772 (2023).

    Google Scholar 

  115. Okudan, E. S., Demir, V., Kalkan, E. & Karhan, S. Ü. Anchoring damage on seagrass meadows (Posidonia oceanica (L.) Delile) in Fethiye–Göcek specially protected area (eastern Mediterranean Sea, Turkey). J. Coast. Res. 61, 417–420 (2011).

    Google Scholar 

  116. Dunton, K. H. & Schonberg, S. V. Assessment of propeller scarring in seagrass beds of the south Texas coast. J. Coast. Res. Spec. Iss. 37, Fall, 100–110 (2002).

  117. Unsworth, R. K., Williams, B., Jones, B. L. & Cullen-Unsworth, L. C. Rocking the boat: damage to eelgrass by swinging boat moorings. Front. Plant. Sci. 8, 1309 (2017).

    Google Scholar 

  118. Short, F. T. & Neckles, H. A. The effects of global climate change on seagrasses. Aquat. Botany 63, 169–196 (1999).

    Google Scholar 

  119. Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Change Biol. 16, 2366–2375 (2010).

    Google Scholar 

  120. Collier, C. J. & Waycott, M. Temperature extremes reduce seagrass growth and induce mortality. Mar. Pollut. Bull. 83, 483–490 (2014).

    CAS  Google Scholar 

  121. Jung, C. & Lackmann, G. M. Changes in tropical cyclones undergoing extratropical transition in a warming climate: quasi‐idealized numerical experiments of North Atlantic landfalling events. Geophys. Res. Lett. 50, e2022GL101963 (2023).

    Google Scholar 

  122. Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Google Scholar 

  123. Chefaoui, R. M., Duarte, C. M. & Serrão, E. A. Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Glob. Change Biol. 24, 4919–4928 (2018).

    Google Scholar 

  124. Daru, B. H. & Rock, B. M. Reorganization of seagrass communities in a changing climate. Nat. Plants 9, 1034–1043 (2023).

    Google Scholar 

  125. Xu, S. et al. Warming northward shifting southern limits of the iconic temperate seagrass (Zostera marina). iScience 25, 104755 (2022).

    CAS  Google Scholar 

  126. Bartenfelder, A., Kenworthy, W. J., Puckett, B., Deaton, C. & Jarvis, J. C. The abundance and persistence of temperate and tropical seagrasses at their edge-of-range in the Western Atlantic Ocean. Front. Mar. Sci. 9, 917237 (2022).

    Google Scholar 

  127. Jordà, G., Marbà, N. & Duarte, C. M. Mediterranean seagrass vulnerable to regional climate warming. Nat. Clim. Change 2, 821–824 (2012).

    Google Scholar 

  128. Hyndes, G. A. et al. Accelerating tropicalization and the transformation of temperate seagrass meadows. Bioscience 66, 938–948 (2017).

    Google Scholar 

  129. Santana-Garcon, J. et al. Tropicalization shifts herbivore pressure from seagrass to rocky reef communities. Proc. R. Soc. B 290, 20221744 (2023).

    Google Scholar 

  130. Bennett, S. et al. Climate‐driven impacts of exotic species on marine ecosystems. Glob. Ecol. Biogeogr. 30, 1043–1055 (2021).

    Google Scholar 

  131. Wesselmann, M., Chefaoui, R. M., Marbà, N., Serrao, E. A. & Duarte, C. M. Warming threatens to propel the expansion of the exotic seagrass Halophila stipulacea. Front. Mar. Sci. 8, 759676 (2021).

    Google Scholar 

  132. Short, F. T. et al. Extinction risk assessment of the world’s seagrass species. Biol. Conserv. 144, 1961–1971 (2011).

    Google Scholar 

  133. Cullen-Unsworth, L. C. & Unsworth, R. K. Strategies to enhance the resilience of the world’s seagrass meadows. J. Appl. Ecol. 53, 967–972 (2016).

    Google Scholar 

  134. Unsworth, R. K., Collier, C. J., Waycott, M., Mckenzie, L. J. & Cullen-Unsworth, L. C. A framework for the resilience of seagrass ecosystems. Mar. Pollut. Bull. 100, 34–46 (2015).

    CAS  Google Scholar 

  135. Luff, A. L., Sheehan, E. V., Parry, M. & Higgs, N. D. A simple mooring modification reduces impacts on seagrass meadows. Sci. Rep. 9, 20062 (2019).

    CAS  Google Scholar 

  136. Russell, M. & Greening, H. Estimating benefits in a recovering estuary: Tampa Bay, Florida. Estuar. Coasts 38, 9–18 (2015).

    CAS  Google Scholar 

  137. Nelson, R. H. How to save the Chesapeake Bay TMDL: the critical role of nutrient offsets. William Mary Environ. Law Policy Rev. 38, 319 (2014).

    Google Scholar 

  138. Lefcheck, J. S. et al. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proc. Natl Acad. Sci. USA 115, 3658–3662 (2018).

    Google Scholar 

  139. Krause-Jensen, D., Duarte, C. M., Sand-Jensen, K. & Carstensen, J. Century-long records reveal shifting challenges to seagrass recovery. Glob. Change Biol. 27, 563–575 (2020).

    Google Scholar 

  140. Daru, B. H. & le Roux, P. C. Marine protected areas are insufficient to conserve global marine plant diversity. Glob. Ecol. Biogeogr. 25, 324–334 (2016).

    Google Scholar 

  141. Christiansen, M. J. A. et al. Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proc. R. Soc. B 281, 20132890 (2014).

    Google Scholar 

  142. Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    CAS  Google Scholar 

  143. Orth, R. J. et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci. Adv. 6, eabc6434 (2020).

    CAS  Google Scholar 

  144. Unsworth, R. K. F. et al. Bottlenecks to seed-based seagrass restoration reveal opportunities for improvement. Glob. Ecol. Conserv. 48, e02736 (2023).

    Google Scholar 

  145. van Katwijk, M. M., van Tussenbroek, B. I., Hanssen, S. V., Hendriks, A. J. & Hanssen, L. Rewilding the sea with domesticated seagrass. BioScience 71, 1171–1178 (2021).

    Google Scholar 

  146. van Katwijk, M. M. et al. Global analysis of seagrass restoration: the importance of large‐scale planting. J. Appl. Ecol. 53, 567–578 (2015).

    Google Scholar 

  147. Unsworth, R. K. F. et al. Ten golden rules for restoration to secure resilient and just seagrass social-ecological systems. Plants People Planet 7, 33–48 (2025).

    Google Scholar 

  148. Boudouresque, C.-F., Blanfuné, A., Pergent, G. & Thibaut, T. Restoration of seagrass meadows in the Mediterranean Sea: a critical review of effectiveness and ethical issues. Water 13, 1034 (2021).

    Google Scholar 

  149. Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).

    Google Scholar 

  150. Unsworth, R. K. et al. Global challenges for seagrass conservation. Ambio 48, 801–815 (2019).

    Google Scholar 

  151. Saunders, M. I. et al. Coastal retreat and improved water quality mitigate losses of seagrass from sea level rise. Glob. Change Biol. 19, 2569–2583 (2013).

    Google Scholar 

  152. Bertelli, C. M., Stokes, H. J., Bull, J. C. & Unsworth, R. K. The use of habitat suitability modelling for seagrass: a review. Front. Mar. Sci. 9, 997831 (2022).

    Google Scholar 

  153. Nuyts, S., de Paula Costa, M. D., Macreadie, P. I. & Trevathan-Tackett, S. M. A decision support tool to help identify blue carbon sites for restoration. J. Environ. Manag. 367, 122006 (2024).

    CAS  Google Scholar 

  154. Bennett, S., Duarte, C. M., Marbà, N. & Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Phil. Trans. R. Soc. B 374, 20180550 (2019).

    Google Scholar 

  155. Liu, M. et al. Rivers as the largest source of mercury to coastal oceans worldwide. Nat. Geosci. 14, 672–677 (2021).

    CAS  Google Scholar 

  156. McDowell, R. W., Noble, A., Pletnyakov, P., Haggard, B. E. & Mosley, L. M. Global mapping of freshwater nutrient enrichment and periphyton growth potential. Sci. Rep. 10, 3568 (2020).

    CAS  Google Scholar 

  157. Lambert, V. et al. Connecting targets for catchment sediment loads to ecological outcomes for seagrass using multiple lines of evidence. Mar. Pollut. Bull. 169, 112494 (2021).

    CAS  Google Scholar 

  158. Shayka, B. F., Hesselbarth, M. H., Schill, S. R., Currie, W. S. & Allgeier, J. E. The natural capital of seagrass beds in the Caribbean: evaluating their ecosystem services and blue carbon trade potential. Biol. Lett. 19, 20230075 (2023).

    Google Scholar 

  159. Foster, E. et al. Physical disturbance by recovering sea otter populations increases eelgrass genetic diversity. Science 374, 333–336 (2021).

    CAS  Google Scholar 

  160. Cabaço, S. & Santos, R. Seagrass reproductive effort as an ecological indicator of disturbance. Ecol. Indic. 23, 116–122 (2012).

    Google Scholar 

  161. Qin, L. Z. et al. Long-term variability in the flowering phenology and intensity of the temperate seagrass Zostera marina in response to regional sea warming. Ecol. Indic. 119, 106821 (2020).

    Google Scholar 

  162. Marbà, N. et al. Iron additions reduce sulfide intrusion and reverse seagrass (Posidonia oceanica) decline in carbonate sediments. Ecosystems 10, 745–756 (2007).

    Google Scholar 

  163. Graham, O. J. et al. Manipulation of the seagrass‐associated microbiome reduces disease severity. Environ. Microbiol. 26, e16582 (2024).

    CAS  Google Scholar 

  164. Malandrakis, E. E., Danis, T., Iona, A. & Exadactylos, A. Abiotic stress of seagrasses: recent advances in transcriptomics, genomics, and systems biology. In Systems Biology of Marine Ecosystems (eds Kumar, M. & Ralph, P.) 119–132 (Springer, 2017).

  165. de Fouw, J. et al. A facultative mutualism facilitates European seagrass meadows. Ecography 2023, e06636 (2023).

    Google Scholar 

  166. Valdez, S. R. et al. Positive ecological interactions and the success of seagrass restoration. Front. Mar. Sci. 7, 91 (2020).

    Google Scholar 

  167. Beng, K. C. & Corlett, R. T. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers. Conserv. 29, 2089–2121 (2020).

    Google Scholar 

  168. Bessell, T. J. et al. Using eDNA and SCUBA surveys for detection and monitoring of a threatened marine cryptic fish. Aquat. Conserv. Mar. Freshw. Ecosyst. 33, 431–442 (2023).

    Google Scholar 

  169. Wesselmann, M. et al. eDNA reveals the associated metazoan diversity of Mediterranean seagrass sediments. Diversity 14, 549 (2022).

    Google Scholar 

  170. Dalrymple, S. E., Winder, R. & Campbell, E. M. Exploring the potential for plant translocations to adapt to a warming world. J. Ecol. 109, 2264–2270 (2021).

    Google Scholar 

  171. DuBois, K., Pollard, K. N., Kauffman, B. J., Williams, S. L. & Stachowicz, J. J. Local adaptation in a marine foundation species: implications for resilience to future global change. Glob. Change Biol. 28, 2596–2610 (2022).

    CAS  Google Scholar 

  172. Jeffery, N. W. et al. Variation in genomic vulnerability to climate change across temperate populations of eelgrass (Zostera marina). Evolut. Appl. 17, e13671 (2024).

    CAS  Google Scholar 

  173. Ehlers, A., Worm, B. & Reusch, T. B. Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming. Mar. Ecol. Prog. Ser. 355, 1–7 (2008).

    Google Scholar 

  174. Nguyen, H. M. et al. Stress memory in seagrasses: first insight into the effects of thermal priming and the role of epigenetic modifications. Front. Plant. Sci. 11, 494 (2020).

    Google Scholar 

  175. Yan, J. et al. A healthy trophic structure underlies the resistance of pristine seagrass beds to nutrient enrichment. Limnol. Oceanogr. 65, 2748–2756 (2020).

    CAS  Google Scholar 

  176. O’Dea, C. M., Lavery, P. S., Webster, C. L. & McMahon, K. M. Increased extent of waterfowl grazing lengthens the recovery time of a colonizing seagrass (Halophila ovalis) with implications for seagrass resilience. Front. Plant Sci. 13, 947109 (2022).

    Google Scholar 

  177. Valentine, J. F. & Heck, K. L. Jr Herbivory in seagrass meadows: an evolving paradigm. Estuar. Coasts 44, 491–505 (2021).

    Google Scholar 

  178. Dixon, O. F. & Gallagher, A. J. Blue carbon ecosystems and shark behaviour: an overview of key relationships, network interactions, climate impacts, and future research needs. Front. Mar. Sci. 10, 1202972 (2023).

    Google Scholar 

  179. Salafsky, N. & Margoluis, R. A. Pathways to Success: Taking Conservation to Scale in Complex Systems (Island Press, 2021).

  180. Rossbach, S. et al. A tide of change: what we can learn from stories of marine conservation success. One Earth 6, 505–518 (2023).

    Google Scholar 

  181. Zunino, S., Canu, D. M., Zupo, V. & Solidoro, C. Direct and indirect impacts of marine acidification on the ecosystem services provided by coralligenous reefs and seagrass systems. Glob. Ecol. Conserv. 18, e00625 (2019).

    Google Scholar 

  182. Capistrant-Fossa, K. A. & Dunton, K. H. Rapid sea level rise causes loss of seagrass meadows. Commun. Earth Environ. 5, 8 (2024).

    Google Scholar 

  183. Rasmusson, L. M. et al. Effects of temperature and hypoxia on respiration, photorespiration, and photosynthesis of seagrass leaves from contrasting temperature regimes. ICES J. Mar. Sci. 77, 2056–2065 (2020).

    Google Scholar 

  184. Yue, S. et al. The super typhoon Lekima (2019) resulted in massive losses in large seagrass (Zostera japonica) meadows, soil organic carbon and nitrogen pools in the intertidal Yellow River Delta, China. Sci. Total. Environ. 793, 148398 (2021).

    CAS  Google Scholar 

  185. Marco-Méndez, C. et al. Evaluating the extent and impact of the extreme Storm Gloria on Posidonia oceanica seagrass meadows. Sci. Total. Environ. 908, 168404 (2024).

    Google Scholar 

  186. Holon, F., Boissery, P., Guilbert, A., Freschet, E. & Deter, J. The impact of 85 years of coastal development on shallow seagrass beds (Posidonia oceanica L. (Delile)) in south eastern France: a slow but steady loss without recovery. Estuar. Coast. Shelf Sci. 165, 204–212 (2015).

    Google Scholar 

  187. Mwikamba, E. M., Githaiga, M. N., Huxham, M. & Briers, R. A. Understanding the drivers of seagrass loss in Kenya: evidence for the impacts of population and fishing. Aquat. Conserv. Mar. Freshw. Ecosyst. 34, e4229 (2024).

    Google Scholar 

  188. Hernández-Delgado, E. A. Long-term persistence of propeller and anchor damage to seagrass canopy and demersal biodiversity in puerto rico. Open. J. Ecol. 13, 671–710 (2023).

    Google Scholar 

  189. Sondak, C. F. A. & Kaligis, E. Y. Assessing the seagrasses meadows status and condition: a case study of Wori Seagrass Meadows, North Sulawesi, Indonesia. Biodiversitas J. Biol. Diversity https://doi.org/10.13057/biodiv/d230451 (2022).

  190. Glasby, T. M. & West, G. Dragging the chain: quantifying continued losses of seagrasses from boat moorings. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 383–394 (2018).

    Google Scholar 

  191. Lewis, M. A. & Devereux, R. Nonnutrient anthropogenic chemicals in seagrass ecosystems: fate and effects. Environ. Toxicol. Chem. 28, 644–661 (2009).

    CAS  Google Scholar 

  192. Petus, C. et al. Estimating the exposure of coral reefs and seagrass meadows to land-sourced contaminants in river flood plumes of the Great Barrier Reef: validating a simple satellite risk framework with environmental data. Remote Sens. 8, 210 (2016).

    Google Scholar 

  193. Jephson, T., Nyström, P., Moksnes, P. O. & Baden, S. P. Trophic interactions in Zostera marina beds along the Swedish coast. Mar. Ecol. Prog. Ser. 369, 63–76 (2008).

    Google Scholar 

  194. Moksnes, P. O., Gullström, M., Tryman, K. & Baden, S. Trophic cascades in a temperate seagrass community. Oikos 117, 763–777 (2008).

    Google Scholar 

  195. Burkholder, D. A., Heithaus, M. R., Fourqurean, J. W., Wirsing, A. & Dill, L. M. Patterns of top‐down control in a seagrass ecosystem: could a roving apex predator induce a behaviour‐mediated trophic cascade? J. Anim. Ecol. 82, 1192–1202 (2013).

    Google Scholar 

  196. Peterson, B. J., Rose, C. D., Rutten, L. M. & Fourqurean, J. W. Disturbance and recovery following catastrophic grazing: studies of a successional chronosequence in a seagrass bed. Oikos 97, 361–370 (2002).

    Google Scholar 

  197. Sullivan, B. K., Trevathan-Tackett, S. M., Neuhauser, S. & Govers, L. L. Review: Host–pathogen dynamics of seagrass diseases under future global change. Mar. Pollut. Bull. 134, 75–88 (2018).

    CAS  Google Scholar 

  198. Beca-Carretero, P. et al. Climate change and the presence of invasive species will threaten the persistence of the Mediterranean seagrass community. Sci. Total. Environ. 910, 168675 (2024).

    CAS  Google Scholar 

  199. Ceccherelli, G., Pinna, S., Cusseddu, V. & Bulleri, F. The role of disturbance in promoting the spread of the invasive seaweed Caulerpa racemosa in seagrass meadows. Biol. Invas. 16, 2737–2745 (2014).

    Google Scholar 

  200. Shields, E. C., Moore, K. A. & Parrish, D. B. Adaptations by Zostera marina dominated seagrass meadows in response to water quality and climate forcing. Diversity 10, 125 (2018).

    Google Scholar 

  201. Akerlof, K. in Participatory Sensing, Opinions and Collective Awareness: Understanding Complex Systems (Loreto, V. et al.) 305–336 (Springer, 2017).

  202. Travaille, K. L., Salinas-de-León, P. & Bell, J. J. Indication of visitor trampling impacts on intertidal seagrass beds in a New Zealand marine reserve. Ocean. Coast. Manag. 114, 145–150 (2015).

    Google Scholar 

  203. Unsworth, R. K. et al. Effectiveness of moorings constructed from rope in reducing impacts to seagrass. Oceans 3, 431–438 (2022).

    Google Scholar 

  204. Milazzo, M., Badalamenti, F., Ceccherelli, G. & Chemello, R. Boat anchoring on Posidonia oceanica beds in a marine protected area (Italy, western Mediterranean): effect of anchor types in different anchoring stages. J. Exp. Mar. Biol. Ecol. 299, 51–62 (2004).

    Google Scholar 

  205. Branco, J. et al. Natural recovery of Zostera noltii seagrass beds and benthic nematode assemblage responses to physical disturbance caused by traditional harvesting activities. J. Exp. Mar. Biol. Ecol. 502, 191–202 (2018).

    Google Scholar 

  206. Kaiser, M. J., Spence, F. E. & Hart, P. J. Fishing‐gear restrictions and conservation of benthic habitat complexity. Conserv. Biol. 14, 1512–1525 (2000).

    Google Scholar 

  207. Project Seagrass. Our Plan to Save the World's Seagrass: Strategic Plan 2022–2023 (Project Seagrass, 2021).

  208. UNEP-WCMC & Short, F. T. Global distribution of seagrasses (version 7.1). Seventh update to the data layer used in Green and Short (2003). Cambridge (UK): UN Environment World Conservation Monitoring Centre https://doi.org/10.34892/x6r3-d211 (2021).

  209. Shilland, R. et al. A question of standards: adapting carbon and other PES markets to work for community seagrass conservation. Mar. Policy 129, 104574 (2021).

    Google Scholar 

  210. VM0033 Methodology for Tidal Wetland and Seagrass Restoration v2.1. Verra https://verra.org/methodologies/vm0033-methodology-for-tidal-wetland-and-seagrass-restoration-v2-1/ (2023).

  211. Comte, A. et al. Operationalizing blue carbon principles in France: methodological developments for Posidonia oceanica seagrass meadows and institutionalization. Mar. Pollut. Bull. 198, 115822 (2024).

    CAS  Google Scholar 

  212. Kuwae, T., Watanabe, A., Yoshihara, S., Suehiro, F. & Sugimura, Y. Implementation of blue carbon offset crediting for seagrass meadows, macroalgal beds, and macroalgae farming in Japan. Mar. Policy 138, 104996 (2022).

    Google Scholar 

  213. Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005).

    CAS  Google Scholar 

  214. Marbà, N. et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. J. Ecol. 103, 296–302 (2015).

    Google Scholar 

  215. The Core Carbon Principles. Integrity Council for the Voluntary Carbon Market https://icvcm.org/core-carbon-principles/ (2025).

  216. Climate, Community and Biodiversity Standards. Verra https://verra.org/programs/ccbs/ (2024).

  217. Plan Vivo’s Biodiversity Standard. Plan Vivo https://www.planvivo.org/news/plan-vivo-launch-biodiversity-standard (2023).

  218. Vousdoukas, M. I. et al. Economic motivation for raising coastal flood defenses in Europe. Nat. Commun. 11, 2119 (2020).

    CAS  Google Scholar 

  219. Williams, S. L. Introduced species in seagrass ecosystems: status and concerns. J. Exp. Mar. Biol. Ecol. 350, 89–110 (2007).

    Google Scholar 

  220. Winters, G. et al. The tropical seagrass Halophila stipulacea: reviewing what we know from its native and invasive habitats, alongside identifying knowledge gaps. Front. Mar. Sci. 7, 300 (2020).

    Google Scholar 

  221. Winters, G., Nguyen, H. M. & Kaminer, M. Expansion of Halophila stipulacea in parallel with declines of native seagrasses in the eastern Mediterranean Sea. Aquat. Botany 196, 103829 (2024).

    Google Scholar 

  222. Sghaier, Y. R., Zakhama-Sraieb, R. & Charfi-Cheikhrouha, F. Effects of the invasive seagrass Halophila stipulacea on the native seagrass Cymodocea nodosa. In Proc. 5th Mediterranean Symp. on Marine Vegetation 167–171 (UNEP, 2014).

  223. Wesselmann, M. et al. Seagrass (Halophila stipulacea) invasion enhances carbon sequestration in the Mediterranean Sea. Glob. Change Biol. 27, 2592–2607 (2021).

    CAS  Google Scholar 

  224. Apostolaki, E. T. et al. Exotic Halophila stipulacea is an introduced carbon sink for the eastern Mediterranean Sea. Sci. Rep. 9, 9643 (2019).

    Google Scholar 

  225. James, R. K. et al. Seagrass coastal protection services reduced by invasive species expansion and megaherbivore grazing. J. Ecol. 108, 2025–2037 (2020).

    CAS  Google Scholar 

  226. Costa, S. V. et al. Impact of invasive seagrass Halophila stipulacea on life history characteristics of juvenile yellowtail snapper (Ocyurus chrysurus). Bull. Mar. Sci. 100, 571–598 (2024).

    Google Scholar 

  227. Mach, M. E., Wyllie-Echeverria, S. & Chan, K. M. Ecological effect of a nonnative seagrass spreading in the northeast Pacific: a review of Zostera japonica. Ocean Coast. Manag. 102, 375–382 (2014).

    Google Scholar 

  228. Malerba, M. E. et al. Remote sensing for cost-effective blue carbon accounting. Earth-Sci. Rev. 238, 104337 (2023).

    CAS  Google Scholar 

  229. Kutser, T., Hedley, J., Giardino, C., Roelfsema, C. & Brando, V. E. Remote sensing of shallow waters — a 50 year retrospective and future directions. Remote Sens. Environ. 240, 111619 (2020).

    Google Scholar 

  230. Ekelund, A. et al. High-resolution, precision mapping of seagrass blue carbon habitat using multi-spectral imaging and aerial LiDAR. Estuar. Coast. Shelf Sci. 304, 108832 (2024).

    CAS  Google Scholar 

  231. Noman, M. K., Islam, S. M. S., Abu-Khalaf, J., Jalali, S. M. J. & Lavery, P. Improving accuracy and efficiency in seagrass detection using state-of-the-art AI techniques. Ecol. Inform. 76, 102047 (2023).

    Google Scholar 

  232. Chowdhury, M. et al. AI-driven remote sensing enhances Mediterranean seagrass monitoring and conservation to combat climate change and anthropogenic impacts. Sci. Rep. 14, 8360 (2024).

    CAS  Google Scholar 

  233. Esteban, N., Unsworth, R. K. F., Gourlay, J. B. Q. & Hays, G. C. The discovery of deep-water seagrass meadows in a pristine Indian Ocean wilderness revealed by tracking green turtles. Mar. Pollut. Bull. 134, 99–105 (2018).

    CAS  Google Scholar 

  234. Hays, G. C. et al. New tools to identify the ___location of seagrass meadows: marine grazers as habitat indicators. Front. Mar. Sci. 5, 9 (2018).

    Google Scholar 

  235. Mann, H. et al. Green turtle tracking leads the discovery of seagrass blue carbon resources. Proc. R. Soc. B 291, 20240502 (2024).

    Google Scholar 

Download references

Acknowledgements

C.M.D. was supported by King Abdullah University of Science and Technology through baseline funding. O.S. was supported by projects RYC2019-027073-I and PIE HOLOCENO 20213AT014 funded by MCIN/AEI/10.13039/501100011033 and FEDER. E.T.A. was supported from the ARTEMIS project (Interreg Euro-MED 0200867).

Author information

Authors and Affiliations

Authors

Contributions

C.M.D. designed and coordinated the article. The authors contributed equally to all other aspects of the article.

Corresponding author

Correspondence to Carlos M. Duarte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Carmen Santos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Global Coral R&D Accelerator Platform: www.CORDAP.org

Green Climate Fund: www.greenclimate.fund

Kunming–Montreal Global Biodiversity Framework: www.cbd.int/gbf

Seagrass Breakthrough: https://www.dugongseagrass.org/media/2024/11/Leaflet_2030-Seagrass-Breakthrough_version5.pdf

UNEP World Conservation Monitoring Center’s Global Distribution of Seagrasses: https://data.unep-wcmc.org/datasets/7

UNEP World Conservation Monitoring Center’s Restoration Funding Data Set: https://restorationfunders.com

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, C.M., Apostolaki, E.T., Serrano, O. et al. Conserving seagrass ecosystems to meet global biodiversity and climate goals. Nat. Rev. Biodivers. 1, 150–165 (2025). https://doi.org/10.1038/s44358-025-00028-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44358-025-00028-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing