Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microwave-assisted biorefineries

Abstract

Microwaves offer volumetric heating with a higher energy efficiency than conductive–convective heat transfer in conventional approaches. The emerging application of microwave heating in biorefineries is a low-emission strategy to produce bio-based chemicals and materials. In this Review, we discuss the use of microwaves in biorefinery applications, including lignocellulose pretreatment, bioactive substance extraction, pyrolysis and hydrothermal treatment. Experimental evidence suggests that microwaves increase reaction rates, product yield and selectivity; however, these outcomes do not always occur. It is important that microwave-assisted techniques are assessed under controlled conditions to allow a fair comparison with conventional processing. Microwaves can induce hotspots in heterogeneous, multiphasic systems, which have reaction-specific impacts on the chemistry of the system. If not controlled, hotspot generation might cause potential catalyst deactivation or risk of reactor explosion. Pilot-scale systems for solid-phase processing such as pyrolysis have already been demonstrated, whereas large-scale microwave-assisted liquid-phase processing could face problems such as low microwave absorptivity in hot water and limited microwave penetration for large volumes. Further work is needed to develop standard protocols to clarify the advantages of microwaves in wide-ranging biorefinery systems to lay the foundation of technological transfer.

Key points

  • Microwave processing could enable the development of energy-efficient biorefineries for lignocellulose pretreatment, extraction of bioactive substances, pyrolysis, hydrothermal treatment and fine chemical production.

  • Unlike conventional heating methods, the reacting matrix, including the feedstocks, solvents and additives, needs to be strong microwave absorbers for effective heating to occur under microwaves.

  • Non-equilibrium localized heating under microwaves, known as the hotspot effect, has been widely linked to the increased reaction rate and selective production observed in microwave experiments; however, there is not yet any empirical evidence on the universality of this link.

  • The feasibility of pilot-scale and field-scale microwave-assisted biorefineries has been experimentally demonstrated, especially for solid-phase processing such as pyrolysis.

  • Techno-economic assessments and life-cycle analyses indicate that microwave processing potentially has a lower cost and carbon footprint than conventional techniques; however, such a conclusion cannot be extrapolated to contexts outside the discussed studies and independent assessments are still required for new projects in real-life scenarios.

  • Hotspot monitoring and control alongside advances in microwave reactors could help to expedite the industrial-scale use of microwave-assisted biorefineries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biomass feedstocks and the corresponding treatments.
Fig. 2: Hotspots and the landscape of microwave-assisted biorefinery.
Fig. 3: Environment impacts of microwave processing.

Similar content being viewed by others

References

  1. UK Department for Energy Security & Net Zero. Biomass Strategy 2023. GOV.UK https://www.gov.uk/government/publications/biomass-strategy (2023).

  2. Bioenergy Technologies Office, US Department of Energy. 2023 Multi-Year Program Plan. US Department of Energy https://www.energy.gov/eere/bioenergy/articles/2023-multi-year-program-plan (2023).

  3. Federal Ministry of Education and Research (BMBF) & Federal Ministry of Food and Agriculture (BMEL), Germany. National Bioeconomy Strategy. BMBF & BMEL https://www.bmbf.de/SharedDocs/Publikationen/de/bmbf/FS/31617_Nationale_Biooekonomiestrategie_Langfassung_en.pdf?__blob=publicationFile&v=5 (2020).

  4. Vogt, E. T. C. & Weckhuysen, B. M. The refinery of the future. Nature 629, 295–306 (2024).

    Article  CAS  Google Scholar 

  5. Chong, C. T. & Ng, J.-H. Limitations to sustainable renewable jet fuels production attributed to cost than energy-water-food resource availability. Nat. Commun. 14, 8156 (2023).

    Article  CAS  Google Scholar 

  6. Sanchez-Gutierrez, M. et al. Valorisation of Olea europaea L. olive leaves through the evaluation of their extracts: antioxidant and antimicrobial activity. Foods 10, 966 (2021).

    Article  CAS  Google Scholar 

  7. Ho, S. H., Zhang, C., Chen, W. H., Shen, Y. & Chang, J. S. Characterization of biomass waste torrefaction under conventional and microwave heating. Bioresour. Technol. 264, 7–16 (2018).

    Article  CAS  Google Scholar 

  8. Mi, J., Cheng, J., Ng, K. H. & Yan, N. Biomass to green surfactants: microwave-assisted transglycosylation of wheat bran for alkyl glycosides production. Bioresour. Technol. 401, 130738 (2024).

    Article  CAS  Google Scholar 

  9. Yu, I. K. M. et al. Evidences of starch–microwave interactions under hydrolytic and pyrolytic conditions. Green Chem. 22, 7109–7118 (2020).

    Article  CAS  Google Scholar 

  10. Robinson, J. et al. Unravelling the mechanisms of microwave pyrolysis of biomass. Chem. Eng. J. 430, 132975 (2022).

    Article  CAS  Google Scholar 

  11. Tsukahara, Y. et al. In situ observation of nonequilibrium local heating as an origin of special effect of microwave on chemistry. J. Phys. Chem. C 114, 8965–8970 (2010).

    Article  CAS  Google Scholar 

  12. Horikoshi, S., Osawa, A., Sakamoto, S. & Serpone, N. Control of microwave-generated hot spots. Part V. Mechanisms of hot-spot generation and aggregation of catalyst in a microwave-assisted reaction in toluene catalyzed by Pd-loaded AC particulates. Appl. Catal. A: Gen. 460461, 52–60 (2013).

    Article  Google Scholar 

  13. Petricci, E., Risi, C., Ferlin, F., Lanari, D. & Vaccaro, L. Avoiding hot-spots in microwave-assisted Pd/C catalysed reactions by using the biomass derived solvent gamma-Valerolactone. Sci. Rep. 8, 10571 (2018).

    Article  Google Scholar 

  14. Ke, L. et al. Microwave catalytic pyrolysis of biomass: a review focusing on absorbents and catalysts. npj Mater. Sustain. 2, 24 (2024).

    Article  Google Scholar 

  15. Zou, R. et al. Advancements and applications of microwave-assisted deep eutectic solvent (MW-DES) lignin extraction: a comprehensive review. Green Chem. 26, 1153–1169 (2024).

    Article  CAS  Google Scholar 

  16. Gao, Y., Remón, J. & Matharu, A. S. Microwave-assisted hydrothermal treatments for biomass valorisation: a critical review. Green Chem. 23, 3502–3525 (2021).

    Article  CAS  Google Scholar 

  17. Kaza, S., Yao, L. C., Bhada-Tata, P. & Van Woerden, F. in What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 17–37 (World Bank, 2018).

  18. Moorhouse, J. & Minier, Q. Bioenergy — Tracking Bioenergy. IEA https://www.iea.org/energy-system/renewables/bioenergy#tracking (2023).

  19. Naidoo, J. C. et al. Microwave-assisted sequential green liquor-inorganic salt pretreatment for enhanced sugar recovery from sorghum leaves towards bioethanol and biohydrogen production. Renew. Energy 225, 120225 (2024).

    Article  CAS  Google Scholar 

  20. Dharmaraja, J. et al. Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications. Bioresour. Technol. 369, 128328 (2023).

    Article  CAS  Google Scholar 

  21. Jönsson, L. J., Alriksson, B. & Nilvebrant, N.-O. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6, 16 (2013).

    Article  Google Scholar 

  22. Kłosowski, G. & Mikulski, D. Changes in various lignocellulose biomasses structure after microwave-assisted hydrotropic pretreatment. Renew. Energy 219, 119387 (2023).

    Article  Google Scholar 

  23. Wang, N. et al. An efficient microwave-assisted method using ethyl lactate/water cosolvent for lignocellulosic biomass fractionation. Chem. Eng. J. 494, 152724 (2024).

    Article  CAS  Google Scholar 

  24. Aguilar-Reynosa, A. et al. Comparison of microwave and conduction–convection heating autohydrolysis pretreatment for bioethanol production. Bioresour. Technol. 243, 273–283 (2017).

    Article  CAS  Google Scholar 

  25. Taherzadeh, M. J. & Karimi, K. in Biofuels (eds Pandey, A. et al.) 287–311 (Academic Press, 2011).

  26. Gabhane, J., Prince William, S. P. M., Vaidya, A. N., Mahapatra, K. & Chakrabarti, T. Influence of heating source on the efficacy of lignocellulosic pretreatment — a cellulosic ethanol perspective. Biomass Bioenergy 35, 96–102 (2011).

    Article  CAS  Google Scholar 

  27. Muley, P. D. et al. Rapid microwave-assisted biomass delignification and lignin depolymerization in deep eutectic solvents. Energy Convers. Manage. 196, 1080–1088 (2019).

    Article  CAS  Google Scholar 

  28. Cutz, L. et al. Microstructural degradation during the storage of biomass pellets. Commun. Mater. 2, 2 (2021).

    Article  Google Scholar 

  29. Wu, N., Niu, Q., Pieters, J. & Ronsse, F. Influence of torrefaction as pretreatment on the fast pyrolysis of sugarcane trash. Energy Conv. Manag. 291, 117291 (2023).

    Article  Google Scholar 

  30. Sui, H. et al. Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction. Renew. Energy 226, 120423 (2024).

    Article  CAS  Google Scholar 

  31. Zhou, Q., Shen, Y. & Gu, X. Progress in torrefaction pretreatment for biomass gasification. Green Chem. 26, 9652–9670 (2024).

    Article  CAS  Google Scholar 

  32. Yan, B. et al. Investigation on microwave torrefaction: parametric influence, TG-MS-FTIR analysis, and gasification performance. Energy 220, 119794 (2021).

    Article  CAS  Google Scholar 

  33. Yek, P. N. Y. et al. Microwave co-torrefaction of waste oil and biomass pellets for simultaneous recovery of waste and co-firing fuel. Renew. Sust. Energy Rev. 152, 111699 (2021).

    Article  CAS  Google Scholar 

  34. Agu, O. S., Tabil, L. G., Mupondwa, E., Emadi, B. & Dumonceaux, T. Impact of biochar addition in microwave torrefaction of camelina straw and switchgrass for biofuel production. Fuels 3, 588–606 (2022).

    Article  CAS  Google Scholar 

  35. Arpia, A. A. et al. Catalytic microwave-assisted torrefaction of sugarcane bagasse with calcium oxide optimized via Taguchi approach: product characterization and energy analysis. Fuel 305, 121543 (2021).

    Article  CAS  Google Scholar 

  36. Fan, P. et al. Nanopore analysis of salvianolic acids in herbal medicines. Nat. Commun. 15, 1970 (2024).

    Article  CAS  Google Scholar 

  37. Huang, J. et al. Effect of microwave pretreatment of perilla seeds on minor bioactive components content and oxidative stability of oil. Food Chem. 388, 133010 (2022).

    Article  CAS  Google Scholar 

  38. Pintać, D. et al. Solvent selection for efficient extraction of bioactive compounds from grape pomace. Ind. Crop. Prod. 111, 379–390 (2018).

    Article  Google Scholar 

  39. Lucchesi, M. E., Smadja, J., Bradshaw, S., Louw, W. & Chemat, F. Solvent free microwave extraction of Elletaria cardamomum L.: a multivariate study of a new technique for the extraction of essential oil. J. Food Eng. 79, 1079–1086 (2007).

    Article  CAS  Google Scholar 

  40. Saleh, I. A. et al. Extraction of silymarin from milk thistle (Silybum marianum) seeds — a comparison of conventional and microwave-assisted extraction methods. J. Microw. Power Electromagn. Energy 51, 124–133 (2017).

    Google Scholar 

  41. Taqi, A., Farcot, E., Robinson, J. P. & Binner, E. R. Understanding microwave heating in biomass-solvent systems. Chem. Eng. J. 393, 124741 (2020).

    Article  CAS  Google Scholar 

  42. Oufnac, D. S. et al. Extraction of antioxidants from wheat bran using conventional solvent and microwave-assisted methods. Cereal Chem. 84, 125–129 (2007).

    Article  CAS  Google Scholar 

  43. Baker-Fales, M., Chen, T.-Y., Bhalode, P., Wang, Z. & Vlachos, D. G. Microwave enhancement of extractions and reactions in liquid–liquid biphasic systems. Chem. Eng. J. 476, 146552 (2023).

    Article  CAS  Google Scholar 

  44. Chen, T.-Y., Baker-Fales, M., Goyal, H. & Vlachos, D. G. Microwave heating-induced temperature gradients in liquid–liquid biphasic systems. Ind. Eng. Chem. Res. 61, 3011–3022 (2022).

    Article  CAS  Google Scholar 

  45. Zengin, G. et al. A comparative exploration of the phytochemical profiles and bio-pharmaceutical potential of Helichrysum stoechas subsp. barrelieri extracts obtained via five extraction techniques. Proc. Biochem. 91, 113–125 (2020).

    Article  CAS  Google Scholar 

  46. Tsubaki, S., Sakamoto, M. & Azuma, J.-I. Microwave-assisted extraction of phenolic compounds from tea residues under autohydrolytic conditions. Food Chem. 123, 1255–1258 (2010).

    Article  CAS  Google Scholar 

  47. Ibraeva, K. et al. Comparative analysis of conventional and microwave pyrolysis of raw materials with different degree of metamorphism. Energy Conv. Manag. 301, 118067 (2024).

    Article  CAS  Google Scholar 

  48. Jiang, Y. et al. Pyrolysis of banana peel with microwave and furnace as the heating sources: the distinct impacts on evolution of the pyrolytic products. Process. Saf. Environ. Prot. 173, 373–383 (2023).

    Article  CAS  Google Scholar 

  49. Lin, J. et al. Comparison of microwave pyrolysis and conventional pyrolysis of Eupatorium adenophorum. Environ. Prog. Sustain. Energy 42, e13978 (2022).

    Article  Google Scholar 

  50. Lin, B.-J. & Chen, W.-H. Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating. Front. Energy Res. 3, 1–9 (2015).

    Article  Google Scholar 

  51. Shi, K. et al. Production of H(2)-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming. Front. Chem. 8, 3 (2020).

    Article  CAS  Google Scholar 

  52. Parvez, A. M. et al. Conventional and microwave-assisted pyrolysis of gumwood: a comparison study using thermodynamic evaluation and hydrogen production. Fuel Process. Technol. 184, 1–11 (2019).

    Article  CAS  Google Scholar 

  53. Domínguez, A. et al. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. J. Anal. Appl. Pyrolysis 79, 128–135 (2007).

    Article  Google Scholar 

  54. Shi, K., Yan, J., Lester, E. & Wu, T. Catalyst-free synthesis of multiwalled carbon nanotubes via microwave-induced processing of biomass. Ind. Eng. Chem. Res. 53, 15012–15019 (2014).

    Article  CAS  Google Scholar 

  55. Halim, S. A., Mohd, N. A. & Razali, N. A. A comparative assessment of biofuel products from rice husk and oil palm empty fruit bunch obtained from conventional and microwave pyrolysis. J. Taiwan Inst. Chem. Eng. 134, 104305 (2022).

    Article  CAS  Google Scholar 

  56. Suriapparao, D. V., Vinu, R., Shukla, A. & Haldar, S. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation. Bioresour. Technol. 302, 122775 (2020).

    Article  CAS  Google Scholar 

  57. Zhang, Z. et al. Low-temperature microwave-assisted pyrolysis of waste office paper and the application of bio-oil as an Al adhesive. Green Chem. 17, 260–270 (2015).

    Article  CAS  Google Scholar 

  58. Li, D., Zhu, L., Berruti, F. & Briens, C. Autothermal fast pyrolysis of waste biomass for wood adhesives. Ind. Crop. Products 170, 113711 (2021).

    Article  CAS  Google Scholar 

  59. Nzediegwu, C., Arshad, M., Ulah, A., Naeth, M. A. & Chang, S. X. Fuel, thermal and surface properties of microwave-pyrolyzed biochars depend on feedstock type and pyrolysis temperature. Bioresour. Technol. 320, 124282 (2021).

    Article  CAS  Google Scholar 

  60. Omoriyekomwan, J. E., Tahmasebi, A., Zhang, J. & Yu, J. Formation of hollow carbon nanofibers on bio-char during microwave pyrolysis of palm kernel shell. Energy Conv. Manag. 148, 583–592 (2017).

    Article  CAS  Google Scholar 

  61. Omoriyekomwan, J. E., Tahmasebi, A., Zhang, J. & Yu, J. Mechanistic study on direct synthesis of carbon nanotubes from cellulose by means of microwave pyrolysis. Energy Conv. Manag. 192, 88–99 (2019).

    Article  CAS  Google Scholar 

  62. Wang, Z. et al. Nanocarbons from rice husk by microwave plasma irradiation: from graphene and carbon nanotubes to graphenated carbon nanotube hybrids. Carbon 94, 479–484 (2015).

    Article  CAS  Google Scholar 

  63. Ferrera-Lorenzo, N., Fuente, E., Bermudez, J. M., Suarez-Ruiz, I. & Ruiz, B. Conventional and microwave pyrolysis of a macroalgae waste from the agar–agar industry. Prospects for bio-fuel production. Bioresour. Technol. 151, 199–206 (2014).

    Article  CAS  Google Scholar 

  64. Lahijani, P., Zainal, Z. A., Mohamed, A. R. & Mohammadi, M. Microwave-enhanced CO2 gasification of oil palm shell char. Bioresour. Technol. 158, 193–200 (2014).

    Article  CAS  Google Scholar 

  65. Mašek, O. et al. Microwave and slow pyrolysis biochar — comparison of physical and functional properties. J. Anal. Appl. Pyrolysis 100, 41–48 (2013).

    Article  Google Scholar 

  66. Mohamed, B. A., Kim, C. S., Ellis, N. & Bi, X. Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties. Bioresour. Technol. 201, 121–132 (2016).

    Article  CAS  Google Scholar 

  67. Li, M. et al. The impact of heating rate on the decomposition kinetics and product distribution of algal waste pyrolysis with in-situ weight measurement. Chem. Eng. J. 457, 141368 (2023).

    Article  CAS  Google Scholar 

  68. Zhang, X., Wu, K. & Yuan, Q. Comparative study of microwave and conventional hydrothermal treatment of chicken carcasses: bio-oil yields and properties. Energy 200, 117539 (2020).

    Article  CAS  Google Scholar 

  69. Zhuang, X., Liu, J., Wang, C., Zhang, Q. & Ma, L. Microwave-assisted hydrothermal liquefaction for biomass valorization: insights into the fuel properties of biocrude and its liquefaction mechanism. Fuel 317, 123462 (2022).

    Article  CAS  Google Scholar 

  70. Tran, K.-Q. et al. Fast hydrothermal liquefaction of native and torrefied wood. Energy Proc. 105, 218–223 (2017).

    Article  CAS  Google Scholar 

  71. Yang, J. et al. Microwave-assisted hydrothermal liquefaction of biomass model components and comparison with conventional heating. Fuel 277, 118202 (2020).

    Article  CAS  Google Scholar 

  72. Shao, Y. et al. Synthesis of improved hydrochar by microwave hydrothermal carbonization of green waste. Fuel 266, 117146 (2020).

    Article  CAS  Google Scholar 

  73. Soroush, S. et al. Microwave assisted and conventional hydrothermal treatment of waste seaweed: comparison of hydrochar properties and energy efficiency. Sci. Total Environ. 878, 163193 (2023).

    Article  CAS  Google Scholar 

  74. Dai, L. et al. Comparative study on microwave and conventional hydrothermal pretreatment of bamboo sawdust: hydrochar properties and its pyrolysis behaviors. Energy Convers. Manag. 146, 1–7 (2017).

    Article  CAS  Google Scholar 

  75. Zhu, Z. et al. Microwave synthesis of amphiphilic carbon dots from xylose and construction of luminescent composites with shape recovery performance. J. Lumin. 213, 474–481 (2019).

    Article  CAS  Google Scholar 

  76. Balakrishnan, T., Ang, W. L., Mahmoudi, E., Mohammad, A. W. & Sambudi, N. S. Formation mechanism and application potential of carbon dots synthesized from palm kernel shell via microwave assisted method. Carbon Resour. Convers. 5, 150–166 (2022).

    Article  CAS  Google Scholar 

  77. Liu, Y. et al. Non-thermal effect of microwave on the chemical structure and luminescence properties of biomass-derived carbon dots via hydrothermal method. Appl. Surf. Sci. 552, 149503 (2021).

    Article  CAS  Google Scholar 

  78. Remón, J., Li, T., Chuck, C. J., Matharu, A. S. & Clark, J. H. Toward renewable-based, food-applicable prebiotics from biomass: a one-step, additive-free, microwave-assisted hydrothermal process for the production of high purity xylo-oligosaccharides from beech wood hemicellulose. ACS Sustain. Chem. Eng. 7, 16160–16172 (2019).

    Article  Google Scholar 

  79. Remón, J., Danby, S. H., Clark, J. H. & Matharu, A. S. A new step forward nonseasonal 5G biorefineries: microwave-assisted, synergistic, co-depolymerization of wheat straw (2G biomass) and Laminaria saccharina (3G biomass). ACS Sustain. Chem. Eng. 8, 12493–12510 (2020).

    Article  Google Scholar 

  80. Trubetskaya, A. et al. Microwave hydrolysis, as a sustainable approach in the processing of seaweed for protein and nanocellulose management. Algal Res. 78, 103406 (2024).

    Article  Google Scholar 

  81. Remón, J., Matharu, A. S. & Clark, J. H. Simultaneous production of lignin and polysaccharide rich aqueous solutions by microwave-assisted hydrothermal treatment of rapeseed meal. Energy Conv. Manag. 165, 634–648 (2018).

    Article  Google Scholar 

  82. Fan, J. et al. Direct microwave-assisted hydrothermal depolymerization of cellulose. J. Am. Chem. Soc. 135, 11728–11731 (2013).

    Article  CAS  Google Scholar 

  83. Yu, I. K. M. et al. NaCl-promoted phase transition and glycosidic bond cleavage under microwave heating for energy-efficient biorefinery of rice starch. Green Chem. 22, 7355–7365 (2020).

    Article  CAS  Google Scholar 

  84. Velaga, B. & Peela, N. R. Levulinic acid production from furfural: process development and techno-economics. Green Chem. 24, 3326–3343 (2022).

    Article  CAS  Google Scholar 

  85. Ji, T. et al. Niobium-doped TiO2 solid acid catalysts: strengthened interfacial polarization, amplified microwave heating and enhanced energy efficiency of hydroxymethylfurfural production. Appl. Catal. B 243, 741–749 (2019).

    Article  CAS  Google Scholar 

  86. Zhang, Q. et al. Sustainable production of gluconic acid and glucuronic acid via microwave-assisted glucose oxidation over low-cost Cu-biochar catalysts. Green Chem. 24, 6657–6670 (2022).

    Article  CAS  Google Scholar 

  87. Lin, J.-Y., Thanh, B. X., Kwon, E. & Lin, K.-Y. A. Enhanced catalytic conversion of 5-hydroxymethylfurfural to 2,5-diformylfuran by HKUST-1/TEMPO under microwave irradiation. Biomass Convers. Biorefin. 11, 2829–2836 (2021).

    Article  CAS  Google Scholar 

  88. Omri, M., Pourceau, G., Becuwe, M. & Wadouachi, A. Improvement of gold-catalyzed oxidation of free carbohydrates to corresponding aldonates using microwaves. ACS Sustain. Chem. Eng. 4, 2432–2438 (2016).

    Article  CAS  Google Scholar 

  89. Zhang, Q. et al. Efficient microwave-assisted mineralization of oxytetracycline driven by persulfate and hypochlorite over Cu-biochar catalyst. Bioresour. Technol. 372, 128698 (2023).

    Article  CAS  Google Scholar 

  90. Horikoshi, S., Kamata, M., Mitani, T. & Serpone, N. Control of microwave-generated hot spots. 6. Generation of hot spots in dispersed catalyst particulates and factors that affect catalyzed organic syntheses in heterogeneous media. Ind. Eng. Chem. Res. 53, 14941–14947 (2014).

    Article  CAS  Google Scholar 

  91. Druzhinina, T., Weltjens, W., Hoeppener, S. & Schubert, U. S. The selective heating of iron nanoparticles in a single-mode microwave for the patterned growths of carbon nanofibers and nanotubes. Adv. Funct. Mater. 19, 1287–1292 (2009).

    Article  CAS  Google Scholar 

  92. Ramirez, A., Hueso, J. L., Mallada, R. & Santamaria, J. In situ temperature measurements in microwave-heated gas–solid catalytic systems. Detection of hot spots and solid–fluid temperature gradients in the ethylene epoxidation reaction. Chem. Eng. J. 316, 50–60 (2017).

    Article  CAS  Google Scholar 

  93. De Bruyn, M. et al. Subtle microwave-induced overheating effects in an industrial demethylation reaction and their direct use in the development of an innovative microwave reactor. J. Am. Chem. Soc. 139, 5431–5436 (2017).

    Article  Google Scholar 

  94. Zhao, Z. et al. Watching microwave-induced microscopic hot spots via the thermosensitive fluorescence of europium/terbium mixed-metal organic complexes. Angew. Chem. Int. Ed. 61, e202114340 (2022).

    Article  CAS  Google Scholar 

  95. Suguro, T., Kishimoto, F., Movick, W. J. & Takanabe, K. Coherent evaluation of energy efficiency for microwave catalytic reactors based on reaction equilibrium. ChemCatChem 16, e202301598 (2024).

    Article  CAS  Google Scholar 

  96. Horikoshi, S., Mura, H. & Serpone, N. Three-dimensional observations of the electric field distribution of variable frequency microwaves, and scaling-up organic syntheses. Commun. Chem. 6, 261 (2023).

    Article  CAS  Google Scholar 

  97. Khattak, H. K., Bianucci, P. & Slepkov, A. D. Linking plasma formation in grapes to microwave resonances of aqueous dimers. Proc. Natl Acad. Sci. USA 116, 4000–4005 (2019).

    Article  CAS  Google Scholar 

  98. Kappe, C. O., Pieber, B. & Dallinger, D. Microwave effects in organic synthesis: myth or reality? Angew. Chem. Int. Ed. 52, 1088–1094 (2013).

    Article  CAS  Google Scholar 

  99. Obermayer, D. et al. Design and performance validation of a conductively heated sealed-vessel reactor for organic synthesis. J. Org. Chem. 81, 11788–11801 (2016).

    Article  CAS  Google Scholar 

  100. Luo, H. et al. Microwave-assisted low-temperature biomass pyrolysis: from mechanistic insights to pilot scale. Green Chem. 23, 821–827 (2021).

    Article  CAS  Google Scholar 

  101. Mari Selvam, S., Balasubramanian, P., Chintala, M. & Gujjala, L. K. S. Techno-economic analysis of microwave pyrolysis of sugarcane bagasse biochar production. Biomass Convers. Biorefin. https://doi.org/10.1007/s13399-024-06232-7 (2024).

  102. Haeldermans, T. et al. A comparative techno-economic assessment of biochar production from different residue streams using conventional and microwave pyrolysis. Bioresour. Technol. 318, 124083 (2020).

    Article  CAS  Google Scholar 

  103. Lam, S. S. et al. Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: recovery of cleaner liquid fuel and techno-economic analysis. Renew. Sustain. Energy Rev. 115, 109359 (2019).

    Article  CAS  Google Scholar 

  104. Xu, J. et al. Catalytic co-pyrolysis characteristics and kinetics analysis of food waste and chinar leaves, and the large-scale microwave disposal feasibility. Biomass Convers. Biorefin. 14, 15949–15967 (2023).

    Article  Google Scholar 

  105. Lee, C. S., Chong, M. F., Binner, E., Gomes, R. & Robinson, J. Techno-economic assessment of scale-up of bio-flocculant extraction and production by using okra as biomass feedstock. Chem. Eng. Res. Des. 132, 358–369 (2018).

    Article  CAS  Google Scholar 

  106. Parthasarathy, P., Tahir, F., Pradhan, S., Al-Ansari, T. & McKay, G. Life cycle assessment of biofuel production from waste date stones using conventional and microwave pyrolysis. Energy Conv. Manag. X 21, 100510 (2024).

    CAS  Google Scholar 

  107. Baker-Fales, M., Chen, T.-Y. & Vlachos, D. G. Scale-up of microwave-assisted, continuous flow, liquid phase reactors: application to 5-hydroxymethylfurfural production. Chem. Eng. J. 454, 139985 (2023).

    Article  CAS  Google Scholar 

  108. Deng, C. et al. Co-production of hydrochar, levulinic acid and value-added chemicals by microwave-assisted hydrothermal carbonization of seaweed. Chem. Eng. J. 441, 135915 (2022).

    Article  CAS  Google Scholar 

  109. Makepa, D. C., Chihobo, C. H. & Musademba, D. Techno-economic analysis and environmental impact assessment of biodiesel production from bio-oil derived from microwave-assisted pyrolysis of pine sawdust. Heliyon 9, e22261 (2023).

    Article  CAS  Google Scholar 

  110. Mohamed, B. A. et al. Phenolic-rich bio-oil production by microwave catalytic pyrolysis of switchgrass: experimental study, life cycle assessment, and economic analysis. J. Clean. Prod. 366, 132668 (2022).

    Article  CAS  Google Scholar 

  111. Ren, J., La, X., Wang, J. & Jiang, J. Beyond microwave susceptors: exploring 5525 MHz frequency for efficient biomass pyrolysis. Fuel 372, 132220 (2024).

    Article  CAS  Google Scholar 

  112. Luo, J. et al. In-depth exploration of the energy utilization and pyrolysis mechanism of advanced continuous microwave pyrolysis. Appl. Energy 292, 116941 (2021).

    Article  CAS  Google Scholar 

  113. Fan, Y. et al. Microwave-induced carbonization of rapeseed shell for bio-oil and bio-char: multi-variable optimization and microwave absorber effect. Energy Conv. Manag. 191, 23–38 (2019).

    Article  CAS  Google Scholar 

  114. Terigar, B. G., Balasubramanian, S., Sabliov, C. M., Lima, M. & Boldor, D. Soybean and rice bran oil extraction in a continuous microwave system: from laboratory- to pilot-scale. J. Food Eng. 104, 208–217 (2011).

    Article  CAS  Google Scholar 

  115. Peng, H., Luo, H., Jin, S., Li, H. & Xu, J. Improved bioethanol production from corn stover by alkali pretreatment with a novel pilot-scale continuous microwave irradiation reactor. Biotechnol. Bioprocess. Eng. 19, 493–502 (2014).

    Article  CAS  Google Scholar 

  116. Longanesi, L. et al. Scaled-up microwave-assisted pretreatment and continuous fermentation to produce yeast lipids from brewery wastes. Ind. Eng. Chem. Res. 59, 19803–19816 (2020).

    Article  CAS  Google Scholar 

  117. Gaber, M. A. F. M. et al. Improved canola oil expeller extraction using a pilot-scale continuous flow microwave system for pre-treatment of seeds and flaked seeds. J. Food Eng. 284, 110053 (2020).

    Article  Google Scholar 

  118. Garcia-Garcia, G., Rahimifard, S., Matharu, A. S. & Dugmore, T. I. J. Life-cycle assessment of microwave-assisted pectin extraction at pilot scale. ACS Sustain. Chem. Eng. 7, 5167–5175 (2019).

    Article  CAS  Google Scholar 

  119. Nadar, C. G., Arora, A. & Shastri, Y. Sustainability challenges and opportunities in pectin extraction from fruit waste. ACS Eng. Au 2, 61–74 (2022).

    Article  CAS  Google Scholar 

  120. Dávila, J. A., Rosenberg, M. & Cardona, C. A. Techno-economic and environmental assessment of p-cymene and pectin production from orange peel. Waste Biomass Valor. 6, 253–261 (2015).

    Article  Google Scholar 

  121. Filly, A. et al. Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale. Food Chem. 150, 193–198 (2014).

    Article  CAS  Google Scholar 

  122. Périno, S., Pierson, J. T., Ruiz, K., Cravotto, G. & Chemat, F. Laboratory to pilot scale: microwave extraction for polyphenols lettuce. Food Chem. 204, 108–114 (2016).

    Article  Google Scholar 

  123. Petigny, L. et al. Simultaneous microwave extraction and separation of volatile and non-volatile organic compounds of boldo leaves. From lab to industrial scale. Int. J. Mol. Sci. 15, 7183–7198 (2014).

    Article  Google Scholar 

  124. Zhang, Y. et al. Organosolv fractionation of a lignocellulosic biomass feedstock using a pilot scale microwave-heating reactor. Ind. Crop. Prod. 180, 114700 (2022).

    Article  CAS  Google Scholar 

  125. Lin, Q., Chen, G. & Liu, Y. Scale-up of microwave heating process for the production of bio-oil from sewage sludge. J. Anal. Appl. Pyrolysis 94, 114–119 (2012).

    Article  CAS  Google Scholar 

  126. Lin, Q. H., Cheng, H. & Chen, G. Y. Preparation and characterization of carbonaceous adsorbents from sewage sludge using a pilot-scale microwave heating equipment. J. Anal. Appl. Pyrolysis 93, 113–119 (2012).

    Article  CAS  Google Scholar 

  127. Zhao, X. et al. Microwave pyrolysis of straw bale and energy balance analysis. J. Anal. Appl. Pyrolysis 92, 43–49 (2011).

    Article  CAS  Google Scholar 

  128. Salema, A. A., Afzal, M. T. & Bennamoun, L. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresour. Technol. 233, 353–362 (2017).

    Article  CAS  Google Scholar 

  129. Zhou, N. et al. Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system. Bioresour. Technol. 314, 123756 (2020).

    Article  CAS  Google Scholar 

  130. Dufour, A., Girods, P., Masson, E., Rogaume, Y. & Zoulalian, A. Synthesis gas production by biomass pyrolysis: effect of reactor temperature on product distribution. Int. J. Hydrog. Energy 34, 1726–1734 (2009).

    Article  CAS  Google Scholar 

  131. Muniyappan, D., Lima, G. R., Pereira, A. O., Gopi, R. & Ramanathan, A. Multivariate combined optimization strategy and comparative life-cycle assessment of biomass and plastic residues via microwave co-pyrolysis approach towards a sustainable synthesis of renewable hydrocarbon fuel. J. Environ. Chem. Eng. 11, 111436 (2023).

    Article  CAS  Google Scholar 

  132. Özeler, D., Yetiş, Ü. & Demirer, G. N. Life cycle assessment of municipal solid waste management methods: Ankara case study. Environ. Int. 32, 405–411 (2006).

    Article  Google Scholar 

  133. Huang, C., Mohamed, B. A. & Li, L. Y. Comparative life-cycle assessment of pyrolysis processes for producing bio-oil, biochar, and activated carbon from sewage sludge. Resour. Conserv. Recycling 181, 106273 (2022).

    Article  CAS  Google Scholar 

  134. Mong, G. R. et al. Multivariate optimisation study and life cycle assessment of microwave-induced pyrolysis of horse manure for waste valorisation and management. Energy 216, 119194 (2021).

    Article  CAS  Google Scholar 

  135. Yang, J. et al. Is it feasible to replace freshwater by seawater in hydrothermal liquefaction of biomass for biocrude production? Fuel 282, 118870 (2020).

    Article  CAS  Google Scholar 

  136. Shao, Y. et al. Acidic seawater improved 5-hydroxymethylfurfural yield from sugarcane bagasse under microwave hydrothermal liquefaction. Environ. Res. 184, 109340 (2020).

    Article  CAS  Google Scholar 

  137. Rosso, D. et al. Conventional and microwave assisted hydrolysis of urban biowastes to added value lignin-like products. Green Chem. 17, 3424–3435 (2015).

    Article  CAS  Google Scholar 

  138. Hu, Y., Ma, D. & Ma, J. Microwave hotspots: thermal nonequilibrium dynamics from the perspective of quantum states. J. Phys. Chem. A 125, 2690–2696 (2021).

    Article  CAS  Google Scholar 

  139. Wang, K. et al. Learning to detect local overheating of the high-power microwave heating process with deep learning. IEEE Access 6, 10288–10296 (2018).

    Article  Google Scholar 

  140. Yang, R., Wang, Z. & Chen, J. An integrated approach of mechanistic-modeling and machine-learning for thickness optimization of frozen microwaveable foods. Foods 10, 763 (2021).

    Article  Google Scholar 

  141. Horikoshi, S. et al. Application of variable frequency microwaves in microwave-assisted chemistry: relevance and suppression of arc discharges on conductive catalysts. Catalysts 10, 777 (2020).

    Article  CAS  Google Scholar 

  142. Neha, S., Prasanna Kumar Ramesh, K. & Remya, N. Techno-economic analysis and life cycle assessment of microwave co-pyrolysis of food waste and low-density polyethylene. Sustain. Energy Technol. Assess. 52, 102356 (2022).

    Google Scholar 

  143. Wang, N. et al. The comparative techno-economic and life cycle assessment for multi-product biorefinery based on microwave and conventional hydrothermal biomass pretreatment. J. Clean. Prod. 474, 143562 (2024).

    Article  Google Scholar 

  144. Silva, M. B. D. O., de Oliveira, S. A. & Rosa, D. D. S. Comparative study on microwave-assisted and conventional chitosan production from shrimp shell: process optimization, characterization, and environmental impacts. J. Clean. Prod. 440, 140726 (2024).

    Article  CAS  Google Scholar 

  145. Sathendra, E. R., Praveenkumar, R., Gurunathan, B., Chozhavendhan, S. & Jayakumar, M. in Biofuels and Bioenergy (eds Gurunathan, B., Sahadevan, R. & Zakaria Z. A.) Ch. 5, 87–110 (Elsevier, 2022).

  146. Hah Young, Y. & Seung Wook, K. The next-generation biomass for biorefining. BioResources 16, 2188–2191 (2021).

    Article  Google Scholar 

  147. Morris, B. A. in The Science and Technology of Flexible Packaging 2nd edn (ed. Morris, B. A.) Ch. 4, 85–138 (William Andrew Publishing, 2022).

  148. Haji Esmaeili, S. A., Szmerekovsky, J., Sobhani, A., Dybing, A. & Peterson, T. O. Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers. Energy Policy 138, 111222 (2020).

    Article  Google Scholar 

  149. Makepa, D. C., Chihobo, C. H. & Musademba, D. Microwave-assisted pyrolysis of pine sawdust (Pinus patula) with subsequent bio-oil transesterification for biodiesel production. Biofuels 15, 317–325 (2024).

    Article  CAS  Google Scholar 

  150. Nolte, M. W., Zhang, J. & Shanks, B. H. Ex situ hydrodeoxygenation in biomass pyrolysis using molybdenum oxide and low pressure hydrogen. Green Chem. 18, 134–138 (2016).

    Article  Google Scholar 

  151. Nguyen, V. G. et al. Recent advances in hydrogen production from biomass waste with a focus on pyrolysis and gasification. Int. J. Hydrog. Energy 54, 127–160 (2024).

    Article  CAS  Google Scholar 

  152. O’Connor, S. et al. Biogas production from small-scale anaerobic digestion plants on European farms. Renew. Sustain. Energy Rev. 139, 110580 (2021).

    Article  Google Scholar 

  153. Jha, A. K. & Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: a review. Trends Food Sci. Technol. 119, 579–591 (2022).

    Article  CAS  Google Scholar 

  154. Kappe, C. O., Dallinger, D. & Murphree, S. S. Microwave theory. in Practical Microwave Synthesis for Organic Chemists 11–44 (Wiley-VCH Verlag GmbH & Co. KGaA, 2008).

  155. Namazi, A. B., Allen, D. G. & Jia, C. Q. Probing microwave heating of lignocellulosic biomasses. J. Anal. Appl. Pyrolysis 112, 121–128 (2015).

    Article  CAS  Google Scholar 

  156. Peng, Z., Hwang, J.-Y., Mouris, J., Hutcheon, R. & Huang, X. Microwave penetration depth in materials with non-zero magnetic susceptibility. ISIJ Int. 50, 1590–1596 (2010).

    Article  CAS  Google Scholar 

  157. Ao, W. et al. Microwave assisted preparation of activated carbon from biomass: a review. Renew. Sustain. Energy Rev. 92, 958–979 (2018).

    Article  CAS  Google Scholar 

  158. Wang, Z. et al. Carbon-enabled microwave chemistry: from interaction mechanisms to nanomaterial manufacturing. Nano Energy 85, 106027 (2021).

    Article  CAS  Google Scholar 

  159. Zhou, H. et al. Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol. Nat. Catal. 4, 860–871 (2021).

    Article  CAS  Google Scholar 

  160. Ma, Y., Wei, S., Liu, R., Sun, L. & Wang, W. A review on MXene-based microwave absorption composites: engineering, component optimization and structure regulation. J. Mater. Chem. C 12, 9068–9093 (2024).

    Article  CAS  Google Scholar 

  161. Wang, N. et al. Performance of green solvents in microwave-assisted pretreatment of lignocellulose. Chem. Eng. J. 482, 148786 (2024).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I.K.M.Y. acknowledges the financial support provided by Tsinghua-NUS Joint Research Initiative Fund (WBS: A-8002524-00-00).

Author information

Authors and Affiliations

Authors

Contributions

Q.Z., Z. Li, Z. Liu and Y.D.P. researched data for the article. All authors contributed substantially to discussion of the content. W.K.O. specifically contributed to discussion related to scale-up of biorefineries. All authors wrote the article. I.K.M.Y. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Iris K. M. Yu.

Ethics declarations

Competing interests

W.K.O. is the Manager Director of Sobono Private Limited, which focuses on sustainable technologies including bioresource utilization for renewable energy production. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clean Technology thanks Avtar Matharu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

PlaWave: https://mwcc.jp/post_seed_en/bio-oil-production-by-pyrolysis/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Li, Z., Liu, Z. et al. Microwave-assisted biorefineries. Nat. Rev. Clean Technol. 1, 269–287 (2025). https://doi.org/10.1038/s44359-025-00033-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44359-025-00033-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing