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Augmented BindingNet dataset for
enhanced ligand binding pose predictions
using deep learning
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High-quality data on protein-ligand complex structures and binding affinities are crucial for structure-
based drug design. Existing datasets often lack diversity and quantity, limiting the comprehensive
understanding of protein-ligand interactions. Here, we present BindingNet v2, an expanded dataset
comprising 689,796 modeled protein-ligand binding complexes across 1794 protein targets.
Constructed using an enhanced template-based modeling workflow from BindingNet v1, it
incorporates pharmacophore and molecular shape similarities. BindingNet v2’s effectiveness in
binding pose generation was evaluated, showing an improved generalization ability of Uni-Mol model
for novel ligands. The success rate on the PoseBusters dataset increased from 38.55% with the
PDBbind dataset alone to 64.25% with augmenting BindingNet v2. Coupled with physics-based
refinement, the success rate rose to 74.07%, passing PoseBusters validity checks. These results
highlight the value of larger, diverse datasets in enhancing the accuracy and reliability of deep learning
models for binding pose prediction.

Protein-ligand binding complex structures play a fundamental role in drug
discovery by revealing atomic interactions between proteins and ligands.
These structural insights are critical for identifying novel hits, analyzing
structure-activity relationships (SAR), and optimizing hit compounds for
improved efficacy1–3. Moreover, large and diverse protein-ligand complex
datasets significantly enhance deep learning (DL) model training for tasks
such as binding pose prediction, binding affinity prediction, and molecule
generation4–9. Despite these advantages, the availability of high-quality
complex structures remains limited.

In the realm of protein-ligand interactions, Protein Data Bank (PDB)
stands out the largest repository containing experimentally determined
structures, which is updated weekly. Themost recent version (September 8,
2024) comprises asmany as 224,572 structures10.However, it is important to
note that PDB primarily focuses on biomolecule structures, with only
44,234 small molecules listed in the chemical component dictionary as of
September 8, 2024. These limitation underscores the vastness of chemical
space occupied by small molecules (~1060)11. In addition, PDB does not
directly associate experimental binding affinity data for complex structures,
necessitating the manually curated datasets such as Binding MOAD12,13,
PDBbind4, and PDBbind+ for detailed binding affinity annotations (Table
1). The latest Binding MOAD release (2020) comprises 41,409 protein-
ligand complex structures, with 36.76% annotated with binding affinities.

Similarly, the latest PDBbind+ (v2021) dataset includes 22,920 structures,
each associated with corresponding binding affinity. Notably, both
PDBbind andBindingMOADhave been extensively utilized for developing
data-driven approaches in structure-based virtual screening (SBVS) and
related studies14. BioLiP2 is another dataset designed to extract biologically
relevant protein-ligand interactions from the PDB15,16. However, it has some
limitations, including redundancy and the inclusion of non-drug-like
molecules.

To bridge the gap when experimental data is scarce and absent,
protein-ligand complex structures can be computationally constructed via
molecular docking and template-based modeling approaches, including
CrossDocked 202017, NLDB18, eMoldel-BDB19, HelixDock6, SIU20, and
BindingNet v1 datasets21. Both eModel-BDB and BindingNet v1 datasets
modeled 3D structures for protein-ligand pairs from BindingDB and
ChEMBL databases using experimentally-determined structures as tem-
plates. However, eModel-BDB suffers from steric clashes between modeled
ligands and proteins, indicating unreliable protein-ligand interactions21.
Additionally, it has not been updated since 2018. Nevertheless, these data-
sets collectively empower the exploration of protein-ligand interactions,
facilitating the development of DL-based approaches.

While experimental structural data remains limited, a wealth of
experimental binding affinity data between proteins and drug-like
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molecules is available on open-source platforms. For instance, ChEMBL
(v34) collects 20.7 million activity data for 2.4 million compounds and
15,598 targets22. PubChem’s BioAssay database houses 295 million bioac-
tivity data points as of September 202423. BindingDB provides 2.9 million
binding data for 9,300 targets by September 202424. Furthermore, significant
efforts have been made to clean and standardize these datasets, such as
Papyrus25, MolData26, and the work of Daniel Merk et al. 27.

To bridge the gap between binding affinity and structural data, our
project focuses on modeling all the potential protein-ligand complex
structures with available experimental binding affinities. In our previous
work, BindingNet v1 constructed 69,816 high-quality 3D structures for
protein-ligand pairs fromChEMBL, using a comparative complex structure
modeling approach21. Since the quality of the modeled structure is highly
related to the similarity between the compounds of interest and the crystal
ligand templates, we only considered active compounds with a highly
similar template (Tanimoto coefficient (Tc) > 0.7) for inclusion in the
BindingNet v1 dataset.

Our current study aims to improve the comparative modeling
approach to yield reasonable complex structures for compounds without
highly similar templates. Not only do compounds with similar chemotypes
share commonbindingmodeagainst the same target28,29, but distinct ligands
without common substructures can exhibit similar binding modes due to
pharmacophore and molecular shape similarities30. These nuances are
crucial considerations in virtual screening practices31. To achieve this, we
revamped our previous template-based modeling workflow by incorpor-
ating pharmacophore and shape similarities to the crystal templates,
resulting in a hierarchal template-based complex structure modeling
pipeline. As a result, our updated BindingNet v2 dataset comprises 689,796
modeled protein-ligand binding complexes across 1794 targets. These
structures are categorized into high confidence (33.63%), moderate con-
fidence (23.91%), and low confidence (42.45%) structures based on the
degree of match.

While recent DL models have achieved outstanding protein-ligand
binding pose generation capacity on the PoseBusters dataset6,32–34, these
models are primarily evaluated using a lenient time-based data splitting
method, raising serious concerns about their truepredictive onnovel ligands
and pockets. Our findings reveal that Uni-Mol model achieved only a
38.55% success rate (ligand RMSD < 2Å) for novel ligands (Tc < 0.3) when
trainedwithPDBbinddataset. Encouragingly, this generalization abilitywas
consistently improved when trained with larger subsets of BindingNet v2
dataset, with success rates increasing from 38.55% to 54.21%, 57.71%, and
ultimately 64.25%. Specifically, when combined with a physics-based
refinement and rescoring method, Uni-Mol model’s generalization ability
further increased to a success rate of 74.07%, while also passing PoseBusters

validity (PB-valid) checks. In summary, our study highlights the promise of
leveraging a larger andmore diverse set of modeled protein-ligand complex
structures to enhance DL models in protein-ligand binding prediction.

Results
Comparative analysis of sampling ability
Both hierarchal template-based modeling and molecular docking approa-
ches commencewith sampling ligand conformations, followedby scoring to
identify the near-native binding poses. The ability of an algorithm to gen-
erate accurate ligand binding poses is crucial for preciselymodeling protein-
ligand complex structures. Our analysis consistently showed that the sam-
pling capabilities of our approach and Glide were correlated with template
similarity, demonstrating improved performancewhen similar templates or
pocketswere employed (Fig. 1A). Specifically, the hierarchal template-based
modeling with minimization approach achieved a success rate of 92.65%
when highly similar templates (MCS coverage > 0.8) were utilized, but this
rate dropped to 66.67% with less similar templates. Similarly, the success
rate of Glide cross-dock (Tc) decreased from 75.00% to 57.33% when less
similar pockets were used.

However, the hierarchal template-based modeling approach still out-
performed both Glide cross-dock (Tc) and Glide cross-dock (MCS)
methods across all MCS coverage intervals (Fig. 1A). In addition, our
approach sampled fewer than 20 conformations per compound, roughly
one-tenth of the Glide sampling size (Table S1). The disparity in sampling
accuracy between our approaches with and without MM-GB/SA mini-
mization was minimal when MCS coverage was above 0.6. However, this
gapwidens as template similarity decreases, highlighting the essential role of
MM-GB/SA minimization in our protocol.

Comparative analysis of scoring performance
After ligand conformation sampling, an accurate scoring function is
employed to select native-like binding poses. In our experiments, we eval-
uated the accuracy of the top-ranked binding poses across four combina-
tions of various sampling methods (hierarchal template-based modeling
with minimization, Glide cross-dock (Tc), Glide cross-dock (MCS)) and
different scoring methods (hybrid score, MM-GB/SA, and Glide score).

Despite their excellent sampling capabilities, all approacheswitnesseda
significant drop in pose selection accuracy (Fig. 1B and Table S2). Overall,
the hierarchal template-based modeling with MM-GB/SA approach cor-
rectly sampled 77.78% complex structures, with 56.46% precisely scored by
hybrid score. This rate decreased to 38.14% when using Glide cross-dock
(Tc) and Glide scores (Fig. 1B and Table S2).

We observed that hybrid scores consistently outperformed the MM-
GB/SA interaction energy scores in ranking ligand binding poses, especially

Table 1 | Summary of available datasets for protein-ligand complex structures

Dataset Methodology Number of protein-ligand complex
structures

Number of binding
affinity data

The latest version

PDBbind4 Experimental 19,443 19,443 2020

PDBbind+4 Experimental 22,920 22,920 2021

BioLip216 Experimental 450,639 entriesa 48,291 2024

Binding MOAD12 Experimental 41,409 15,223 2020

CrossDocked202017 Molecular docking 18,450 N/A 2020

HelixDock6 Molecular docking ~108 N/A 2024

SIU20 Molecular docking 5.34 million 1.38 million 2024

NLDB18 Experimental;
Template-based modeling; Molecular
docking

87,400;
31,672;
70,570

N/A 2019

eModel-BDB19 Template-based modeling 197,211 197,211 2018

BindingNet v121 Template-based modeling 69,816 69,816 2023
aBioLip2 comprises 450,639 entries of protein-ligand interactions, with each complex structure potentially divided into multiple entries based on BioLip2’s classification methodology.
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when MCS coverages were below 0.6. Additionally, there was also a
noticeable reduction in ligand RMSDs with higher hybrid scores (Fig. 1C).
Compounds with an MCS coverage over 0.8 typically exhibited hybrid
scores above 1.2 and RMSDs within 2.0 Å (Fig. 1C).

As a result, we selected the hybrid score as our scoring function within
the hierarchal template-based modeling workflow and as our measure of

confidence. We defined high confidence complex structures as having a
hybrid score of at least 1.2, moderate confidence as having a hybrid score
between 1.0 (inclusive) and 1.2, and low confidence as having a hybrid score
below 1.0. The success rates (ligand RMSDs < 2 Å) for top 1 binding pose
were 73.79%, 33.33%, and 16.22% for high, moderate, and low confidence
structures, respectively (Fig. 1C).

Fig. 1 | Comparison of sampling and scoring
ability. AThe sampling success rate is defined as any
ligand RMSD less than 2.0 Å. “Superimposition
without minimization” and “Superimposition with
minimization” represent the hierarchal template-
based modeling approach without and with MM-
GB/SA minimization. The numbers in brackets
indicate the count of benchmarking systems within
each MCS coverage interval. B The scoring success
rate is defined as the top 1 ligand RMSD less than
2.0 Å. The descriptions before and after “/” denote
the sampling and scoring algorithms. “Super-
imposition” refers to the hierarchal template-based
modeling approachwithMM-GB/SAminimization.
The red dashed lines represent the sampling success
rates of different sampling methods. C The plot
illustrates the relationship among ligand RMSDs,
hybrid scores, and MCS coverages. The labels
represent the scoring success rates within different
hybrid score intervals.
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Case studies
In the following, we explored scenarios where templates with lower ligand
similarities and lowerMCS coverages remained valuable formodeling near-
native binding poses. In BindingNet v1, only the active compounds with a
highly similar (Tc > 0.7) template were considered in the pursuit of high-
quality modeled complex structures21. However, compounds with low
topological fingerprint similarity could also feature similar functional
groups and scaffolds, as illustrated inFig. 2A-B. Specifically, theTcvaluewas
0.38 for the candidate compound and template ligand in the case of
dipeptidyl peptidase-4, but both compounds characterized methylamine-
substituted aromatic heterocycles, which played roles in forming charge-
charge, hydrogen bonding, and cation-π interactions with proteins. The
resulting top-rankedpose achievedanRMSDof 1.12 Åandahybrid scoreof

1.47 (Fig. 2A). Similarly in the component factor D, although the Tc value
was low, critical amide groups helped the candidate compound tomodel the
near-nativebindingpose bymaintaining thehydrogenbonding interactions
with the protein backbone (Fig. 2B).

In another case, our fragmentation strategy successfully yielded a
near-native binding pose, even when functional groups were less similar.
Specifically, a fragment from the candidate compound (highlighted in Fig.
2C)was superimposed onto the template through crucial hydrogen bonds
with kinase backbone. After sampling the benzamide group and mini-
mizing the structure, the top-ranked pose showed anRMSDof 1.56 Å and
a hybrid score of 0.96 (Fig. 2C). Our protocol avoided relying solely on
MCS superimposition because some cases would fail even with moderate
MCS overlap. For instance, both the candidate compound and the

Fig. 2 | Case studies.Chemical and complex structures of candidate compounds and
template ligands for (A) dpeptidyl peptidase-4, (B) component factor D, (C) VEGFR
tyrosine kinase, and (D) transcriptional repressor. The crystal binding poses are
colored in pink for candidate compounds and in sea green for template ligands, while

the modeled poses are colored in orange. The MCS between candidate compounds
and templates are highlighted in red in the chemical structures. The substructures
encircled in red represent the fragments of the candidate compound post-
fragmentation. Images of complex structures are rendered in CHIMERA47.
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template featured a benzene sulfonamidemoiety, but their positions in the
binding site differed (Fig. 2D). Nevertheless, both sulfonamide and amide
groups functioned as hydrogen bond acceptors and donors in protein-
ligand interactions. By emphasizing shared pharmacophore features, a
specific fragment (highlighted in Fig. 2D) of the candidate compoundwas
superimposed onto the template, resulting in a ligand RMSD of 0.87 Å.
These findings underpin our comparative modeling approach and high-
light the effectiveness of utilizing shape and pharmacophore feature
similarities over MCS coverage or ligand topological fingerprint similar-
ity alone.

BindingNet v2 and web server
In addition to refining our comparative modeling approach, we also sig-
nificantly expanded our template datasets and extracted more protein-
ligand pair from updated ChEMBL (v33). Specifically, we augmented our
template collection from 8,066 PDB structures in BindingNet v1 to 26,438
PDBstructures in this version and collecteda total of 724,319protein-ligand
pairs from ChEMBL (v33) leveraging the templates. The detailed selection
and filtering process are outlined in the Methods section.

BindingNet v2 now consists of 689,796 complex structures, each
associated with an experimental binding affinity. These structures cover

Fig. 3 |Characteristics of BindingNet v2 (A-D). The distributions of target classification, hybrid scores, and binding affinities of BindingNet v2 dataset, respectively (E). Rps
between binding affinities and ligand buried SASA in each Pfam cluster in BindingNet v2. (F). Home page of BindingNet v2 website (http://bindingnetv2.huanglab.org.cn/).
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1794 targets and 475,309 unique ligands. Specifically, more than 74% of the
targets interact withmore than 10 compounds, with 113 (6.2%) targets have
a bound small molecule. Additionally, three-quarters of the unique small
molecules are bound to a single protein. However, we also discovered 1288
uniquemolecules that are bound to 10different proteins (Fig. S1). Figure 3A
illustrates the diversity of protein types covered in our dataset, including
kinase (21%), enzyme (34%), G-protein coupled receptor (12%), trans-
membrane signal receptor (9%), nuclear receptor (5%), and ion channel/
transporter (3%). To assess the quality of our modeled structures, we clas-
sified themas follows: 33.63% scored≥ 1.2 (high confidence), 23.91% scored
between 1.0 and 1.2 (moderate confidence), and 42.45% scored below 1.0
(low confidence) (Fig. 3B).

Three subsets demonstrated similar distribution of experimental
binding affinities, with most values falling between 10 and 1,000 nM and a
small fraction (2.1%) exhibiting values worse than 100 uM (Fig. 3C). We
acknowledged that potential noises could arise from varying laboratory
practices and assay protocols35. By analyzing IC50, Ki, Kd, and EC50 assays
from multiple sources (ChEMBL, BindingDB, and BindingMOAD), we
found a standard deviation (std) of 0.3 log unit for binding affinities, with
results fromKi assays beingmore stable than those from other experiments
(Fig. 3D). This finding aligned with the work of Gergory A. Landrum et al.,

who suggested applying maximal curation settings to extract reliable data
from various experiments for training and validating DL models35. Never-
theless, caremust be taken touse the binding affinity labels inBindingNet v2
directly.

In our previous studies, we observed a positive correlation between
binding affinities and the ligand’s buried solvent-accessible surface area
(SASA) in thePDBbindv2020dataset,whichmisledDLmodels’ learningon
binding affinities36. However, with dataset augmentation, this correlation
significantly decreased in both BindingNet v1 and v2 datasets21. In parti-
cular, thePearsoncorrelation coefficients (Rps)were low,mainly around0.2
for Pfam protein clusters with over 100 complex structures (Fig. 3E).
Interestingly, high correlations persisted in protein clusters with less than
100 structures, including tRNA_synt_II, 6_Hairpin,DNA_ligase, andUDG
(Fig. S2), emphasizing the need for additional data to elucidate structure-
affinity relationships.

BindingNet v2 is accessible at http://bindingnetv2.huanglab.org.cn/,
featuring HOME, SEARCH, DOCUMENTATION, and DOWNLOAD
interfaces (Fig. 3F). The SEARCH interface allows queries using various
identifiers and provides an interactive Mol* view for visualizing atomic
protein-ligand interactions. Templates and all subsets of BindingNet v2 are
available for download from website.

Fig. 4 | Training Uni-Mol model with BindingNet v2. A The maximum Tc values
between the ligands from PoseBusters v1 and PDB (v2019) datasets. B The pose
generation ability of Uni-Mol training with different ligand similarity cutoffs on
PDBbind (v2020). C The pose generation ability of Uni-Mol model training with

larger datasets. D PoseBusters v2 structural accuracy and chemical validity of
AlphaFold3 (AF3) and Uni-Mol trained on PDBbind + BindingNet v2 (Tc = 0.3).
The numbers represent the percentage of ligands within RMSD <2 Å and passing
PoseBusters validity checks.
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Training deep learning models using BindingNet v2
The BindingNet v2 dataset serves as a rich resource for providing both
modeled protein-ligand complex structures and experimentally determined
binding affinities. Beyond these applications, it also plays an important role
in developing DL models for binding affinity prediction, binding pose
prediction, and molecule generation. Since the accurate prediction of
binding affinity heavily relies on correctly determined binding poses, we
initially evaluated the capacity ofDLmodels togenerate bindingposes based
on BindingNet v2 dataset.

Commonly used datasets for training DL models include PDBbind,
BindingMOAD, PDB, and molecular docking datasets. Remarkably, the
performance of DL models on the PoseBusters v1 dataset significantly
surpasses that of traditional molecular docking methods, with high success
rates of 62.4% (Uni-Mol v1)32, 77.6% (Uni-Mol Docking v2)33, 85.6%
(HelixDock)6, and 90.0% (AlphaFold3 with pocket specified)34. However,
commonly used training datasets share highly similar ligands and binding
pockets with PoseBusters with a time-based data splitting method37. For
example, 70.09% and 34.11% of the ligands in the PoseBusters v1 possess a
highly similar (Tc > 0.7) counterpart within PDB (v2019) and PDBbind
(v2020) training datasets (Figs. 4A and S3). In addition, more than 90%
testing ligands possess a corresponding training ligand with Tc value larger
than0.3 fromPDB(v2019) andPDBbind (v2020).As aTc valuebetween0.3
and 0.4 is a generally-used cutoff for selecting novel ligands in SBVS
practices1,38–42, we conducted ligand similarity-based data splitting method
to evaluate the generalization ability of the Uni-Mol model. Figure 4B
illustrates a notable trend: as the ligand similarity of the training dataset
decreased from 1.0 to 0.3, the success rate (ligand RMSD < 2Å) of Uni-Mol
model significantly decreased from 60.98% to 38.55%, with only 10.98%
ligands achieved a pose within 1 Å (Fig. 4B).

To address this, we investigated the effect of data augmentation on
enhancing generalization ability of Uni-Mol model. Importantly, only the
complex structures with a dissimilar ligand (Tc < 0.3) from BindingNet v2
were included, resulting in the size of training datasets increased by
approximately 14, 24, and 42 times from the PDBbind (v2020) (Table 2).
Encouragingly, the success rates (ligand RMSD < 2 Å) significantly
improved from 38.55%, 54.21%, 57.71% to 64.25%. Moreover, the success
rate of generating a ligand RMSD within 1 Å increase by approximately
threefold, rising from 10.98% to 33.87% (Fig. 4C).

The chemical and physical plausibility of generated binding poses is
another great concern for DL-based approaches43. When analyzed the
PoseBusters validity of the poses generated from the best Uni-Mol model,
we foundmost of the ligandspassed the intramolecular validity assessments.
However, 40.89% ligands failed the intermolecular validity check due to
severe steric clashes with proteins, cofactors, and metals (Fig. S4). The
success rate ofRMSD < 2 Ådecreased from68.69% to51.41%after applying
the PoseBusters validity filter.

Combining MM-GB/SA refinement and rescoring approach to select
the best pose, the PB-valid ratio significantly improved to 51.41% and
74.07% for ligand RMSDs within 1 Å and 2 Å, respectively (Fig. S5).
Moreover, when we categorized PoseBusters v2 testing dataset into com-
mon natural ligands (containing 50 ligands, mainly cofactors and

crystallization aids) and others (containing 258 drug-like ligands)34, the
performance of the Uni-Mol models trained on the PDBbind+BindingNet
v2 (Tc = 0.3) dataset exceeded that of the published AlphaFold3 model on
the PoseBusters drug-like ligand dataset, with success rates of 79.1% and
71.3%, respectively. This demonstrated a superior capacity for accurately
modeling the poses of drug-like ligands compared to AlphaFold3 (Fig. 4D).

We conclude that a dataset containing extensive and diverse proteins
and ligands is promising for boosting the generalization ability of DL
models. However, while Uni-Mol model captures the coarse-grained dis-
tance distributions between proteins and ligands, physical-based methods
are necessary to ensure chemical and physical plausibility.

Discussion
Protein-ligand complex structures serve as the foundation for structure-
based drug discovery. However, relying solely on experimental methods to
acquire structures is impractical. In this study, we adopted an enhanced
comparative modeling approach to construct reliable protein-ligand com-
plex structures with experimentally-determined binding affinities. Our
resulting BindingNet v2 dataset comprises 689,796 complex structures
across 1794 protein targets and 475,309 unique ligands.

The BindingNet v2 dataset is designed for mining protein-ligand
interactions, analyzing large-scale SAR, and developing computational
approaches for predicting protein-ligand interactions. In practical SBVS
applications, the main challenge is to discover true binders with novel
chemical scaffolds, where a Tc value of 0.3-0.4 is widely used as a novelty
criterion1,38–42. Unfortunately, few studies carefully apply this criterion to
access the performance of DL-based models41. After selecting complexes
with dissimilar ligands to PoseBusters ligands (Tc less than 0.3), we found
that Uni-Mol models trained on PDBbind exhibited poor generalization
ability inpredictingbindingposes fornovel ligands.Toaddress this issue,we
evaluated the impact of data augmentation on generalization ability. By
augmenting the training datasets with complex structures fromBindingNet
v2, the pose prediction success rate (ligand RMSD < 2 Å) increased from
38.55% to 64.25%. Post-processing using a physics-basedminimization tool
further improved the success rate to 74.07% (RMSD < 2Å andPB-valid) on
PoseBusters v1 dataset.

While the BindingNet v2 dataset shows promise, its ligand diversity is
still far lower than that of drug-like molecules. Additionally, the types of
proteins are limited to those with experimental complex structures from
PDB. Inspired by successful approaches like AlphaFold series34,44, we can
envision to combine large-scale docking data, distillation data, manually
modeled structures, and crystal structures together to build a model cap-
turing more general and diverse protein-ligand interactions. This model
would enable us to expand the coverage of chemical and target space and
enhance the generalization ability of DL models.

BindingNet v2 provides a unique advantage—the availability of
experimental binding affinities for 689,796 complex structures. Investigat-
ing the impact of training models with BindingNet v2 on protein-ligand
binding affinityprediction is definitely a future research direction.However,
it is essential to acknowledge that our dataset currently only modeled the
complex structures between reportedand experimentally evaluatedproteins
and ligands, where only a small fraction (2.1%) complex structures
demonstrating binding affinities worse than 100 uM. This distribution is
significantly different from those observed in actual SBVS scenarios, indi-
cating incorporating inactive data is crucial for improving the models’ vir-
tual screening capabilities. Therefore, future work will focus on integrating
inactive data to enhance the virtual screening capabilities of our models.

Methods
Template dataset construction
Our template dataset construction began by applying specific selec-
tion criteria to the PDB as of August 2023. We focused on structures
where the “polymer entity type is protein” and “refinement resolution
< 3 Å” and removed complexes formed between biological macro-
molecules, such as protein-protein and protein-nucleic acids. To

Table 2 | Summarization of the datasets used for training the
Uni-Mol models

Training dataset Tc cutoff Number of complexes

1 PDBbind 0.3 7990

2 0.5 15,731

3 0.7 17,268

4 1.0 17,733

5 PDBbind+BindingNet v2 0.3 114,366

6 0.3 190,999

7 0.3 336,943
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ensure the isolation of structures between drug-like molecules and
proteins, we compiled a list of special molecules which were not
considered as valid drug-like ligands, such as organic solvent mole-
cules, crystallization aids, and biological cofactors/coenzymes com-
monly observed in PDB. This list was collected from various
resources, including literature4, expert knowledge, and data from the
PDBe website (Table S3)45. Fragment-based drug discovery typically
begins with small fragment that have a molecular weight of about 150
to 300 Dalton (Da). Compounds exceeding 800 Da are generally
considered non-drug-like and challenging to model accurately.
Therefore, we applied molecular weight and the following criteria to
refine our template dataset. Any PDB structure meeting the following
condition was discarded: (1) ligand molecule weight less than 200
Dalton (Da) or greater than 800 Da; (2) ligand containing metal
elements; (3) covalently bound ligand; (4) incomplete ligand atomic
coordinates or (5) ligand identified as a special molecule.

Finally, we mapped the qualified protein-ligand complexes to
ChEMBL target IDs using the online tool Retrieve/ID mapping from
UniProt46. To simplify the process, we selected only complexes where a
compound specifically interacts with a monomeric protein (ChEMBL
protein type = “SINGLE PROTEIN”). This stringent selection resulted in a
final set of 26,438 protein-ligand binding complexes across 2108 targets.

The complexes belonging to the same protein families were
aligned based on the binding pockets using the UCSF Chimera
matchmaker toolkit47. All waters and solvent molecules were exclu-
ded, while cofactors andmetal atoms within the pocket were retained.
Finally, the proteins were prepared using Schrödinger Protein Pre-
paration Wizard software for filling side chains and loops and adding

hydrogen atoms48. The ligands were processed using UNICON for
protonation state prediction49.

Protein-ligand pair extraction
Protein-ligand pairswere extracted from theChEMBL (v33) dataset based
on2,108ChEMBL target IDs specified in the template dataset. Specifically,
we designated compound as ‘ligand’ only if it exhibited a well-defined
potency endpoint, including concentration at 50% inhibition (IC50), half
maximal effective concentration (EC50), inhibition constant (Ki), and
dissociation constant (Kd). The activity relationwas either ‘=’ or ‘<’.When
multiple experimental assays were available for a specific target-ligand
pair, we prioritize the following: Kd > Ki > IC50 > EC50. If multiple data
points existed for a specific assay, we used themedian value. Tomaximize
the number of active data points we can model, we excluded compounds
with molecular weights below 125Da. Additionally, we removed those
with molecular weights exceeding 800 Da due to the challenges in accu-
rately modeling complex structures of larger compounds. After applying
these filters, we retained a total of 724,319 active protein-ligand pairs.

SHAFTS and hybrid score calculation
SHAFTS is a 3D molecular similarity calculation tool50. It identifies six
pharmacophore features within molecules, including hydrophobic center,
positive charge center, negative charge center, hydrogen bond acceptor,
hydrogen bond donor, and aromatic rings. Subsequently, a superimposition
of two3Dmoleculeswas performed tomaximize thehybrid score,which is a
sum of the shape score (measuring shape densities overlap) and feature
score (assessing pharmacophore feature congruence). Both scores range
from 0 (no similarity) to 1 (identical shapes or features)50.

Fig. 5 |Workflow of the hierarchal template-based
complex structure modeling approach. The MCS
coverage was calculated between candidate com-
pounds from ChEMBL and template ligands from
PDB. If the largest MCS coverage exceeds or equals
to 0.6, we assigned the atom coordinates of theMCS
as those in the template ligand. Otherwise, the
compound was fragmentated and aligned to tem-
plates with SHAFTS. The rest part of the compound
was sampled, clustered, filtered, and scored, with 20
highest-scored conformations for MM-GB/SA
minimization. Hybrid scores were determined again
for minimized complex structures and templates,
and the highest-scored complex was selected as the
final model. Images of 3D structures are rendered
with CHIMERA47 and image of 2D structure is
generated with RDKit51.
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Hierarchal template-based modeling approach
The hierarchal template-based modeling approach consists of five main
steps (Fig. 5): (1)Determinationofmaximumcommon substructure (MCS)
coverage, (2) Superimpositionof keysubstructure, (3) Samplingof poses, (4)
Minimization, and (5) Scoring.
(1) Determination of MCS coverage: The MCS between the compound

of interest and each template ligand was calculated using the RDKit
rdFMCS module51. MCS coverage is defined as:

MCS coverage ¼ Number of heavy atoms inMCS
Number of heavy atoms in compound of interest

(2) Superimposition of key substructures: If the largest MCS coverage
exceeds 0.6, we assigned the atom coordinates of the MCS as those in
the template ligand. For lower coverage, we fragmented the compound
using BRICS52, sample it with ConfGen53, superimposed it to each
template ligand using SHAFTS50, and retained fragmentswith a hybrid
score larger than 0.7. These MCS and fragments were considered key
substructures.

(3) Sampling of poses: During sampling, key substructures’ coordinates
were fixed based on superimposition results, and the rest of the com-
pound was sampled using the ETKDG v2 algorithm54. The number of
sampled conformations were determined by the number of rotatable
bonds in the remaining structure, with a maximum limit of 500 con-
formations. This was followed by conformation clustering
(RMSD < 2Å), protein-ligand clash filtering, and scoring. The top 20
conformations with the highest hybrid score were processed for
minimization.

(4) Minimization: Considering the trade-off between benefits and
computational cost, the modeled protein-ligand complex structures
were subjected to molecular mechanics combined with generalized
Born/solvent-accessible surface area solvation (MM-GB/SA) mini-
mization using the Protein Local Optimization Program (PLOP,
version 6.0)55–58. The binding-site residues within 5.0 Å to the ligand
and the loops were made flexible during minimization.

(5) Scoring: Complexes structures with high MM-GB/SA interaction
energies ( >100 kcal/mol) were considered with severe steric clashes
and discarded. Hybrid scores were recalculated for the remaining
conformations, selecting the highest-scored complex as the final
model. As the ligand protonation states may alter upon entering a
pocket, the protonation states of ligands and proteins were reevaluated
together using Schrödinger Protein Preparation Wizard48. For
compounds with altered protonation states, we conducted a manual
inspection and chose the protonation state that best aligned with the
known physicochemical properties of the ligand, such as pKa values
and the local environment within the protein binding pocket.

Molecular docking using Glide
For benchmarking, we employed the commercial molecular docking soft-
ware Glide, given its widespread usage in SBVS59. The initial compound
conformations were generated using the LigPrep toolkit from the SMILES
strings. The docking box size was set to 15 Å for the inner box and 30Å for
the outer box, with the centers determined by the coordinates of the co-
crystal ligands’ centers. We used the standard precision (SP, version 5.0)
docking mode for generating up to 500 poses per ligand and set other
parameters as default. Recognizing that the efficacy of molecular docking
heavily depends on the chosen protein structures, we implemented two
different benchmarking settings:

Cross-dock (Tc). The compounds were docked into the protein struc-
tures bound with a co-crystal ligand with the highest Tc relative to the
docked compounds. The Tc values were calculated using topological
fingerprints by RDKit51.

Cross-dock (MCS). The compounds were docked into the protein
structures bound with a co-crystal ligand containing the largest MCS
coverage with the docked compounds.

Benchmarking dataset
To evaluated the accuracy of our hierarchal template-based complex
structuremodeling approach andmolecular dockingmethods, we curated a
benchmarking dataset.We selected crystal structures where various ligands
bound to the same target, resulting a total of 333 protein–ligand complex
structures for 85 protein targets (Supplementary Data 1). Additionally, we
gathered the corresponding template ligands from the same protein within
our template dataset for each of the 333 docking compounds. A detailed list
of PDB IDs for the benchmarking dataset is provided in Supplementary
Data 1. TheMCS coverages and the Tc values range from 0.2 to 1.0 between
the docking compounds and the template ligands, with the majority cen-
tered around0.5 (Fig. S6).Toevaluate the influenceof template similarity on
the quality of complex structure modeling, we compared the sampling and
scoring capabilities of different approaches based on MCS coverage values.
The number of benchmarking systems within each MCS coverage interval
was as follows: 68 for the interval of 0.8-1.0, 73 for 0.6-0.8, 117 for 0.4-0.6,
and 75 for 0.2-0.4.

Training and inference procedures of Uni-Mol model
Uni-Mol is a universal molecular representation learning framework, fea-
turing a molecular pretrained model and a protein pocket pretrained
model32. It supports various downstream tasks, such as molecular property
prediction,molecular conformation generation, and protein-ligand binding
complex generation. Here, we used the Uni-Mol v1 framework for ligand
binding pose generation. During our training procedures, we utilized the
official checkpoints for the ligand and protein pretrained models and fine-
tuned protein-ligand contact modules using seven training datasets and
three random seeds. For inference, we used LBFGS optimizer to update the
translation, rotations, and torsion angles of ligands based on the predicted
protein-ligand binding distance matrix. Detailed scripts for training and
inference were provided in the supplementary materials.

Datasets used for training and testing Uni-Mol model
Weutilized the PoseBusters v1 dataset as our testing dataset, which consists
of 428 protein-ligand complex structures from PDB43. The ligands and
proteins were prepared with Schrödinger LigPrep and PrepWizard48.
Crystal waters were removed, and the pockets were cropped to a size of 6 Å
around the crystal ligand. We used ligand similarity-based data splitting
method to access the generalization ability of Uni-Mol model. The Tc
between training and testing ligands were calculated with morgan finger-
prints with RDKit toolkit51. Training datasets 1-4 are four subsets of
PDBbind (v2020), where the ligand was chosen to have a maximum Tc
value lower than 0.3, 0.5, 0.7, and 1.0 to any ligand in the PoseBusters
dataset, respectively. Complexes containing ligands with the maximum Tc
value lower than 0.3 from BindingNet v2 were added to Dataset 1 for
evaluating the utility of data augmentation on generalization capability.
Dataset 5 combined Dataset 1 with high-confidence complex structures
from BindingNet v2, Dataset 6 added moderate-confidence structures, and
Dataset 7 included low-confidence structures as well (Table 2).

Supplementary material
Supplementary Data 1. Benchmark dataset. It includes the PDB IDs for 333
benchmarking systems along with their corresponding templates. It also
provides the maximum MCS coverage and maximum Tc values for the
benchmarking compounds compared to the template ligands.

Supplementary PDF file includes the target, compound, binding affi-
nity distributions of BindingNet v2 (Figs. S1-S2), the maximum Tc values
between the ligands from PoseBusters v1 and PDBbind (Fig. S3), PB-valid
analysis of Uni-Mol (Figs. S4-S5), distributions ofmaximumMCS coverage
and maximum Tc for benchmark dataset (Fig. S6), sampling size compar-
ison among different samplingmethods (Table S1), comparative analysis of
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sampling and scoring ability (Table S2), and CCD codes for special com-
pounds (Table S3).

Data availability
BindingNet v2 is publicly accessible and can be visually inspected at http://
bindingnetv2.huanglab.org.cn/. It canbedownloaded fromZenodo (Crystal
Templates: https://zenodo.org/records/11218293; high confidence subset:
https://zenodo.org/uploads/11218329; moderate confidence subset: https://
zenodo.org/uploads/11218343; and low confidence subset: https://zenodo.
org/uploads/11218345).

Code availability
The scripts and data for training and performing inference on Uni-Mol
models are available at https://zenodo.org/uploads/13776971.
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