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Prediction of drug combination responses is a research question of growing importance for cancer
and other complex diseases. Current machine learning approaches generally consider predicting
either drug combination synergy summaries or single combination dose-response values, which fail to
appropriately model the continuous nature of the underlying dose-response combination surface and
can lead to inconsistencies when a synergy score or a dose-response matrix is reconstructed from
separate predictions. We propose a novel prediction method, comboKR, that directly predicts the
continuous drug combination response surface for a drug combination. The method is based on a
powerful input-output kernel regression technique and functional modelling of the response surface.
ComboKR belongs to the family of functional output regression methods, where the prediction target
is a function, in our case, a non-linear parametric surface. Our method thus avoids predicting
discretized forms of the target as scalars, vectors or matrices, and therefore provides better
interpolation and extrapolation along the surfaces. As an important part of our approach, we develop a
novel normalisation between response surfaces that standardises the heterogeneous experimental

designs used to measure the dose-responses, and thus allows training the method with data
measured in different laboratories. Our experiments on two predictive scenarios and using two
combination datasets highlight the suitability of the proposed approach especially in the traditionally
challenging setting of predicting combination responses for new drugs not available in the

training data.

Drug combinations are increasingly used for treatment of various diseases,
especially blood cancers and solid tumours'~. In contrast to monotherapies,
combination therapies offer the advantages in overcoming intrinsic and
acquired resistance in cancer treatment, enhancing drug responses via
synthetic lethality, and reducing unwanted side-effects by lowering the dose
of individual drugs in the combination®”.

In pre-clinical stages, drug combinations are typically measured in cell
lines using dose-response assays. High-throughput screening enables one to
measure the responses of pairwise drug combinations at a few selected
concentrations of the two drugs (eg, 5x5 or 8x8 dose-response
matrices)’. There are several efforts to conduct large-scale drug combina-
tion screens in various cancer types’~’, which have resulted either in fully or
partially measured dose-response matrices.

The synergistic effects of drug combinations are often evaluated by
summary synergy scores, calculated by the divergence between the

measured drug combination responses and the expected non-interaction
responses of the single drugs over the full matrix’. Multiple synergy models
have been proposed to score such divergence based on different assump-
tions of the expected non-interaction response, for example, the highest
single agent (HSA) model"’, Bliss independence model'' and Loewe addi-
tivity model"”. However, there are disagreements in terms of synergy when
using different synergy models, due to large differences in drug con-
centrations and maximum response values across studies'”.

Since drug combination synergy is evaluated based on multi-dose
combination responses, often tested in multiple cancer cell lines with dis-
tinct oncogene addictions, large-scale screening of combination effects is
required for the systematic discovery of new effective and selective combi-
nations. However, to screen pairwise combinations among 100 drugs at 5
different concentrations in 10 cell lines would already require more than one
million experimental tests. To speed up such a resource and time-
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consuming combination discovery process, machine learning models are
needed to narrow down the massive combinatorial search space'*".

A large proportion of current research focuses on the prediction of drug
combination synergy rather than dose-response values' . Some research
works focus on the prediction of drug combination responses at selected
concentrations” . A major advantage of predicting directly the dose-
combination responses is that different synergy models can be applied to the
predicted dose-response matrices in post-analysis, making the prediction
task independent of a specific synergy metric. One such prediction method is
the comboLTR”, which predicts directly the scalar-valued dose-combina-
tion responses by applying latent tensor-based polynomial regression
(LTR)™. The drug combination dose-response values can be seen as discrete
measurements sampled at different concentration values from a continuous
dose-response surface where the response value is a function of drugs’
concentrations. Both synergy score prediction and dose-response prediction
can be seen as predictions based on the underlying surfaces: if the full
continuous dose-response surface is known, the dose-response matrices can
be sampled from the known surface at given concentrations, and the synergy
scores can then be derived based on the sampled dose-response matrices.
Thus, the direct prediction of a dose-response surface is a more general task
than either predicting the single dose-response values or the synergy scores.

Recently, Ronneberg et al.” proposed an approach called PIICM, that
considers predicting full response surfaces instead of individual dose-
combination responses. They proposed a probabilistic prediction model
based on Gaussian process regression where the covariance matrices for
pairwise drug interactions are parameterised and learned. Notably, their
approach can be interpreted as a matrix completion task on the collected
response matrix, as the learning system is based on response data only,
without using any additional features (cell line or drug features). This means,
however, that the approach can not be expected to adapt to settings where a
response surface in a test set would contain a drug not seen in training data.
This more challenging new drug scenario is important in practical appli-
cations since one cannot assume that responses of all the drugs of interest
would been already tested before either individually or in combination.

In this work, we propose a novel approach for predicting directly the
full continuous drug combination dose-response surfaces with a kernel-
based functional output prediction model, called comboKR. In contrast to
the PIICM model™, comboKR is based on an inductive learning approach,
which predicts the drug combination response surface from input drug
features that are easily available from drug databases. Such an inductive
machine learning approach is based on the assumption that similar drugs
have similar combination surfaces (i.e. if drugs d, and d} are similar, so are
the combination surfaces of the pairs (d;, d;) and (d7, d,)). Moreover, to
overcome the practical issues arising from the heterogeneous experimental
design often used in drug combination response measurements, we propose
a novel normalisation scheme for comparing drug interaction surfaces. The
main goal of the normalisation scheme is to align the dose-response surfaces
to be centred around the area where the response changes rapidly as con-
centrations change. We demonstrate that with comboKR the massive
chemical space can be exploited efficiently toward finding novel effective
drug combinations beyond the given drug set with known measured
responses. To summarise, our contributions are as follows:

* We propose an accurate approach to drug combination response
prediction that predicts the full continuous drug combination response
surfaces instead of individual dose-response or synergy score values.

* Our surface-valued regression approach takes advantage of a novel
normalisation scheme between drug response surfaces that solves
issues arising from the heterogeneous experimental designs between
and within combination studies.

* Important for novel drug combination discovery, our proposed
method can be applied to new drug settings without the need to re-train
the model or experimentally measure each drug response beforehand:
only functions of the monotherapy responses are required.

 In comparison to the baseline LTR method™ and another surface-
valued prediction approach, PIICM™ (applicable only within simple

predictive scenarios), we show that comboKR achieves superior results,
especially in the more challenging predictive scenario, where testing is
performed on drugs not available in the training stage.

Overview of ComboKR
We propose a new model, comboKR, to predict the drug combination
response surface for a given drug pair in a cell line. In this inductive learning
approach, the predictions are made based on the drug features, that can be
collected from some database. Our method also uses a paremetrised func-
tion to model the drug combination surfaces—in our experiments, we chose
to use the BRAID model”. With this model, we additionally take advantage
of the more abundant monotherapy response data and assume that for the
drugs for which a combination surface is being predicted, we know the
monotherapy response model.

In this section, we first briefly introduce our predictive framework, after
which we discuss the BRAID model, and how to compute similarities
between two surface functions.

Surface-valued regression

Our focus is on learning to predict the full, continuous drug interaction
response surfaces y € ) for the drug pairs (d,, d,) € X inagiven cell line—
a challenging structured output prediction problem. This is an especially
difficult prediction task, since practically each output—a surface—in any
such data set is sampled in part or fully from different sets of concentrations
than the others, and therefore the dose-combination response matrices are
not directly comparable. To solve the problem, we consider adapting an
approach that has sometimes been referred to as generalised kernel
dependency estimation (KDE)* or input-output kernel regression
(IOKR)ZQ’”.

In a nutshell, our proposed model for surface-valued prediction relies
on a vector- or function-valued kernel ridge regression (KRR) problem,
obtained by mapping the surfaces to the reproducing kernel Hilbert space
(RKHS) H, associated with kernel ky : YxY — R (see Fig. 1c). Now,
instead of solving directly the structured prediction problem f : X — ),
the learning problem has been cast as vector-valued one to learn
g : X — 'H,, after which the prediction to H, is mapped back to ) (pre-
image problem). Using the closed-form solution for the KRR and assuming
a normalised output kernel k,, the final optimisation problem to obtain
predictions can be written as

f(-x) = arg max ky(y7 Y)(Kx + /\In)_lkx(Xv -x)' (])
yey

Here I, is n X n identity matrix, and A is the regularisation parameter of the
kernel ridge regression model. K, stands for the n x n kernel matrix col-
lecting all values of kernel evaluations between pairs of drugs k,(x;, x;), i,
j=1,...,nand each x; stands for a (ordered) pair of drugs, x; = (d;,d,),. In
this work, we have chosen to use as k, the Tanimoto similarity computed
from the MACCS fingerprints; however our framework is general and
adaptable to other input data representations with suitable kernel. The
shorthand k,(y, Y) refers to the vector [k,(y, y1), ..., k,(y, )] with {y;}7_| =
Y the outputs of the training set; k,(X, x) is defined analogously.

Problem (1) isill-posed in general. When this is the case, it is most often
solved by restricting the search for maximum value over a candidate set C,
instead of the full output space V. Every element in the set is tried out, and
the one giving the maximum value for (1) is chosen as the final prediction.

BRAID surfaces

Our learning approach considers full dose-response surfaces as the outputs
of the learning problem. Yet, the dose-response data is collected via factorial
experimental design by measuring response values from varying dose
concentrations, resulting in data sets where these surfaces are represented
with matrices collecting the measurements. Starting from the famous Loewe
additivity'” and Bliss independence'’, various approaches to modelling drug
interactions have been proposed”>’'™. In this work, in order to obtain the
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(c) Surface-valued learning problem
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Fig. 1 | Overview to the proposed approach. a The drug combination data and
associated monotherapy responses are used to fit a parametric surface on each dose-
response matrix. The BRAID surface model uses the Hill equations of the two drugs, as well
as two interaction parameters to model different types of response surfaces. b Illustration of
surface normalisation resulting in different similarities. The surfaces S1 and S2 are

AZsc,t,-;:: <’e; %

Moy ™ &
computed with x =0 (neutral), and S2 and $4 with x = —1.5 (extreme antagonism) and
K =25 (extreme synergism), respectively. ¢ Finally, a surface-valued prediction problem is
formulated and solved with the output kernel learning-style approach, where the output
data is mapped with the help of a suitable kernel k,, : ¥ x ) — R to RKHS M, (¢, is the
associated feature map: k, (y;,y,) = {(¢,(y;), ¢y(yz))Hy ).

continuous form of the surface, we use the bivariate response to additive
interacting doses (BRAID) drug interaction model’’ that builds on the Hill
equation’” and is motivated by the Loewe additivity principle. We fit this
function to each of the drug pair combinations. The model is intuitive, as it
uses the Hill equation parameters of the two drugs, in addition to two
interaction parameters. More concretely, the function depends on the fol-
lowing parameters:
» Four response parameters: the baseline response in the absence of
drugs, Ro; the maximal responses of drugs 1 and 2 as R; and R,; and

optionally also the maximal combination response R;. The R; para-
meter is not present in the original BRAID model introduced in ref. 27,
but it is present in the implementation™.

+ Hill equation slope parameters for both drugs: 7, and 7.

* Half maximal effective concentration (ECs,) for the two drugs: EC,
and EC,.

e The interaction parameter x € ] —2,00]: k<0, k=0, k>0 for
antagonism, additivity or synergy, respectively (as illustrated in
Fig. 1a).
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Now, the BRAID function for drugs 1 and 2 applied in dose con-
centrations ¢, and ¢, is written as

Rl _RO
14D,

BRAID(c;,¢,) = Ry +
where
Dn — Di/\/Tsz +D;/«/T172 +x Di/«/fszD;/«/Tlfz
o (D)
~ c L R,—R, ) \EC
Dl:(ﬁ) D= (;—RZ 5\
)T @)

R, —R, EC,

We note that in this formula it is assumed that one of the drugs is the weaker
one, and the other stronger. In the practical implementation™ either of the
drugs could be the stronger one, resulting to a slightly more complicated
formula. The implementation provides methods to fit the BRAID functions
to data.

Due to the scarcity of the combination data (for example only 3 x 3
measurements for each combination in the NCI-ALMANAC dataset), to
aid with the fitting process we additionally include the more abundant
monotherapy data available from other sources if possible. We illustrate this
in Fig. la.

The final optimisation problem of our model (Eq. (1)) is solved with the
candidate set optimisation. Here, domain knowledge can be exploited in
making the most suitable candidates: we make the natural assumption that
the monotherapy equations for the two drugs are known. Compared to drug
combination response data, monotherapy data is easier to collect,and many
databases already exist for those measurements. With the monotherapy
equations known, generating the candidate sets with the BRAID surface
model boils down to generating suitable parameter combinations for the
interaction parameters R; and .

Kernels between surfaces

Our surface-valued prediction approach relies on having a kernel, k,,
defined between the drug interaction surfaces. We choose to use the
Gaussian (or RBF) kernel, defined as kgyp(z,2') = e V1= 1" for some
vectors z and z’. At first glance, it might seem attractive to use the (vec-
torised) dose-response matrices directly available in drug combination
datasets in this kernel. However, even if those matrices were of the same size,
most often the drug doses used to measure drug combination responses are
widely different between any two surfaces. Thus, these measurements
cannot be directly compared to each other. We instead assume that we have
functions §;: RxR — R, mapping two dose concentrations to a
response value, parameterising the drug interaction surfaces available—in
our work we obtain these from the BRAID interaction model. We can now
fix a set of concentrations for all drugs, C = [[c;, ¢]], [¢;, 6], - - -, [en Ex ),
and compare any two surfaces in for example RBF kernel with

ky(sm Sp) = exp(—y Il S4(C) — SB(C)”;-:)7

where S, : RXR — R and S;: RXR — R are response surface
functions (e.g. BRAID). Both of them are defined for a pair of drugs on a cell
line and are here queried with some concentration values, returning the
response values at those dose combinations. Our shorthand notation (S;(C)
and §;(C)) evaluates these functions at all concentration pairs in the grid
defined by C, which, after properly reshaping, gives two N x N matrices in
the Frobenius norm evaluation in the kernel.

However, this straightforward approach still has limitations. Different
drugs often have different effective concentrations, meaning that two
combination surfaces expressing very similar interaction profiles (e.g.
similar levels of synergy) might be shifted in relation to each other so that the
kernel evaluation results in non-intuitive values. To overcome this issue, we

propose normalisation over the dose-concentration values to an effective
concentration range [0, 1] using the Hill equation, where 0 corresponds to
concentrations that have no effect on the cell growth, 0.5 indicates ECs,
concentration, and 1 corresponds to concentrations with a maximal
response. We denote kernel acting on normalised surfaces as k.

With this normalisation, problems related to shifted surfaces are
decreased, and the kernel l;y shows more realistically the differences in
interaction pattern (i.e. if the combination is synergistic or antagonistic). We
illustrate this difference between the two choices of kernels in Fig. 1b, where
surfaces of three types of interactions (S2, S3 and $4) are compared to
baseline surface S1. The three surfaces differ from S1 by one of the Hill
functions (h; instead of h;) and the interaction parameter . Intuitively, the
surfaces S1 and S2 are closest together in the sense that their drug combi-
nation interaction effect is very similar (x = 0). However, the Hill equations
and especially their ECs values for the first drug are different (equation h;
vs. h3), which has resulted in the two surfaces being “shifted” w.r.t. each
other. The Frobenius norms between the original surfaces are, in all three
cases, large, and S1 is judged most similar to S3. The normalised comparison
can take the shifting into account, and S2 is therefore judged to be most
similar to SI.

Results

In this section, we computationally validate our proposed surface-valued
kernel regression model for drug combination response prediction, com-
boKR. We consider two drug combination datasets: the NCI-ALMANAC,
and O'Neil*’. We compare our comboKR to a scalar-valued dose-response
prediction baseline, LTR™, and to another surface-valued prediction model,
PIICM™. For datasets where PIICM does not scale well, we compare to a
model derived from it—we call this PIICM" (see the “Methods” section for
details). Due to the computational cost of comboKR arising from the use of
kernel matrices, we consider all the cell lines as independent data sets, and
train and test on them separately—a challenging setting that often arises in
real-world personalised medicine applications. For comboKR we consider
both original and normalised output kernels and denote as “comboKR raw”
or “comboKR r.” the version with the original, simpler kernel, while
“comboKR” denotes version with our normalisation scheme.

The results presented here are obtained from two representative pre-
dictive scenarios: new drug and new combo. New combo refers to the case
when the test set consists of new drug combinations—however, all the drugs
are available in the training set as parts of other combinations. New drug is
more realistic, but also more challenging scenario, where the drug combi-
nations in the test set always contain a drug that has not been present in any
of the combinations in the training set.

Overview of the results
We present the overall Pearson correlations averaged over the cell lines
between the predicted values and ground truth measurements, as well as
between the Bliss and Loewe synergies calculated from them (Fig. 2). For the
response values, we also display density plots in Fig. 3 where include
additionally HSA baseline'. In the easier new combo scenario on the NCI-
ALMANAC dataset, the scalar-valued prediction approach, LTR, slightly
outperforms all the surface-valued ones. With O’Neil data the PIICM
method slightly outperforms others. Yet, the differences between the
methods are relatively small. However, in the more challenging new drug
scenario, the situation reverses, and the surface-valued approaches mostly
outperform LTR. In this more challenging setting, comboKR has a clear
advantage over the other models, especially when using the concentration
normalised surface kernels. PIICM inherently requires all the drugs (and cell
lines) in the test set and also in training, and thus cannot be applied in this
setting. With the NCI-ALMANAC dataset, all the predictive models out-
perform the HSA baseline in the easier scenario, while comboKR continues
to outperform it also in the more difficult one. With the smaller O’Neil
dataset, all the results are closer to the baseline.

It can be seen from Fig. 3 that the surface-valued models can offer
improvements over the scalar-valued model in predicting the extreme
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New combo scenario
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Fig. 2 | Violin plots of Pearson correlations over the cell lines in the two pre-
diction settings (NCI-ALMANAC: 60 cell lines; O’Neil: 39 cell lines). The vertical
lines in the plots highlight the mean and the extrema. First row of plots shows a
correlation between original and predicted combination responses. Additionally,
synergy scores (Bliss and Loewe) were calculated from both ground truth
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measurements as well as for the predictions. The two other rows show correlations of
these synergy scores. Statistical p-values from two-sided Kolmogorov-Smirnov test
is shown for all the competing methods compared to ComboKR (full pairwise results
are available in Supplementary material).

response values that are more rare in the data. The LTR model focuses on the
predictions of the more abundant, higher response values, and easily
overshoots the predictions of the lower response values. While this is easier
to see in the new drug predictive scenario between comboKR and LTR, the
same behaviour is already present in the new combo setting. With NCI-
ALMANAC data, the other surface-valued method, PIICM, predicts the
extreme response values better than LTR but not as well as the comboKR
approaches. However, with O’Neil data—with which PIICM was originally
evaluated with”—PIICM outperforms the other methods.

In supplementary material, we show additional results for the corre-
lations with the fitted BRAID surfaces, as well as full pairwise results on the
statistical significance of the differences between results displayed in Fig. 2.

Performance over tissue and drug combination types

Both NCI-ALMANAC’s and O’'Neil dataset’s cell lines originate from
multiple tissue types: nine types in NCI-ALMANAGC, six in O’Neil. Simi-
larly, the tested drugs belong to three drug groups (chemotherapy, targeted
and other). Details of these groupings can be found from the supplementary
material.

We investigated and compared in more detail the performance of the
methods on these different tissue types and different drug type combina-
tions in the two predictive settings (Figs. 4 and 5). As before, the LTR
method performs slightly better than the comboKR approaches in the easier
predictive scenario with the NCI-ALMANAC dataset, while PIICM out-
performs others in this setting with the O’Neil dataset. Yet, looking at drug-
type combination results, it can be seen that the PIICM has less advantage
with chemotherapy drugs, with which comboKR performs similarly to
PIICM. In the new drug scenario, comboKR clearly outperforms comboKR
r. and LTR, while with the NCI-ALMANAC dataset also comboKR r.
outperforms LTR. While the difference between the two comboKR variants

is larger in the challenging new drug setting, also in the easier new combo
setting on the O’Neil dataset, comboKR already outperforms the simpler
comboKR r. approach in some cell lines and drug type combinations.

Performance of predicting individual surfaces

The results so far have focused on the overall performance of the models.
Here, we show in Table 1 the results of the pairwise comparison of individual
surface predictions. The table reports the average percentages (averaged
over the cell lines) of how often a method achieved a better prediction for the
surfaces in the test set, w.r.t. mean squared error, compared to the other
methods (the comparison is always pairwise).

Similarly to the previous results, also here it can be observed that the
differences between the methods are small in the easier new combo predictive
scenario (Table 1a and c). The new drug predictive scenario (Table 1b and d)
highlights again the benefits of the surface-valued methods: LTR obtains most
often the worst prediction for a surface. The results again highlight how using
the normalised surface kernels outperforms the basic comboKR r. approach.
Notably the amount of identical predictions between the two comboKR
versions is almost half the amount of that in the new combo setting.

An advantage to our method is that comboKR predicts a full con-
tinuous interaction surface, from which one can sample any dose-
concentration pairs to obtain dose-specific predictions or summary
synergy scores. Contrary to this, the baseline LTR accurately predicts only
those concentrations measured in the drug response assay separately, which
can lead to predictions that do not follow a smooth interaction pattern. We
illustrate this in Supplementary material.

Discussion
In this work, we have investigated the drug combination response prediction
problem from the point of view of predicting entire drug combination
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Fig. 3 | Density plots of predictions and ground truth measurements over all cell
lines for the two predictive scenarios. The titles of the plots indicate the Pearson
correlation, Spearman correlation and root mean squared error (RMSE) between the
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(d) New drug predictive scenario, O’Neil dataset.

predicted and the measured response values. The panels a and ¢ show results for

Count

Count

NCI-ALMANAC dataset, while b and d show them for O’Neil. Panels a and b show
results of the new combo scenario, and ¢ and d show results in the more challenging
new drug scenario.
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Fig. 4 | Distributions of Pearson correlations of the drug-dose response predic-
tion on the different tissues (see supplementary material for details) in the two
predictive scenarios, for the comboKR variants and LTR, as well as for PIICM
variants in the new combo scenario. The vertical lines in the plots highlight the
mean. The violins with fewer than ten elements indicate the number of elements in

parenthesis of the horizontal axis label and additionally include also the individual
results, marked with crosses. The panels a and ¢ show results for NCI-ALMANAC
dataset, while b and d show them for O’Neil. Panels a and b display results of the new
combo scenario, and ¢ and d display the results in the more challenging new drug
scenario.

surfaces, instead of predicting individual response values. We propose an
approach based on kernel methods, which when combined with a novel
surface normalisation scheme, overcomes issues arising from the hetero-
geneous experimental design used to measure the data. We show that
casting the drug combination response prediction as a structured prediction
learning problem can improve predictive performance, especially in tradi-
tionally challenging experimental settings. Namely, our method shows great
promise especially in the new drug scenario, providing the opportunity to

find promising drug combinations that go beyond the limited set of drugs in
the training set.

To explore the suitability of our proposed surface-valued learning
approach, we performed computational experiments on the NCI-
ALMANAC and O’Neil datasets. Of the two predictive scenarios investi-
gated in our experiments, the proposed surface-based approach achieves
better predictive performance, especially in the more challenging new drug
scenario. Even the more straightforward surface-valued prediction
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dataset.

approach outperformed the baseline LTR method on one dataset, but
especially the novel concentration normalisation provides significant
improvements in this challenging, yet practical setting. In personalised
medicine studies, either focusing on individual cell lines or patient samples,
one cannot assume that each drug has already been tested in combination
with other drugs in often limited training datasets. In addition to out-
performing other approaches, the suitability of our proposed comboKR in
the new drug scenario is also computationally practical: unlike with the

traditional methods, the proposed model does not need to be re-trained to
obtain predictions when a new set of drugs is introduced to the test set;
predicting only requires the monotherapy response function for the (new)
drugs. Moreover, the comboKR predicts a full continuous drug interaction
surface, instead of individual values that might not conform to a smooth
interaction pattern. Again, this gives a practical advantage: it is easier, based
on the predicted surface to experimentally validate the synergy between two
drugs by using the surface to determine relevant drug concentrations.
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Table 1 | Pairwise comparison of the methods

(a) NCI-ALMANAC, new combo sce-
nario. *comboKR versions resulted in ties
at rate 14.5£2.6%.

% | cKR cKRr. c.LTR PIICM*
cKR 43.1+4.0* 464451 52.9+4.6
cKRr. | 424£31* 44.0+4.4 51.3+4.2
cLTR | 53.6£5.1 56.0£4.4 55.4+6.0
PIICM* | 47.14£4.6  48.7+42  44.6£6.0

(c) O’Neil dataset, new combo scenario.
*comboKR versions resulted in ties at rate

13.2+4.2%.

% ‘ c.KR cKRr. c.LTR PIICM
c.KR 50.847.3" 64.048.2 60.2+5.5
cKRr. | 36.0+7.5" 56.6+6.9 55.9+4.6
c.LTR 36.0+8.2 43.4+6.9 52.6£5.3
PIICM 39.8+5.5 44.1+4.6 47.4+5.3

(b) NCI-ALMANAC, new drug scenario.
*comboKR versions resulted in ties at rate

7.3+3.2%.

% ‘ c.KR c.KR r. c.LTR
c.KR 56.245.7° | 75.846.1
cKRr. | 36.6+£4.3" 67.7£6.5
c.LTR 24.246.1 32.3+6.5

(d) O’Neil dataset, new drug scenario.
*comboKR versions resulted in ties at rate

7.3+5.6%.
% | ¢KR cKR 1. c.LTR
c.KR
c.KRr. | 14.249.6° 41.0£15.7
c.LTR 19.749.7 | 59.0£15.7

The table reports average percentages over all cell lines. How often did the method on row give a better prediction for a surface, w.r.t. mean squared error, than the method on column; rows with high values
(darker colouring; similarly columns with low values with lighter colouring) indicate better performance for the method. The two comboKR versions with original and normalised surface kernels use the same
candidate sets, and so their predictions might be identical, resulting in ties in the rankings. Tie counts are not included in the tables, so cells marked with asterisk do not add to 100%.

Table 2 | The amount of cell lines and drugs in the datasets considered in this work

Dataset #Cell lines #Drugs #Surfaces Measurements
NCI-ALMANAC 60 104 311527 3 x 3; one set
O’Neil et al 39 38 22 527 4 x 4; four sets

The table reports also the amount and sizes of the drug combination matrices measured in the data.

Surface sampling can also be used to suggest doses for experimental testing
with highest likelihood for revealing synergy between two drugs.

Additionally, we observed that the surface-valued methods, in general,
were better suited for predicting extreme response values (Fig. 3). This was
most clearly observed in the new drugs setting. The extreme responses are
often most informative for identifying synergistic (or antagonistic) interac-
tions between two drugs, so their prediction is critically important for drug
combination discovery. Our comparison with the HSA baseline showcases
the overall difficulty of drug combination response prediction: even such a
simple baseline can perform relatively well, most likely due to the presence of
extreme combination responses that can be captured by most models.
Indeed, HSA is equal to the concept of independent drug action (IDA) that
can explain many of the clinically beneficial drug combinations, even
without pre-clinical synergy’. Such a simple baseline can thus provide a
useful first guess for modelling novel drug interaction patterns.

Our experiments give promising results for using a structured pre-
diction approach in the drug combination response prediction, motivating
future research. It will be important to investigate ways to make the Com-
boKR model more scalable on big high-throughput screening data con-
sisting of millions of data points. A more scalable model would allow more
variety in the predictive scenarios: if trained over multiple cell lines, a fully
new cell line could be included in the predictive stage. The obvious bottle-
neck for applications to multiple cell lines is the sampling of the large kernel
matrix on inputs, consisting of two Kronecker products: KQK,QK,;. In
addition to efficient algorithms and parallelisation strategies, for example,
kernel approximations could be investigated to speed up the computations.
Another avenue to pursue would be to follow*, and investigate the scal-
ability using or generalising the proposed Kronecker product vec-trick.
Finally, it would be interesting to investigate and compare different drug
combination surface models. In current work, we have used the BRAID
surfaces, but our method could be applied to any model.

Methods

Drug combination datasets

In this study, we consider two drug combination datasets: the NCI-
ALMANAC’, and O'Neil*—see Table 2 for a summary of them.

The O’'Neil dataset provides a screen of 38 unique drugs in pairwise
combinations on 39 diverse cancer cell lines (see Supplementary material). The
combination data consists of 4 x 4 drug combination measurements on the cell
lines; in total there are 22,527 of such drug—drug-cell combinations. (We note
that the full data size is 22,727, but 22,527 is the amount of the surfaces with
measurements on 4 x 4 grid. The other 200 are measured at non-conforming
grids.) In this work, the median response values over the four measurement
replicats are considered to be the groundtruth responses for the experiments. In
addition to the combination data, the dataset contains monotherapy mea-
surements for the drugs on the cell lines, typically on six measurement replicats.

The NCI-ALMANAC dataset provides systematic screening of drug
combinations among 104 FDA-approved anticancer drugs on the 60 NCI-
60 human tumour cell lines covering 9 different tissue types (see Supple-
mentary material). In this dataset, drugs have been screened at either 5 or 3
concentrations, resulting in 5 x 3 or 3 x 3 drug combination dose-response
matrices. As the number of larger dose-response matrices is much fewer
than 3 x 3 matrices, in order to have consistent dose-response matrix size in
method evaluation, the large dose-response matrices were subsampled to
3 x 3 by keeping the entries corresponding to the largest dose concentra-
tions. Monotherapy responses at combination dose concentrations were
also included in the NCI-ALMANAC dataset for the 104 drugs, where
single-drug responses were measured at various concentrations. Different
concentration values were determined for different drugs’. Thus, each drug
combination response surface is represented by the measured responses by a
4 x 4 matrix containing both combo- and mono-responses. When duplicate
measurements of the same drug combination on the same cell line appeared,
the median of measurements was taken.
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Fig. 6 | The drug dose combination counts in NCI-

ALMANAC dataset. The two axes refer to the two =
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NCI-ALMANAC data has been collected with a standard factorial
experimental design. The 3-by-3 (or 4x4), dose-response matrices
described above are independent of each other in a sense, that the dose levels
between experiments (matrices) used to collect the data are not the same.
Notably, even if two response matrices both consider the same drug as one
factor, the concentrations used in measurements might differ between them.
To illustrate this, Fig. 6 shows that here is a large amount of different
concentration combinations in the NCI-ALMANAC data. On average, any
given dose combination is found from only 0.44% of the drug response
matrices. The most common concentration combination is present at 12.4%
of the matrices (the full distribution is shown in Supplementary Material). It
is very rare that for any two surfaces, all nine concentration combinations
would match. Thus, directly comparing any two dose-response matrices in
the dataset can very rarely be done.

NCI-ALMANAC reported two endpoints calculated differently by
using time zero measurement as reference or not”. For the percent growth
of cells with time zero as reference (“PercentGrowth” as reported in the
dataset), the responses range from —100 to 100. However, for this endpoint,
the calculation processes are different when the percent growth of test cells is
lower or higher than the time zero measurement of cell growth. Whereas for
the percent growth of cells using only control values (“Percent-
GrowthNoTZ” as reported in the dataset) as a reference, the response cal-
culation is consistent and ranges from 0 to 100. Thus, for simplicity and
consistency of data, the endpoint denoted as “PercentGrowthNoTZ” was
used as the response value. If there were missing values for the endpoint, it
was calculated from the raw measurements reported in the dataset. For
O’Neil dataset, we used directly the viability measurements as the responses
that were provided in the data*’. The values mostly range in [0, 1], some-
times higher values than 1 are present.

Our proposed comboKR, as well as the compared PIICM method, rely
on accurate surface modelling in the training stage. Since the NCI-
ALMANAC drug combination response data only contains three mono-
therapy measurements for both drugs, the NCI-60 single drug monotherapy
response data where typically a drug is measured at multiple concentrations
was also integrated as part of the surface model fit procedure, in order to help
improve the model performance with a better estimate of monotherapy
dose-response functions. We remark that the O’Neil dataset directly
includes additional monotherapy viability measurements in addition to the
combination data.

To train the machine learning models to predict the dose-response
values, we consider the commonly used 166-bit 2D structure MACCS
molecular fingerprints as the input data.

The ComboKR model

Our proposed ComboKR model is an adaptation of an approach that has
sometimes been referred to as generalised kernel dependency estimation
(KDE)*® or input-output kernel regression (IOKR)*.

In this approach, operator-valued kernels (OvKs) are used to solve a
regression problem to a reproducing kernel Hilbert space (RKHS) H,,
induced by a traditional scalar-valued kernel k, defined for the output data
in Y. OvKs are associated with vector-valued reproducing kernel Hilbert
spaces (vv-RKHSs), containing functions that map the data to the vector-
valued (or function-valued) output space. Thus, they are a natural choice to
solve for the function g : X' — H,,.

In this context, the operator-valued kernel is a function £ : XX X' —
L(Hy) in which L£(Hy,) denotes the set of linear operators from H,, to
Hy—if the output space H, is finite-dimensional, i.e. Hy, = R?, then
L(Hy) =RP *P_In practise, the most common operator-valued kernel to
use is the separable (or decomposable) kernel, which can be written as
K(x,2z) = k(x,2)T with k, : ¥ *X — R being a traditional scalar-
valued kernel on the input data, and T € £(Hy), which in turn is often
chosen to be the identity.

Operator-valued kernels generalise the usual scalar-valued kernels,
notably also the representer theorem. Thus, the solution to the regularised
learning problem considered in the IOKR,

§0) = min ; Iy = gG) | + A 1 gl

where Hy denotes the vv-RKHS associated with /C, can be written as

g = > K(x, x)e;
i=1

Here c; € H,, are the multipliers to be learned. Like in the usual scalar-
valued case, the closed-form solution

vec(C) = (G + M) " tvec(®(Y))
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can be obtained, in which &(Y) = [¢,(y1), ¢,(y2); ..., ¢,(yu)] and C= [cy, 3,
...» €,), both of size d x n if the size of feature space associated with kernel ky
is denoted with d. G is the nd x nd operator-valued kernel matrix with
block-wise structure. Now,

g(x) = K(x, X)vec(C) = K(x, X)(G 4 AI) " 'vec(®(Y)),

where K(x, X) = [K(x,x,), ..., K(x,x,)]
After solving for g, the final predictions can be obtained from the pre-
image problem

argmin || ¢,(y) — g)II’
yey

or from

arg max (¢, (y), g(x))
yey

if one assumes that the output kernel ky is normalised, i.e.
k,(y,y) = 1V¥y € Y.Itis now possible to take advantage of the form of the
separable kernel matrix, and the Kronecker product vec-trick, to obtain the
final optimisation problem

f(x) = argmaxk,(y, Y)(K, + AL K (X, X). @)
yey

Here I,, is n x n identity matrix, and K, stands for the n x n kernel matrix
[kx(x.,xj)]:j:l. The shorthand k,(y, Y) with Y = {y;}’_, the training set

outputs, refers to the vector [k,(y, y1), ..., k,(3» yu)]; kX, x) is defined

analogously.

Algorithm 1. The comboKR approach

Require K™ ¢ R"=i*uin the kernel matrix on drug pairs in

training set

1: Kt ¢ Rwin*"es the kernel matrix on drug pairs between training
and test sets

2: A regularisation parameter for KRR

3:[S;]m Tist of fitted (BRAID) surface functions for training data

4 [hl];:l‘ and [hz];l;‘l', lists of monotherapy (Hill) functions for the
drugs in test data

5:[C 1];;‘1‘, [Cz];’jl‘ lists of concentration arrays on which predictions
should be made

6: M « (K ! >Training

7: Z « MK

8: if use normalised output kernel then

9: S <« sample training surfaces on normalised grid

10: end if

11: T« [] > T collects predictions at queried concentrations

12:fort € [1, ..., ney] do > Loop for predicting

13: Q< candidate surfaces with k;[f] and h,[f] as monotherapies

14:  if use normalised output kernel then

15: Q < sample candidate surfaces Q on normalised grid defined

on [0, 1] x [0, 1]
16: else if use the original output kernel then

23: add Q; sampled at concentration grid based on C; [¢] and C,|[¢]

toT

24:  else if use the original output kernel then

25: addQ;to T

26:  endif

27: end for

28:return T

The pseudocode of the approach can be found in Algorithm 1. Our
approach assumes fitted monotherapy functions (Hill equations in our
experiments) for the drugs in the test set, and also fitted surface functions for
the training data (BRAID surfaces in our experiments); computing these can
be seen as a preprocessing step. We note that for the new combo scenario, all
these Hill equations are equations of the drugs in the training set, but in the
new drug scenario, the Hill equations also contain equations for previously
unseen drugs.

Training of our model is done based on the closed-form solution and
consists of computing (K, + /\In)flkX(X , x) from Eq. (2) (lines 6 and 7). For
predicting, we consider candidate set optimisation. Here, we take advantage of
the domain knowledge and the assumption that the monotherapy functions
for the drugs in the test set are known. Now, the candidates can be created by
directly using the parameters available in the Hill equations and by generating
various combinations of the other required parameters; for the BRAID func-
tion the parameters R; and «. Finally, one of the candidate surfaces is chosen as
the final prediction following Eq. (2) (lines 20 and 21). It is good to note that in
order to obtain predictions for a drug outside of the training set, the model
requires no re-training, but only the Hill equation of the drug in question.

In this work, for our experiments, we choose k, to be defined as
k.((dy,d,),(d}, dy) = ky(d;, d))ky(d,, dy) with k, acting on the MACCS
fingerprints to be Tanimoto kernel”. As discussed, for the output surfaces, we
consider the RBF kernel, which conforms to the assumption of having the
output kernel being normalised. We use the parameter y = 1 with o equal to
the mean of distances between the surfaces in the training set. Results com-
paring different output kernels can be found from the supplementary material.

Remark 1. For simplicity, we have chosen to use the pairwise kernel
defined as k,((d,, d,), (d,, d})) = ky(d,, d;)k,(d,, dy). Tt is not invariant
to the order of the drugs, and thus, in practice results in the requirement of
“doubling” the data in training by including both orders.

Formulations for invariant kernels exist (see e.g. ref. 25), but we
observed negligible differences in observed performance between the ker-
nels (Table 3).

Concentration normalisation to obtain a normalised surface kernel.
The main idea of our proposed surface normalisation scheme is to
standardise the concentration measurements across the different drugs
so that all the concentrations are in the same range, and the surface
comparisons can be made more easily. To this end, we map the dose
concentrations with the help of Hill equations, individually for each drug
in each cell line, to the range [0, 1], where 0 intuitively stands for “no
effect”, and 1 stands for “maximal effect” (see Fig. 7). More concretely, the
concentration normalisation transformation CN can be written as

h(C|R07 Rmax7 T ECSO) — RO
Rmax - RO

CN(c|Ry; Ry, T, ECsy) =

Table 3 | Minimum, average and maximum differences of

17: S < sample training set surfaces on test concentration grid Pearson correlations over all the cell lines on the O’Neil data
based on C;[t] and C,][t] results, when a non-invariant input kernel was used along with

18: Q < sample candidate surfaces Q on test concentration grid ~ the data doubling, or an invariant kernel was considered
based on C,[t] and C;[t]

19:  endif New combo New drug

200 K = [exp(—y | S; = Q)] 51 € [1 usinh, € [1 Meanaicnes]  Sim AETENC 090 420705

21: i< argmax [K}*] Z[:, f] > 7], 1] denotes fth column of Z Average difference 0.000668 0.001973

(17 candidates] i i
22:  if use normlalise d output kernel then Maximum difference 0.004697 0.008049
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Fig. 7 | Illustration of the concentration normalisation procedure to [0, 1] range.
The concentrations too low to elicit a response are mapped to zero, ECs, concentration is
mapped to 0.5, and concentrations close to maximal effect are mapped close to 1.

in which c is the original concentration, and # is the Hill equation with
parameters Ry, R,y Tand ECs (i.e. baseline response, maximal response,
slope parameter and half maximal effective concentration). The normal-
isation formula uses the same R, and R, as the Hill equation.

After the concentration normalisation, the values [0, 1] can be seen to
correspond to each other over all the different drugs—unlike in non-
normalised cases where a concentration might yield a very different
response from two different drugs. With all drug concentrations normal-
ised, comparing different surfaces is easy in a common grid of values from
[0, 1] x [0, 1] (even if for different drugs and cell lines they map to different
original concentrations). Due to the nature of the normalisation scheme, it
can be expected that this common drug grid in all surfaces will focus
especially on areas where the potential synergy or antagonism can best be
captured (as illustrated in the second part of Fig. 1).

Experimental setup

We compare our comboKR (available at https://github.com/aalto-ics-
kepaco/comboKR) to two baselines: LTR*** for predicting individual
response values, and PIICM™* as another surface-valued prediction
method based on Gaussian processes. With our comboKR, we consider both
the original and normalised surfaces in output kernel computations: the
former case is denoted by comboKR r.

LTR is a polynomial regression model for scalar-valued prediction that
exploits higher order interactions between the views in predictions. As input
for a prediction, it takes the two drugs and their concentrations. As com-
boKR considers kernels on input data, for LTR we use the empirical
features* from Tanimoto kernel evaluated on the MACCS fingerprints. As
for the dose-concentrations, the LTR method represents them as one-hot
encoded vectors.

PIICM is a surface-valued approach based on Gaussian process
regression, that uses latent GP model from bayesynergy R package'” to model
the drug response surfaces.” conducted the experiments with the O'Neil
dataset also considered in our work. Thus, with the O’Neil dataset we use their
training-test split in the new combo scenario, with their original surface
modelling and data normalisation scheme, both of which differ from ours.
Contrary to”, to adhere within our setting, we train separate models for each
cell line. With NCI-ALMANAC dataset we instead use the same BRAID
surfaces as the baseline models as in our comboKR. Like in ref. 25, we consider
a subset of concentrations to represent the surfaces since the method is
computationally too heavy to run with a full set of concentrations in the data
(over 60 unique dose values), and the BRAID surfaces are sampled at these
concentrations as training data to the model. As the original PIICM con-
centration normalisation also resulted in a [0, 1] interval, when using the
BRAID surface model, we also consider our novel normalisation scheme.

Yet, we observed that the memory requirements for the PIICM method to
run with NCI-ALMANAC dataset in our setting were infeasible, as the number
of drugs considered is relatively large. In order to run the method, we forced it
to consider a simplified form of the drug combination covariance matrix—we
call this PIICM". While this might put the method at a disadvantage, in
practice, we observe that in the new combo setting its performance is close to
LTR, which is close to the results obtained in ref. 25. Moreover, we observed in
small-scale experiments that our modification performs comparably to, or
even slightly improves, the original parametrisation (see details in Supple-
mentary Material). The PIICM™ outputs predictions on the chosen con-
centration grid. To obtain the final PIICM " predictions, we interpolate with
Nadaraya-Watson kernel regression from this set of concentrations to the
concentrations at which the test surfaces are measured at.

The parameters for the models are chosen with cross-validation, taking
into account the specifics of the predictive scenario in each split. For our
comboKR, A is chosen from 1e-2, 5e-2, 1le-1, 5e-1, while in LTR,
the order is considered 3 or 5, and rank 10 or 20. PIICM" and PIICM drug
rank is cross-validated over 5, 25, 50, 75 and 100. In comboKR, the nor-
malised grid is a 11 x 11 grid, based on normalised concentrations [0, 0.1,
0.2, ..., 0.9, 0.999]. In all models, the training data is “doubled”, i.e. both
orders of drug pairings are included separately in the training set.

Predictive scenarios. We consider predictions in two scenarios:

* New drug: one of the drugs in the combination queried at the test stage
has not been seen in any combination during the training stage.
Monotherapy responses of the novel drug are assumed to be available
during the training stage.

* New combo: the drug combination queried at the test stage has not been
seen in training; however, both single drugs may have been seen in the
combinations encountered during training.

In the new combo setting, the data in each cell line is divided evenly into
five folds, of which one is used as test fold, and the remaining folds are used
in training and validation (with O’Neil data we use the same split as in
ref. 25). In the new drug setting, the test fold contains all surfaces where
either drug is one of ten (NCI-ALMANAC) or four (O’'Neil) randomly
chosen as the new drug. The four validation folds are obtained similarly
among the rest of the data used in the training, always with randomly chosen
drugs. Clearly, the new combo setting is the easiet of the two prediction
scenarios. We note that in both scenarios, no drug-dose combination
response values of a surface queried at the test point are available in training.
The task is to predict all the combination responses, instead of filling missing
values inside a matrix with known entries.

In the more challenging new drugs scenario, the drug features and
monotherapy responses for the novel drug are assumed to be available
already in the training stage. For most of the standard models, including the
LTR baseline, it means that at any time a new drug is to be included in
testing, the model would need to be re-trained with the additional infor-
mation. This can be very costly. An advantage of our proposed comboKR
method is that this kind of re-training is not needed, and the new mono-
therapy response data can be introduced to the model during the test stage
when the candidate surfaces are being built. In this scenario, the relevant
monotherapy responses of the new drugs in the test set are included to
augment the LTR training set.

We note that the PIICM method” is based on Gaussian processes,
modelling the drug interaction surfaces and without considering any drug
(or cell line) features when making predictions. Thus, it cannot generalise to
data outside of the training set in the new drug scenario and cannot be
applied there.

Obtaining the drug interaction surfaces. As a preprocessing step for
surface-based approaches (PIICM " and our proposed comboKR), we fit
the BRAID drug interaction surfaces to the available combo data with the
synergy package®. Due to the scarcity of the monotherapy responses in
the NCI-ALMANAC combination data, the relevant monotherapy
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Fig. 8 | Density plots of the measured responses compared to the responses

sampled from the fitted BRAID surface models at the same concentrations, over
the full NCI-ALMANAC data (left) and full O’Neil data (right). As the viability
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response values in O’Neil are in range [0, 1], for better comparison to NCI-
ALMANAG, they have been scaled to [0, 100] here. For RMSE in O’Neil, the first
value is for scaled responses, the second value in parenthesis is for the original data.
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Fig. 9 | Examples of BRAID surfaces not fit well to the NCI-ALMANAC dataset.
On top: cell line HL-60(TB), drugs pentostatin (id 218321) and streptozotocin (id
85998). Middle: cell line NCI-H226, drugs nilotinib (id 747599) and floxuridine (id
27640). Bottom: cell line OVCAR-8, drugs capecitabine (id 712807) and bend-
amustine (id 138783). The two first plots in each row show the NCI-60 monotherapy

responses in black, with blue crosses highlighting the NCI-ALMANAC mono-
therapy response values, while the curve displays the responses from the Hill
equation from the BRAID model. Third column displays the full combo data matrix,
and the final column shows the fitted BRAID surface.

responses available in NCI-60 were used to augment the combo data. Hill
equations fitted to the monotherapy data are used in building the nor-
malised output kernels. Overall, the average Pearson correlation of the
fitted BRAID surfaces sampled at the measurement positions to the
ground truth combination measurements was 0.9037 + 0.0169 averaged

over the cell lines, 0.905 over all of them in NCI-ALMANAC dataset, and
0.980 +0.015 averaged over the cell lines, and 0.982 over all of them in
O’Neil dataset (see Fig. 8 for density plots).

It can be expected that large amount of of the discrepancies are due to
surface model filtering out noise from the measurements. However, some
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errors in fitting to the NCI-ALMANAC dataset are due to the conflicts
between it and and NCI-60 dataset. Examples of this are provided in Fig. 9,
where monotherapy data follows a clear trend and the monotherapy entries
in combo data are outliers.

Candidate surfaces for comboKR. The simplest way to solve the pre-
image problem (i.e. finding the best y for prediction g(x) in Hy,) for the
comboKR problem (2), is to consider a candidate set where all elements are
tested out, and the one giving the highest score is selected as the prediction. In
both of the predictive scenarios, we assume that the monotherapies of the
drugs are available. Thus, we can easily create relevant surface candidates
with the surface model by only varying the parameters « and E, . that are
related to the behaviour of the drug combination. In experiments, the can-
didates are generated by sampling « from [—1.5, —1, —0.5, —0.1, 0.01, 0.1,
0.5, 1, 2, 10] (to capture various surface interaction profiles), and E,, from
around the maximum values of the individual drug responses.

Performance metrics. The test sets in both predictive settings consist of
drug-dose interaction surfaces that have been sampled at various dif-
fering 4 x 4 grids. The predictions at those concentrations were obtained
as follows: in LTR they are directly predicted, in PIICM they are inter-
polated from the predictions in the normalised grid, and in our comboKR
they are sampled from the predicted BRAID surface. Two synergy scores
(Bliss and Loewe) are calculated based on these ground truth and pre-
dicted 4 x 4 matrices.

We report Pearson correlations of the predictions (both for raw
responses and summary synergy scores) calculated for each cell line sepa-
rately. Within a cell line, both the predictions and ground truth labels are
vectorised, and the correlation is calculated between the two vectors. The
same procedure is used when investigating different tissue types and drug
combination types: all the ground truth and predicted responses within the
group in a cell line are vectorised to compute the Pearson correlation.

Furthermore, we compare all the methods to each other on the level of
individual surfaces, by reporting how often in the test set each of the
methods obtained the best prediction for a given surface with respect to the
mean squared error—Pearson correlation not being applicable if the matrix
of values that is sampled from the predicted surface is constant. This hap-
pens most often in modified PIICM, but also sometimes in both comboKR
versions.

Data availability

The NCI-60 and NCI-ALMANAC datasets’ used are publicly available at
https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth-Inhibition
+Dataand https://wiki.ncinih.gov/display/NCIDTPdata/NCI-ALMANAC.
The O’Neil dataset is available as supplementary material associated with
ref. 40.

Code availability

The code for the comboKR method is available at https://github.com/aalto-
ics-kepaco/comboKR. For the competing methods, we used codes made
available for LTR at https://github.com/aalto-ics-kepaco/GO_LTR and
adapted PIICM from https://github.com/Itronneb/PIICM/. The software for
the BRAID surfaces is available from https://github.com/djwooten/synergy/.
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