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We revisit the spin-injected field effect transistor (spin-FET) in a framework of the lattice model by applying
the recursive lattice Green’s function approach. In the one-dimensional case the results of simulations in
coherent regime reveal noticeable differences from the celebrated Datta-Das model, which lead us to an
improved treatment with generalized result. The simulations also allow us to address inelastic scattering and
lateral confinement effects in the control of spins. These issues are very important in the spin-FET device.

T
he spin-valve device1–3 and spin-injected field effect transistor (spin-FET)4 lie at the heart of spintronics. The
basic principle of this type of devices is modulating the resistance by controlling the spins of the carriers5,6, in
particular by employing two ferromagnetic (FM) leads as a polarization generator and detector. In practice,

there existed two major challenges: (i) spin-polarized injection into a semiconducting channel, and (ii) gate
control of the Rashba spin-orbit coupling (SOC) in the channel. The former difficulty has been largely overcome
through efforts of many groups7–10. For the latter issue, investigations included the gate-voltage-control of the
spin precession in both the quantum wells11 and quantum wires12, and some detailed studies such as the multi-
channel mixing effects (lateral size effects)13–20. An integration of the ingredients of the two types mentioned
above into a single device using AsIn heterostructure with a top gate, was realized in a recent experiment21. It is
remarkable that this progress has renewed an interest in the spin-FET device18,20,22–24, which has been proposed by
Datta and Das more than two decades ago4.

In this work we revisit this novel spintronic device, via simulations on a quantum-wire model (semiconductor
nanowire implementation), based on the powerful recursive lattice Green’s function (GF) technique. To reach
realistic scales, for the InSb material parameters (with large Landé g factor and strong spin-orbit coupling25), we
design our simulation for a quantum wire (about 300 nm length in longitudinal direction) with 500 lattice sites.
We may summarize the present study by the following achievements: (i) In the ideal one-dimensional (1-D) case
and coherent regime, the simulation of the energy-resolved transmission spectrum and the SOC-modulation of
the transmission peak reveal differences from the well-known Datta-Das model4. Accordingly, we develop a
Fabry-Perot cavity model to obtain an analytic result which generalizes its counterpart in Ref. 4, and a more recent
work23. (ii) The employed recursive GF technique allows us for an efficient simulation of decoherence effect in
spatial-motion which, quite indirectly, degrades the control of the spin precession. It is of particular interest that
this treatment does not involve any explicit spin-flip mechanisms26,27, but only incorporates the Büttiker phase-
breaking model28–32 to introduce spatial decoherence effect. The result of simulation agrees with the temperature
dependence observed in experiment21, and substantiates the mesoscopic (coherence) requirement mentioned in
the Datta-Das proposal4 or the non-diffusive (ballistic) criterion24. (iii) We simulate the effect of lateral confine-
ment by setting 20 and 40 lattice sites for the width of the quantum wire. The results are in consistence with some
previous studies of continuous wave-guide models13–20, implying that the lateral size will influence the function-
ality of the spin-FET device, if it exceeds a certain range (drastically violating the 1-D condition).

Results
The device consists of a quantum wire (central region) and of two FM leads, described by total Hamiltonian
H~Hwz

X
b~L,RHbzHT , with
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For the sake of simplicity, here we have assumed a 1-D tight-
binding lattice model (with M lattice sites for the quantum wire).
For a narrow SOC channel (the working area of the spin-FET), the
inter-subband mixing effect is negligible. In this case the 1-D model
is applicable4. The electronic creation and annihilation operators

are abbreviated by a vector form, e.g., c{i ~ c{i:,c{i;

� �
and

b{b,i~ b{b,i:,b{b,i;

� �
, where i labels the lattice site and (", #) the spin

orientations. The Pauli matrices are introduced as s 5 (sx, sy, sz). In
the quantum wire Hamiltonian (Hw), E0 and t0 are the tight-binding
site energy and hopping amplitude; a is the SOC strength. Notice that
for a continuous limit, the corresponding SOC strength should be
~a~2aa, where a is the lattice constant. For the FM leads (Hb), Eb, tb,
and hb are, respectively, the tight-binding parameters and the FM
exchange field. For the spin-FET, we assume the FM leads magne-
tized in parallel, with hb 5 h0(0, 0, 1) for z-axis magnetization. For
the wire-lead coupling (HT), we assume a common coupling ampli-
tude tc at both sides.

In our simulation, for the central quantum wire, we refer to the
SOC strength of the InSb material, ~a~0:2 eV:Å. This implies a
SOC length lso^200 nm. Assuming a lattice constant a^6 Å, we
then decide to simulate the 1-D quantum wire with M 5 500
lattice sites (length of ,300 nm), in order to be longer than lso

for the purpose of spin-FET. Finally, we assume t0 5 1.0 eV, the
splitting exchange energy h0 5 0.4 eV, and tc 5 0.4t0. For the FM
leads and the fictitious side-chains (to be addressed later), we set
tb 5 tJ 5 0.8 eV.

Transmission Spectrum and SOC-modulation Lineshape. Let us
consider first a coherent transport through the quantum wire
(corresponding to the case of low temperatures21). In Fig. 1(a), we
display the representative results of the transmission spectrum and
observe clear SOC(a)-modulation effect. Owing to finite length of the
quantum wire, the transmission spectrum reveals the usual peak-
versus-valley structure. However, the SOC interaction would alter
the location of the energy levels, and cause level splitting as
revealed by the additional fine-structures (see, for instance, the red
curve). Viewing this complexity of energy levels under the SOC
influence, we employ the height of the transmission peak to
characterize the modulation effect. The extracted results are shown
in Fig. 1(b). Note that for the lattice system under study, for a given
SOC a, the transmission peaks at distant energies may have different
heights. To capture this feature, we have chosen the peaks from
several relatively distant energy intervals.

We find that the SOC-modulation period is well described by a*5
pt0/M, where M 5 L/a. This is in perfect agreement with the result
from a simple plane-wave-based interference analysis. Following Ref.
4, the phase difference caused by the SOC over distance L between
the spin-up and spin-down components is given by h~ 2m�

�
�h2� �

~aL.
Converting to the lattice model via the replacement 2/2m*Rt0a2,
the above a* is obtained by the condition h5 2p (note that ~a~2aa).

However, the SOC-modulation lineshape does not coincide in
general with the prediction of the Datta-Das model4. It was remarked
in Ref. 4, that the spin precession in the device and the SOC-
modulated transmission are independent of the incident energy.
However, as we will prove shortly, this is not true. Also, we find
different transition behaviors around the (modulation) peaks and
valleys: the variation around the peak can be much slower (forming
almost a ‘‘plateau’’) than the change around the valley. Below we
present a semi-quantitative analysis based essentially on the same
Datta-Das model but accounting for multiple reflections in the SOC
region, which generalizes the central result in Ref. 4. We notice also
that this type of multiple reflections has not been taken into account
when fitting and analyzing the experimental result21,23,24.

Semi-quantitative Analysis. Let us consider a 1-D continuous
model for the quantum wire embedded in between two FM leads.
This is similar to an optical two-sided Fabry-Perot cavity system33,
with the electron transmission as an analog of the optical wave in
terms of the so-called Feynman paths34. Of particular interest in the
electronic setup of spin-FET is the SOC-modulation in the ‘‘cavity’’,
which is described by the continuous version of the Rashba model
as Hso~~a sxky{sykx

� �
:{~aksy , owing to the 1-D motion with

ky 5 0.
According to Datta and Das4, a single passage through the

SOC-wire will result in a spin precession with angle
h~ kz{k{ð ÞL~ 2m�=�h2� �

~aL, where k6 are given by the solution

α/α∗

α/α∗=0
α/α∗=
α/α∗=
α/α∗=

Figure 1 | (a) SOC(a)-modulation effect on the transmission spectrum,

with modulation period a* 5 pt0/M (see the main text for more detail). In

particular, at a 5 0.5a* the entire transmission spectrum is suppressed,

indicating an off-state of the spin-FET. (b) SOC(a)-modulation to the

heights of the transmission peaks. Illustrative results are shown for three

energy intervals: curve I for E/t0 g (1.305, 1.315), II for E/t0 g (1.45, 1.46),

and III for E/t0 g (1.70, 1.71).
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from E~�h2k2
�

2m�+~ak, for a given energy E. (For an 1-D lattice
model, similar consideration also gives that the spin precession angle
h is independent of the energy). Then, taking into account the role of
the FM leads, a transmission coefficient was proposed in Ref. 4 as
T / cos2(h/2). In practice21, this result has been applied to analyze
experiment by fitting the measured nonlocal voltage with
V~A cos 2m�~aL

�
�h2zQ

� �
. In the subsequent studies23,24, deeper

analysis was carried out for the fitting parameters (amplitude A
and phase Q), and some aspects of the experiment were explained
while some others remaining unclear23.

A drawback in the above treatment is the neglect of the (infinite)
multiple reflections, which should exist in any two-leads connected
electronic devices. We then perform a Fabry-Perot-cavity type ana-
lysis to account for the multiple reflections (see the ‘‘Methods’’ part
for more details), and obtain the transmission coefficient as

T~
4t4 cos2 h=2ð Þ sin2 KLð Þ

D2z4t4 cos2 h=2ð Þ sin2 KLð Þ : ð2Þ

In this result we have denoted (r 2 1)2 sin2(h/2) 1 4r sin2(KL) ; D
and (k1 1 k2)L/2 ; KL. For the contact of the quantum wire with
the FM leads, we assumed identical transmission (t) and reflection (r)
amplitudes at the two sides. Note that after accounting for the mul-
tiple reflections, Eq. (2) generalizes the result of Ref. 4, in an elegant
way.

Based on Eq. (2) we show in Fig. 2 the SOC-modulation effect on
the (resonant) transmission peak. Interestingly, we find similar line-
shape as in Fig. 1(b). In particular, different transition behaviors are
found around the peak (maximum) and dip (minimum), for the case
t^1. By setting t 5 1 we obtain from Eq. (2) that Tp 5 4 cos2(h/2)/
[11 cos2(h/2)]2. This result, in a simple way, allows us to explain the
‘‘plateau’’ behavior of t^1 in Fig. 2.

Using Eq. (2), one may qualitatively understand the modulation
behavior in Fig. 1(b). Compared the lattice system described by
Eq. (1) with the Fabry-Perot cavity model, an obvious difference is
that the former does not have a constant single-side transmission (t)
and reflection (r), where the effective t and r should depend on the
energy (E) and the SOC a. Therefore, from Eq. (2), the transmission
peak Tp may have different height in different energy region and may
depend on a through the effective t and r. In addition to the multiple

reflections, this should be the reason that lead to the non-overlapped
modulation lineshapes in different energy areas and the ‘‘plateau’’
behavior around the modulation peak, as shown in Fig. 1(b).

Decoherence Effect. We apply the Büttiker fictitious reservoir
approach to account for the possible inelastic scattering in the
device28–32. This phenomenological approach is very efficient in
comparison with any other microscopic model based treatments.
In Fig. 3 we show the decoherence effect on the SOC-modulation.
Qualitatively speaking, the inelastic scatterers would cause a large
number of forward and backward propagation pathways. Simple
analysis in terms of the time-reversal symmetry tells us that the
forward and backward propagation over equal distance would
cancel the spin precession. As a result, for any transmitted electron
(from the left to the right leads), the net distance of spin precession is
the length of the quantum wire. This explains the common SOC-
modulation period (a*) in Fig. 3 when altering the inelastic scattering
strength (g).

However, the SOC-modulation amplitude will be suppressed by
enhancing the inelastic scattering strength. The fictitious reservoir
model is very convenient to account for phase breaking (decoher-
ence) of spatial motion, through destroying quantum interference
between partial waves. Nevertheless, the role of this model is not so
straightforward for the SOC caused spin precession. We may remark
that in our treatment we did not introduce the explicit spin-relaxa-
tion mechanism26,27, whose effect is relatively more direct23,24. In Ref.
4, Datta and Das pointed out that, in order to perform the spin-FET,
one of the essential requirements is the central conducting channel
within a mesoscopic phase-coherent regime. Our result in Fig. 3
substantiates this requirement, and a general statement that the
Rashba-spin-control does not work in diffusive transport regime24.
The present result is also in agreement with the experiment21, where
the SOC modulation effect was found to be washed out by stronger
inelastic scattering (more phonon excitations) by increasing the
temperatures.

Lateral-Size Effect. In the original proposal the intersubband
coupling effect owing to lateral size was excluded for a narrow
(quasi-1D) quantum wire4. Below, we consider the lateral-size
effect by simulating a quasi-two-dimensional (2D) quantum
ribbon with M 3 N lattice sites. Accordingly, we need to generalize
each lattice site of the 1-D wire to a lateral column with N sites along
the y-direction. While the 2D generalization of the tight-binding

α/α∗

Figure 2 | SOC(a)-modulation effect from a Fabry-Perot-type resonator
model consideration, in which the multiple reflections are essentially
accommodated. The (resonant) transmission peak (Tp) is obtained

from Eq. (2) and a ‘‘plateau’’ behavior is recovered when the

single-side transmission is nearly transparent (the transmission

coefficient t^1).

α/α∗

η=0
η=
η=
η=

Figure 3 | Decoherence effect on the SOC(a)-modulation displayed in
Fig. 1(b), for the transmission peak (Tp, extracted from T ef f Eð Þ) with E/t0

g (1.305, 1.315). The coupling coefficient (g) to the fictitious side-

reservoirs characterizes well the decoherence strength in the Büttiker

phase-breaking approach.
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model is straightforward, we only specify the SOC Hamiltonian in
2D case as

HSO~
X

i

ia a{i syaizdx {a{i sxaizdy

� �
zH:c:

h i
: ð3Þ

Here, the summation is over the M 3 N lattice sites, and (dx, dy) 5 (1,
1) denote displacements over a unit lattice cell along the longitudinal
(x) and lateral (y) directions.

In Fig. 4 we show the effects of the lateral size (with N 5 20 and 40).
First, owing to the energy sub-bands (and their mixing) caused by the
lateral confinement, the transmission peak can exceed unity (in the
1-D case the maximal Tp is unity). One may notice that, unlike
prediction from the standard Landauer-Büttiker formula, the height
of the transmission peak, which is proportional to the differential
conductance at the corresponding energy (bias), does not equal the
lateral-channel numbers involved. In 1-D case, the transmission
peak is originated from a constructive interference given by the
standing-wave condition of the longitudinal wave-vector. This res-
onant condition (together with symmetric coupling to the leads) will
result in a transmission coefficient of unity. However, for a given
energy (E) in the quantum-ribbon system, different lateral channels
are associated with different longitudinal wave-vectors. Then, the
resonant condition for each transverse channel cannot be satisfied
simultaneously.

The second effect originated from the lateral motion is the SOC-
induced additional spin precession. In general, this will affect the
SOC-modulation quality of the spin-FET. For small N (with respect
to the SOC length with ,300 sites in the present study), this effect is
not prominent (see, for instance, the result of N 5 20 in Fig. 4).
However, with the increase of the lateral size, the transmission can-
not be switched off (particularly at higher a), as illustrated by the
result of N 5 40. Moreover, for even larger lateral-size and SOC-a, or
in some energy domain, the transmission modulation will become
strongly irregular (not shown in Fig. 4). We then conclude that, while
the longitudinal modulation period (a*) keeps unchanged, the qual-
ity of the spin-FET performance will be degraded with the increase of
the lateral size. Only for narrow quantum wire (small N) one can
define desirable working region for the spin-FET. This remark sup-
ports the conclusion in Ref. 18, and some previous studies13–17. It

seems that an exception is the 2D system with semi-infinite (consid-
erably wide) width, where the SOC modulation effect can be restored,
despite of the degraded quality19,20,23,24.

Discussion
In addition to the simulated decoherence and lateral-size effects, a
key result of this work is Eq. (2) which generalizes the Datta-Das
analysis4,21,23. Fig. 2 shows only the SOC-modulation effect on the
transmission peak. For the entire transmission spectrum, given by
Eq. (2), it is clear that the SOC-modulated transmission depends on
the incident energy, through the K-dependence. This will more dra-
matically affect the finite-bias current through the spin-FET, com-
pared with the energy-independent modulated transmission4. It was
highlighted in Ref. 4, that the energy-independent modulation ‘‘prop-
erty’’, observed from the differential phase shift h~2m�~aL

�
�h2,

implies an important advantage for quantum-interference device
applications. That is, it can avoid washing out the interference effects
and achieve large percentage modulation of the current, even in the
multimoded devices operated at elevated temperatures and large
applied bias4. It seems of interest to perform further examinations
on these issues based on Eq. (2).

To summarize, we have revisited the transport rooted in the spin-
FET device, with the help of the powerful recursive lattice Green’s
function approach. Our result of the energy-resolved transmission
spectrum reveals noticeable differences from the Datta-Das model4,
which motivated us to develop a Fabry-Perot-cavity type treatment
to generalize the central result. We also simulated the decoherence
and lateral-size effects. The former substantiates the mesoscopic
(coherence) requirement4 or the non-diffusive (ballistic) criterion24,
and it is in reasonable agreement with the observation in the recent
experiment21. The latter implies additional restrictions to the
Rashba-spin-control and thus the quality of the device.

Methods
Inelastic Scattering Model. The basic idea of the phenomenological phase-breaking
approach proposed by Büttiker28,29 is to attach the system (quantum wire) to some
additional virtual electronic reservoirs. The transport electron is assumed to partially
enter the virtual reservoir, suffer an inelastic scattering in it (then lose the phase
information), and return back into the system (to guarantee the conservation of
electron numbers). Technically, we model the virtual reservoir (coupled to the Jth site
of the quantum wire) by a tight-binding chain with Hamiltonian30–32

~HJ ~
X?
i~1

E0b{J,ibJ,i{
X?
i~1

tJ b{J,iz1bJ,izH:c:
� �

, ð4Þ

and this chain is coupled to the quantum wire through a coupling Hamiltonian

~HT,J~{ gc{J bJ,1zH:c:
� �

, ð5Þ

with g the coupling strength. In this work, for the quantum wire with M 5 500 (length
of ,300 nm), we assume to attach 10 side-reservoirs (so J~50,100, � � � ,500), which
represent a mean-distance of 50a^30 nm between the nearest-neighbor inelastic
scatterers.

Lattice Green’s Function Approach. Applying the powerful lattice Green’s function
method, in particular combining with a recursive algorithm34, one can calculate the
retarded and advanced Green’s functions and obtain the transmission coefficients
between any pair of leads (reservoirs) as follows34–36:

Tmn Eð Þ~Tr Cm Eð ÞGr Eð ÞCn Eð ÞGa Eð Þ
� �

: ð6Þ

Here m and n denote all the reservoirs, including the left and right leads
together with the virtual inelastic scattering reservoirs. Formally, Cm Eð Þ~
i
Pr

m Eð Þ{
Pa

m Eð Þ
h i

, and Gr Eð Þ~ Ga Eð Þ½ �{~1
.

E{Hw{
X

m~L,R, Jf g Sr
m

� �h i
. Sr að Þ

m

is the retarded (advanced) self-energy owing to coupling with the mth lead (reservoir).
Knowing Tmn, the entire effective transmission coefficient from the left to the right

lead can be straightforwardly obtained through30–32

α/α∗

Figure 4 | Effect of the confined lateral motion on the SOC(a)-
modulation. Within the lattice model, in addition to the longitudinal

number of sites M 5 500, we set N 5 20 and 40 to reveal the increasingly

non-negligible lateral size effect (The imperfect result of N 5 40 is owing to

the not high enough numerical accuracy of determination for the

extremely dense transmission peaks).
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T ef f Eð Þ~TLRz
XN

m,n~1

K Lð Þ
m W{1

mn K Rð Þ
n : ð7Þ

Here, K Lð Þ
m ~TLm and K Rð Þ

n ~TnR . W21 is the inverse of the matrix W with elements

Wmn 5 (1 2 Rnn)dmn 2 Tmn(1 2 dmn), where Rnn~1{
X

m =nð Þ Tnm . Inserting the

transmission coefficient T ef f Eð Þ into the Landauer-type formula, one can easily
compute the transport current. In this work, however, we will simply use T eff Eð Þ
(corresponding to differential conductance) to characterize the modulation effects in
the spin-FET.

Multiple Reflections. Following the Fabry-Perot cavity type model33,34, we consider
the transmission and reflection of an electron at the right FM lead, which entered
from the left FM lead with a wave function (after passing through the left contact
junction):

y1j i~a :j iyzb ;j iy : ð8Þ

At the right side of the 1-D wire (cavity), after single passage (over L) under the
SOC influence, the electron state evolves to

y2j i~aeikzL :j iyzbeik{L ;j iy

~
eikzL 0

0 eik{L

 !
y1j i

ð9Þ

Here and in the following, using the transfer matrix representation, the states
should be understood as column vectors in the basis {j "æy, j #æy}, e.g., jy1æ 5 (a, b)T.
For a given energy E, k6 are solved from E~�h2k2

�
2m�+~ak, corresponding to the

momentums of the spin-up and spin-down electrons.
Since the FM leads are polarized in the z-direction, at the right side, only the

electron with spin state j "æz can enter the right lead (with transmission amplitude t
and reflection amplitude r). For electron with j #æz, it will be fully reflected.
Accordingly, based on jy2æ, the transmitted wave into the right lead is given by

yj i 1ð Þ
R ~tP̂z: y2j i:UR y1j i: ð10Þ

In this context we introduce the projection operator

P̂z:~ :j iz :h j~ 1
2

1 1

1 1

	 

, ð11Þ

and similarly

P̂z;~ ;j iz ;h j~ 1
2

1 {1

{1 1

	 

, ð12Þ

for the following use. In Eq. (10) we also defined a transfer matrix which reads

UR~
t
2

eikzL eik L

eikzL eik{L

 !
: ð13Þ

At the same time, the reflected wave from the right junction is given by

~y
�� E 1ð Þ

R
~P̂z; y2j izrP̂z: y2j i:~UR y1j i, ð14Þ

where

~UR~
1
2

rz1ð ÞeikzL r{1ð Þeik{L

r{1ð ÞeikzL rz1ð Þeik{L

" #
: ð15Þ

Similar analysis gives the transfer matrix acting on the wave inversely propagated
from the right side to the left one and reflected at the left junction:

~UL~
1
2

rz1ð Þeik{L r{1ð ÞeikzL

r{1ð Þeik{L rz1ð ÞeikzL

" #
: ð16Þ

Therefor, the total wave arriving to the right FM lead is a sum of all the partial
waves, given by

Yj iR~ yj i 1ð Þ
R z yj i 2ð Þ

R z yj i 3ð Þ
R z � � �

~ URzUR ~UL ~URz � � �
� �

y1j i

~UR 1{~UL ~UR
� �{1

y1j i:

ð17Þ

Noting that jy1æ 5 tj "æz, we finally obtain the total transmission probability as

T~ z : Yjh iR
�� ��2~ 4t4 cos2 h=2ð Þsin2KL

D2z4t4 cos2 h=2ð Þsin2KL
: ð18Þ

Here we defined KL 5 (k1 1 k2)L/2 and h 5 (k1 2 k2)L, and introduced
D 5 (r 2 1)2 sin2(h/2) 1 4r sin2 KL.
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