回到最初的g(x) = f(f(x))= x^2 - x + 1
g(x)唯一一个不动点为x=1, 相对于1的临界点有两个(0 和 1)
即 F={1}, B(1)={0, 1}
f(1)€F, 推得 f(1)=1
如果f(0)=0, 则g(0)=ff(0)=f(0)=0, 0也是g(x)的不动点, 矛盾
因此,f(0)=1
回到最初的g(x) = f(f(x))= x^2 - x + 1
g(x)唯一一个不动点为x=1, 相对于1的临界点有两个(0 和 1)
即 F={1}, B(1)={0, 1}
f(1)€F, 推得 f(1)=1
如果f(0)=0, 则g(0)=ff(0)=f(0)=0, 0也是g(x)的不动点, 矛盾
因此,f(0)=1
•
新思路,新方法,有创见性与普遍性。 赞!!!
-大酱风度-
♂
(0 bytes)
()
09/24/2024 postreply
17:37:30
WENXUECITY.COM does not represent or guarantee the truthfulness, accuracy, or reliability of any of communications posted by other users.
Copyright ©1998-2025 wenxuecity.com All rights reserved. Privacy Statement & Terms of Use & User Privacy Protection Policy