Skip to main content

Advertisement

Log in

Dual-controllable Plasmon-induced Transparency Based on Active Borophene Metasurface in the Near-infrared Region

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A tunable and switchable plasmon-induced transparency (PIT) effect in the near-infrared region (NIR) is achieved in a borophene-based metasurface, which consists of a periodic array of parallel double-layer borophene nanoribbons (BNRs). The upper- and lower-layer BNRs fulfill two plasmonic bright modes exciting and coupling for PIT phenomenon generation. By changing borophene electron density, the PIT window can be not only tuned to varying resonance frequency, but also adjusted for switching modulation. The calculation results reveal that as the electron density increases from 2.4 × 1019 to 5.6 × 1019 m−2, the PIT resonance frequency correspondingly shifts from 150 to 220 THz, and a maximum amplitude modulation depth (MD) of the PIT window reaches 98.3% at 193.55 THz (\(\lambda =1.55\;\mu \mathrm{m}\)). Moreover, the slow light characteristics of the proposed metasurface are analyzed in detail using the well-controlled group delay. Such a switchable and broadband tunable metadevice can expand the applications for PIT effect in active slow light, plasmonic sensing, and optical modulator areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Poland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

The datasets analyzed during the current study are available in the present article.

References

  1. Boiler KJ, Imamoglu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66(20):2593–2596

    Article  Google Scholar 

  2. Hau LV, Harris SE, Dutton Z, Behroozi CH (1999) Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397(6720):594–598

    Article  CAS  Google Scholar 

  3. Kash MM, Sautenkov VA, Zibrov AS, Hollberg L, Welch GR, Lukin MD, Rostovtsev Y, Fry ES, Scully MO (1999) Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys Rev Lett 82(26):5229–5232

    Article  CAS  Google Scholar 

  4. Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 77(2):633–673

    Article  CAS  Google Scholar 

  5. Liu CE, Dutton Z, Behroozi CH, Hau LV (2001) Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409(6819):490–493

    Article  CAS  PubMed  Google Scholar 

  6. Liu YC, Li BB, Xiao YF (2017) Electromagnetically induced transparency in optical microcavities. Nanophotonics-Berlin 6(5):789–811

    Article  Google Scholar 

  7. Alzar C, Martinez M, Nussenzveig P (2002) Classical analog of electromagnetically induced transparency. Am J Phys 70(1):37–41

    Article  Google Scholar 

  8. Chen Y, Zhu K, Li Y, Fang Y, Wu Q, Sun Y, Chen H (2017) Nonlinear properties of photonic crystal cavity with embedded electromagnetic-induced-transparency-like meta-atoms. Opt Mater Express 7(8):3034

    Article  CAS  Google Scholar 

  9. Zhang S, Genov DA, Wang YU, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):047401

    Article  PubMed  Google Scholar 

  10. Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8(9):758–762

    Article  CAS  PubMed  Google Scholar 

  11. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10(4):1103–1107

    Article  CAS  PubMed  Google Scholar 

  12. Fan YC, Qiao T, Zhang FL, Fu QH, Dong JJ, Kong BT, Li HQ (2017) An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Sci Rep 7(1):40441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ren K, Zhang Y, Ren XB, He YM, Han Q (2021) Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials. Front Optoelectron 14(2):221–228

    Article  PubMed  Google Scholar 

  14. Jin XR, Park J, Zheng HY, Lee S, Lee Y, Rhee JY, Kim KW, Cheong HS, Jang WH (2011) Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling. Opt Express 19(22):21652–21657

    Article  CAS  PubMed  Google Scholar 

  15. Manjappa M, Turaga SP, Srivastava YK, Bettiol AA, Singh R (2017) Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial. Opt Lett 42(11):2106–2109

    Article  CAS  PubMed  Google Scholar 

  16. Wang ZF, Fu JH, Zeng QS, Song MX, Denidni TA (2019) High-transmittance absorptive structure based on effect of electromagnetically induced transparency. Ieee Antenn Wirel Pr 18(12):2463–2467

    Article  Google Scholar 

  17. Wan ML, Zhai WQ, Song YL, Li Y, Ji PF, Zhou FQ (2015) Actively controllable EIT-like resonance between localized and propagating surface plasmons for optical switching. J Mod Optic 62(15):1264–1269

    Article  CAS  Google Scholar 

  18. Zhang L, Dong ZG, Wang YM, Liu YJ, Zhang S, Kwang J, Yang W, Qiu CW (2018) Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial. Nanoscale 1(41):19517–19523

    Google Scholar 

  19. Xu Q, Su XQ, Ouyang CM, Xu NN, Cao W, Zhang YP, Li Q, Hu C, Gu JQ, Tian Z (2016) Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials. Opt Lett 41(19):4562–4565

    Article  CAS  PubMed  Google Scholar 

  20. Yahiaoui R, Manjappa M, Srivastava YK, Singh R (2017) Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices. Appl Phys Lett 111(2):021101

    Article  Google Scholar 

  21. Mao LB, Li Y, Li GX, Zhang S, Cao T (2020) Reversible switching of electromagnetically induced transparency in phase change metasurfaces. Adv Photonics 2(5):056004–056004

    Article  CAS  Google Scholar 

  22. Li C, Zhu W, Liu Z, Pan RH, Hu S, Du S, Li JJ, Gu CZ (2020) Independent tuning of bright and dark meta-atoms with phase change materials on EIT metasurfaces. Nanoscale 12(18):165–171

    Article  Google Scholar 

  23. Wang DC, Sun S, Feng Z (2020) Enabling switchable and multifunctional terahertz metasurfaces with phase-change material. Opt Mater Express 10(9):2054

    Article  CAS  Google Scholar 

  24. Xiao SY, Wang T, Liu TT, Yan XC, Li Z, Xu C (2018) Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon 126:271–278

    Article  CAS  Google Scholar 

  25. Shu C, Chen QG, Mei JS, Yin JH (2019) Analogue of tunable electromagnetically induced transparency in terahertz metal-graphene metamaterial. Mater Res Express 6(5):55808

    Article  CAS  Google Scholar 

  26. Jia ZP, Huang L, Su JB, Tang B (2021) Tunable electromagnetically induced transparency-like in graphene metasurfaces and its application as a refractive index sensor. J Lightwave Technol 39(5):1544–1549

    Article  CAS  Google Scholar 

  27. Xiao BG, Tong SJ, Fyffe A, Shi ZM (2020) Tunable electromagnetically induced transparency based on graphene metamaterials. Opt Express 28(3):4048

    Article  PubMed  Google Scholar 

  28. Jia ZP, Huang L, Su JB, Tang B (2020) Tunable plasmon-induced transparency based on monolayer black phosphorus by bright-dark mode coupling. Appl Phys Express 13(7):72006

    Article  CAS  Google Scholar 

  29. Lian C, Hu SQ, Zhang J, Cheng C, Yuan Z, Gao SW, Meng S (2020) Integrated plasmonics: broadband Dirac plasmons in borophene. Phys Rev Lett 125(11):116802

    Article  CAS  PubMed  Google Scholar 

  30. Dereshgi SA, Liu ZZ, Aydin K (2020) Anisotropic localized surface plasmons in borophene. Opt Express 28(11):16725

    Article  CAS  PubMed  Google Scholar 

  31. Ruan QY, Wang LQ, Bets KV, Yakobson BI (2021) Step-edge epitaxy for borophene growth on insulators. ACS Nano 15(11):18347–18353

    Article  CAS  PubMed  Google Scholar 

  32. Feng BJ, Zhang J, Zhong Q, Li WB, Li S, Li H, Cheng P, Meng S, Chen L, Wu KH (2016) Experimental realization of two-dimensional boron sheets. Nat Chem 8(6):563–568

    Article  CAS  PubMed  Google Scholar 

  33. Zhang CH, Zhang ZZ, Yan WJ, Qin XM (2021) Effect of doping on the photoelectric properties of borophene. Adv Cond Matter Phys 2021:1–7

    Google Scholar 

  34. Zhang JJ, Zhang ZJ, Song XX, Zhang HT, Yang JB (2021) Infrared plasmonic sensing with anisotropic two-dimensional material borophene. Nanomaterials-Basel 11(5):1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nong JP, Feng F, Gan JA, Min CJ, Yuan XC, Somekh M (2022) Active modulation of graphene near-infrared electroabsorption employing borophene plasmons in a wide waveband. Adv Opt Mater 10(6):2102131

    Article  CAS  Google Scholar 

  36. Nong J, Wei W, Wang W, Lan G, Shang Z, Yi J, Tang L (2018) Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons. Opt Express 26(2):1633

    Article  CAS  PubMed  Google Scholar 

  37. Sensale-Rodriguez B, Yan RS, Kelly MM, Fang T, Tahy K, Hwang WS, Jena D, Liu L, Xing HG (2012) Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun 3(1):780

    Article  PubMed  Google Scholar 

  38. Kafaie Shirmanesh G, Sokhoyan R, Pala RA, Atwater HA (2018) Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability. Nano Lett 18(5):2957–2963

    Article  CAS  PubMed  Google Scholar 

  39. Sabri R, Forouzmand A, Mosallaei H (2020) Multi-wavelength voltage-coded metasurface based on indium tin oxide: independently and dynamically controllable near-infrared multi-channels. Opt Express 28(3):3464

    Article  PubMed  Google Scholar 

  40. Sabri R, Mosallaei H (2022) Inverse design of perimeter-controlled InAs-assisted metasurface for two-dimensional dynamic beam steering. Nanophotonics 11(20):4515–4530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12004080, 61705046) and Science and Technology Project of Guangzhou (202201010540).

Author information

Authors and Affiliations

Authors

Contributions

H.Z.: model design, investigation, methodology, and writing—revision and editing. A.W.: data curation, software handling, and original draft writing. K.X.: validation and data analysis. X.H.: conceptualization, comment, and revision. H.J. and W. Z.: reviewing, editing, and supervision. All authors read and reviewed the manuscript.

Corresponding authors

Correspondence to Huan Jiang or Weiren Zhao.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wu, A., Xiao, K. et al. Dual-controllable Plasmon-induced Transparency Based on Active Borophene Metasurface in the Near-infrared Region. Plasmonics 18, 761–768 (2023). https://doi.org/10.1007/s11468-023-01801-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01801-4

Keywords