Skip to main content

Advertisement

Log in

La2O3-Doped (K0.5Na0.5)NbO3-Based Photochromic Transparent Ceramics for Optical Storage Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Good transparency and color contrast are difficult to obtain at the same time, which is a pressing problem for photochromic ceramics. Lanthanum oxide doping improved the transmittance and color-changing characteristics of the sample. In this study, the photochromism and reversible luminescence modulation of 0.94(K0.5Na0.5)NbO3-0.06Sr(Bi0.5Nb0.5)O3:2.0 wt% La3+ (KNN–SBN + La2.0) transparent ferroelectric ceramics with different sintering temperatures were investigated. KNN–SBN + La2.0 has good light transmittance and color contrast characteristics, as well as a certain degree of photoluminescence characteristics. The sample that was sintered at 1162°C has a relatively high dielectric constant (εr) and a high transmittance (1100 nm). The diffuse reflection spectra of the sample that was sintered at 1182°C has a wide absorption band at 400 nm, while, after ultraviolet irradiation, the reflectivity of the sample is significantly reduced. The color rendering rate of the sample at the sintering temperature of 1182°C is high, the color rendering contrast (ΔRT) is 60.01%, and the high fluorescence luminescence contrast (ΔRI) is 82.42% under 150 s of 365-nm light. Based on these results, KNN–SBN + La2.0 ceramics have a good application prospect in data storage and electronic goods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Poland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. H. Xie, C.Y. Cheng, L. Li, X.Y. Deng, K.K. Yang, and Y.Z. Wang, Integrating shape-memory technology and photo-imaging on a polymer platform for a high-security information storage medium. J. Mater. Chem. C. 6, 10422 (2018).

    Article  CAS  Google Scholar 

  2. C.E. Liu, Z. Dutton, C.H. Behroozi, and L.V. Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 6819 (2001).

    Article  Google Scholar 

  3. J.Q. Dai, K. Fu, R. Palanisamy, A. Gong, G. Pastel, R. Kornfeld, H.L. Zhu, M. Sanghadasa, E. Bekyarova, and L.B. Hu, A solid state energy storage device with supercapacitor-battery hybrid design. J. Mater. Chem. 5, 15266 (2017).

    Article  CAS  Google Scholar 

  4. K.L.N. Deepak, A.M. Alshehri, S.V. Hadjiantoniou, D. Marquez, and V.R. Bhardwaj, Ultra-high density optical data storage in common transparent plastics. Sci. Rep. 6, 26163 (2016).

    Article  ADS  Google Scholar 

  5. J.B. Yu, M.T. Luo, Z.Y. Lv, S.M. Huang, H.H. Hsu, C.C. Kuo, S.T. Han, and Y. Zhou, Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials. Nanoscale 12, 23391 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. H. Wu, M.Y. Wang, L.W. Huai, W.X. Wang, J.C. Zhang, and Y.H. Wang, Optical storage and operation based on photostimulated luminescence. Nano Energy 90, 106546 (2021).

    Article  CAS  Google Scholar 

  7. Y. Hirshberg, Reversible formation and eradication of colors by irradiation at low temperatures. A photochemical memory model. J. Am. Chem. Soc. 78, 2304 (1956).

    Article  CAS  Google Scholar 

  8. F.Y. Yu, P. Wang, J.F. Lin, P. Zhou, Y.M. Ma, X. Wu, C. Lin, C.L. Zhao, M. Gao, and Q.W. Zhang, (K0.5Na0.5)NbO3-based photochromic transparent ceramics for high-security dynamic anti-counterfeiting and optical storage applications. J. Lumin. 252, 119345 (2022).

    Article  CAS  Google Scholar 

  9. R.G. Wang, X.L. Lu, L.F. Hao, W.C. Jiao, W.B. Liu, J. Zhang, F. Yuan, and F. Yang, Enhanced and tunable photochromism of MoO3-butylamine organic-inorganic hybrid composites. J. Mater. Chem. C. 5, 427 (2017).

    Article  CAS  Google Scholar 

  10. A.A. Haider, Y.K. Cun, X. Bai, Z. Xu, Y.Z. Zi, J.B. Qiu, Z.G. Song, A.J. Huang, and Z.W. Yang, Anti-counterfeiting applications by photochromism induced modulation of reversible upconversion luminescence in TiO2: Yb3+, Er3+ ceramic. J. Mater. Chem. C. 10, 6243 (2022).

    Article  CAS  Google Scholar 

  11. Q.W. Zhang, S.S. Yue, H.Q. Sun, X.S. Wang, X.H. Hao, and S.L. An, Nondestructive up-conversion readout in Er/Yb co-doped Na0.5Bi2.5Nb2O9-based optical storage materials for optical data storage device applications. J. Mater. Chem. C. 5, 3838 (2017).

    Article  CAS  Google Scholar 

  12. P. Li, Z. Zhang, X.Y. Gao, H.Q. Sun, D.F. Peng, H. Zou, Q.W. Zhang, and X.H. Hao, Fast self-bleaching Nb2O5-based photochromics for high security dynamic anti-counterfeiting and optical storage applications. Chem. Eng. J. 435, 134801 (2022).

    Article  CAS  Google Scholar 

  13. G. Zampini, F. Ortica, A. Cannavale, and L. Latterini, Spirooxazine loading effects on the photochromism of polymer films. Dyes Pigm. 210, 111018 (2023).

    Article  CAS  Google Scholar 

  14. R.T. Zhang, Y.H. Jin, C.L. Wang, H.Y. Wu, L. Chen, and Y.H. Hu, A photochromic material-based platform for high-precision UV light detection and erasable optical information storage. J. Alloys Compd. 934, 167918 (2023).

    Article  CAS  Google Scholar 

  15. Q.W. Zhang, H.Q. Sun, X.S. Wang, X.H. Hao, and S.L. An, Reversible luminescence modulation upon photochromic reactions in rare-earth doped ferroelectric oxides by in situ photoluminescence spectroscopy. ACS Appl. Mater. Interfaces 7, 25289 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Q.W. Zhang, X.W. Zheng, H.Q. Sun, W.Q. Li, X.S. Wang, X.H. Hao, and S.L. An, Dual-mode luminescence modulation upon visible-light-driven photochromism with high contrast for inorganic luminescence ferroelectrics. ACS Appl. Mater. Interfaces 8, 4789 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Y. Badour, S. Danto, C. Labrugère, M. Duttine, and M. Gaudon, Cu-doped and un-doped WO3 photochromic thin films. J. Electron. Mater. 51, 1555 (2022).

    Article  ADS  CAS  Google Scholar 

  18. R.I. Eglitis, J. Purans, and A.I. Popov, Ran Jia, Tendencies in ABO3 perovskite and SrF2, BaF2 and CaF2 bulk and surface F-center Ab initio computations at high symmetry cubic structure. Symmetry 13, 1920 (2021).

    Article  ADS  CAS  Google Scholar 

  19. J.Y. Ye, X.K. Sun, Z.H. Wu, J.W. Liu, and Y.K. An, Evidence of the oxygen vacancies-induced room temperature ferromagnetism in multiferroic Co-doped LiNbO3 films. J. Alloys Compd. 768, 750 (2018).

    Article  CAS  Google Scholar 

  20. M. Chandrasekhar, and P. Kumar, Synthesis and characterizations of SrTiO3 modified BNT–KNN ceramics for energy storage applications. J. Electroceramics 38, 111 (2017).

    Article  CAS  Google Scholar 

  21. A. Rahman, M.H. Jiang, G.H. Rao, S. Lee, M.-H. Kim, M. Habib, and J.U. Rahman, Improved ferroelectric, piezoelectric, and dielectric properties in pure KNN translucent ceramics by optimizing the normal sintering method. Ceram. Int. 48, 20251 (2022).

    Article  CAS  Google Scholar 

  22. X. Liu, H.T. Wu, S.Y. Shi, H. Wang, J.W. Xu, L. Yang, and W. Qiu, Effects of Ba(Mg1/3Ta2/3)O3 doping on phase structure, optical and electrical properties of (K0.5Na0.5)NbO3 transparent ferroelectric ceramics. J. Mater. Sci. Mater. Electron. 33, 22400 (2022).

    Article  CAS  Google Scholar 

  23. L.W. Wang, H.N. Liu, C.J. Yu, K.S. Liu, H. Wang, J.W. Xu, L. Yang, and W. Qiu, High-transmittance (K0.5Na0.5)NbO3 ferroelectric ceramics modified by Sr(Bi0.5Ta0.5)O3. J. Electron. Mater. 52, 1050 (2023).

    Article  ADS  CAS  Google Scholar 

  24. L.W. Wang, J.T. Wang, K.S. Liu, C.J. Yu, H. Wang, J.W. Xu, L. Yang, and W. Qiu, Impact of Er addition on the electrical, optical, and transmittance characteristics of 0.91KNN–0.09SMT ferroelectric ceramics. J. Mater. Sci. Mater. Electron. 4, 1038 (2023).

    Article  Google Scholar 

  25. H.N. Liu, J.T. Wang, H. Wang, J.W. Xu, C.R. Zhou, and W. Qiu, Er3+ and Sr(Bi0.5Nb0.5)O3-modified (K0.5Na0.5)NbO3: a new transparent fluorescent ferroelectric ceramic with high light transmittance and good luminescence performance. Ceram. Int. 48, 4230 (2022).

    Article  CAS  Google Scholar 

  26. X. Liu, G.B. Hu, H.T. Wu, S.Y. Shi, H. Wang, J.W. Xu, L. Yang, and W. Qiu, Transmittance, photoluminescence and electrical properties in Er-doped 0.98K0.5Na0.5NbO3–0.02Sr(Yb0.5Ta0.5)O3 ferroelectric ceramics. J. Electron. Mater. 51, 3476 (2022).

    Article  ADS  CAS  Google Scholar 

  27. H.T. Wu, G.B. Hu, S.Y. Shi, X. Liu, H. Wang, J.W. Xu, L. Yang, W. Qiu, and S.J. Zhou, Effect of Ho addition on the optical and electrical properties of 0.98KNN–0.02SYT ceramics. J. Electron. Mater. 51, 831 (2022).

    Article  ADS  CAS  Google Scholar 

  28. J.T. Wang, S.Y. Shi, X. Liu, H.T. Wu, H. Wang, J.W. Xu, L. Yang, and W. Qiu, Photoluminescence and electrical properties of Er-doped (K0.5Na0.5)NbO3-based transparent ceramics structure and properties of titanium alloys with nitrogen. J. Mater. Sci. Mater. Electron. 33, 19551 (2022).

    Article  CAS  Google Scholar 

  29. B.E. Paton, B.I. Medovar, G.M. Grigorenko, and K.G. Grigorenko, Structure and properties of titanium alloys with nitrogen. Met. Sci. Heat Treat. 34, 74 (1992).

    Article  ADS  Google Scholar 

  30. S.V. Zvonareva, V.Y. Churkina, V.A. Pankova, K.Y. Chesnokovb, A.V. Chukina, and A.V. Abramova, Luminescence of alumina ceramic doped with lanthanum under medium- and high-dose irradiation. Nuclear Inst. 465, 42 (2020).

    Article  Google Scholar 

  31. Hu. Qi, J.Y. Tang, Y.C. Teng, X.F. Zhao, T. Arslanov, and R. Ahuja, Preparation and dielectric properties of La doped NBCCTO ceramics. J. Electroceramics 48, 117 (2022).

    Article  Google Scholar 

  32. J. Fuentes, J. Portelles, M.D. Durruthy-Rodrıguez, H.H. Mok, O. Raymond, J. Heiras, M.P. Cruz, and J.M. Siqueiros, Dielectric and piezoelectric properties of the KNN ceramic compound doped with Li, La and Ta. Appl. Phys. A 118, 709 (2015).

    Article  ADS  CAS  Google Scholar 

  33. Y. Chen, G.F. Huang, W.Q. Huang, B.S. Zou, and A.L. Pan, Enhanced visible-light photoactivity of La-doped ZnS thin films. Appl. Phys. A 108, 895 (2012).

    Article  ADS  CAS  Google Scholar 

  34. G.B. Hu, H.N. Liu, J.T. Wang, Y.B. Sun, H. Wang, J.W. Xu, L. Yang, and C.R. Zhou, Regulating the structural, transmittance, ferroelectric, and energy storage properties of K0.5Na0.5NbO3 ceramics using Sr(Yb0.5Nb0.5)O3. J. Electron. Mater. 50, 968 (2021).

    Article  ADS  CAS  Google Scholar 

  35. G.B. Hu, J.T. Wang, X. Liu, H.N. Liu, H. Wang, J.W. Xu, L. Yang, C.R. Zhou, and W. Qiu, Structural, transmittance, ferroelectric, energy storage, and electrical properties of K0.5Na0.5NbO3 ceramics regulated by Sr(Yb0.5Ta0.5)O3. J. Mater. Sci. Mater. Electron. 32, 22300 (2021).

    Article  CAS  Google Scholar 

  36. G.R. Li, W. Ruan, J.T. Zeng, H.R. Zeng, L.Y. Zheng, L.S. Kamzina, Y. Kopylov, and V. Kravchenko, The effect of ___domain structures on the transparency of PMN–PT transparent ceramics. Opt. Mater. 35, 722 (2013).

    Article  ADS  CAS  Google Scholar 

  37. Y.B. Sun, H. Wang, C.R. Zhou, L. Yang, and J.W. Xu, Enhancement of the up-conversion luminescence performance of Ho3+-doped 0825K0.5Na0.5NbO30.175Sr (Yb0.5Nb0.5)O3 transparent ceramics by polarization. Bull. Mater. Sci. 44, 139 (2021).

    Article  CAS  Google Scholar 

  38. J.T. Wang, Y.B. Sun, S.Y. Shi, H. Wang, J.W. Xu, L. Yang, and W. Qiu, Effects of Er3+ doping on the structure and electro-optical properties of 0.94(K0.5Na0.5)NbO3–0.06Sr(Zn1/3Nb2/3)O3 ceramics. Bull. Mater. Sci. 45, 14 (2022).

    Article  CAS  Google Scholar 

  39. P. Sikora, A.M. El-Khayatt, H.A. Saudi, S.Y. Chung, D. Stephan, and M.A. Elrahman, Evaluation of the effects of bismuth oxide (Bi2O3) micro and nanoparticles on the mechanical, microstructural and γ-ray/neutron shielding properties of Portland cement pastes. Constr. Build. Mater. 284, 122758 (2021).

    Article  CAS  Google Scholar 

  40. Y.T. Ren, Z.W. Yang, Y.H. Wang, M.J. Li, J.B. Qiu, Z.G. Song, J. Yu, A. Ullah, and I. Khan, Reversible multiplexing for optical information recording, erasing, and reading-out in photochromic BaMgSiO4: Bi3+ luminescence ceramics. Sci. China Mater. 63, 582 (2020).

    Article  CAS  Google Scholar 

  41. A. Veber, M.R. Cicconi, A. Puri, and D.D. Ligny, Optical properties and bismuth redox in Bi-doped high-silica Al-Si glasses. J. Phys. Chem. C 122, 19777 (2018).

    Article  CAS  Google Scholar 

  42. V. Tsiumra, A. Zhyshkovych, T. Malyi, Y. Chornodolskyy, V. Vistovskyy, S. Syrotyuk, Y. Zhydachevskyy, A. Suchocki, and A. Voloshinovskii, Localized exciton luminescence in YVO4: Bi3+. Opt. Mater. 89, 480 (2019).

    Article  ADS  CAS  Google Scholar 

  43. S.F. Zhou, N. Jiang, B. Zhu, H.C. Yang, S. Ye, G. Lakshminarayana, J.H. Hao, and J.R. Qiu, Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers. Adv. Funct. Mater. 18, 1407 (2008).

    Article  CAS  Google Scholar 

  44. A.J. Huang, Z.W. Yang, C.Y. Yu, Z.Z. Chai, J.B. Qiu, and Z.G. Song, Near-infrared quantum cutting luminescence and energy transfer mechanism of Ba2Y(BO3)2Cl: Bi3+, Yb3+ phosphors. IEEE Photon. J. 10, 1 (2018).

    CAS  Google Scholar 

  45. D.N. Vtyurina, P.A. Eistrikh-Geller, G.M. Kuzmicheva, V.B. Rybakov, E.V. Khramov, I.A. Kaurova, D.Y. Chernyshov, and V.N. Korchak, Influence of monovalent Bi+ doping on real composition, point defects, and photoluminescence in TlCdCl3 and TlCdI3 single crystals. Sci. China Mater. 60, 1253 (2017).

    Article  CAS  Google Scholar 

  46. Y. Liu, T. Sun, G. Dong, S. Zhang, K.L. Chu, X.R. Pu, H.J. Li, and X. Liu, Dependence on sintering temperature of structure, optical and magnetic properties of La0.625Ca0.315Sr0.06MnO3 perovskite nanoparticles. Ceram. Int. 45, 17467 (2019).

    Article  Google Scholar 

  47. M. Oumezzine, O. Peña, T. Guizouarn, R. Lebullenger, and M. Oumezzine, Impact of the sintering temperature on the structural, magnetic and electrical transport properties of doped La0.67Ba0.33Mn0.9Cr0.1O3 manganite. J. Magn. Magn. Mater. 324, 2821 (2012).

    Article  ADS  CAS  Google Scholar 

  48. M. Rosić, L. Kljaljević, D. Jordanov, M. Stoiljković, V. Kusigerski, V. Spasojević, and B. Matović, Effects of sintering on the structural, microstructural and magnetic properties of nanoparticle manganite Ca1-xGdxMnO3 (x = 0.05, 0.1, 0.15, 0.2). Ceram. Int. 41, 14964 (2015).

    Article  Google Scholar 

  49. X. Ren, Q. Chai, X. Zhao, Z. Peng, D. Wu, P. Liang, L. Wei, Z. Yang, and X. Chao, Relaxor behaviors and electric response in transparent 0.95(K0.5Na0.5NbO3)–0.05Ca(ZrxZnyNbz)1.025O3 ceramics with low-symmetric structure. Ceram. Int. 45, 3961 (2019).

    Article  CAS  Google Scholar 

  50. X. Ren, Z. Peng, B. Chen, Q. Shi, X. Qiao, D. Wu, G. Li, L. Jin, Z. Yang, and X. Chao, A compromise between piezoelectricity and transparency in KNN-based ceramics: the dual functions of Li2O addition. J. Eur. Ceram. Soc. 40, 2331 (2020).

    Article  CAS  Google Scholar 

  51. Z.T. Yang, J.R. Du, I.D.J. Lisa, and D.P. Martin, Reversible yellow-gray photochromism in potassium-sodium niobate-based transparent ceramics. J. Eur. Ceram. Soc. 41, 1925 (2021).

    Article  CAS  Google Scholar 

  52. X. Bai, Z.W. Yang, Y.H. Zhan, Z. Hu, Y.T. Ren, M.J. Li, Z. Xu, A. Ullah, I. Khan, J.B. Qiu, Z.G. Song, B.T. Liu, and Y.H. Wang, Novel strategy for designing photochromic ceramic: reversible upconversion luminescence modification and optical information storage application in the PbWO4: Yb3+, Er3+ photochromic ceramic. ACS Appl. Mater. Interfaces 12, 21936 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. S.Y. Cao, Q. Chen, J.T. Liu, C.Y. Wu, L.L. Li, J. Xu, G.H. Cheng, and F. Gao, A novel photochromic ceramics with reversible luminescence modulation and light bleaching behavior: Sm3+-doped KSr2Nb5O15. J. Am. Ceram. Soc. 40, 6061 (2020).

    Article  CAS  Google Scholar 

  54. Y.L. He, H.B. Zheng, J.C. Tan, D.Y. Ding, G.W. Zheng, X.D. Wang, and X. Wang, Two-dimensional non-spatial filtering based on holographic Bragg gratings. Chin. Phys. B 19, 074215 (2010).

    Article  ADS  Google Scholar 

  55. J. Zhang, L. Yang, J.W. Xu, C.R. Zhou, C.L. Yuan, H. Wang, and G.H. Rao, Photo-dielectric response enhancement and switching behavior of (1–x)(K0.5Na0.5)NbO3-xCa(Ni0.5Nb0.5)O3-δ ceramics by semiconduction method. J. Alloys Compd. 881, 160512 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (61965007), Guangxi Nature Science Foundation, P. R. China (2018GXNSFDA281042) and Guangxi Key Laboratory of Information Materials, (Guilin University of Electronic Technology), P. R. China (201007-Z).

Author information

Authors and Affiliations

Corresponding author

Correspondence to Hua Wang.

Ethics declarations

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yu, C., Liu, K. et al. La2O3-Doped (K0.5Na0.5)NbO3-Based Photochromic Transparent Ceramics for Optical Storage Applications. J. Electron. Mater. 53, 1852–1867 (2024). https://doi.org/10.1007/s11664-023-10908-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10908-7

Keywords