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SUMMARY

The asymmetric energy term of the Weizsaecker mass formula has
been derived for single closed shell nuclei. The model of the nucleus
used in this work consists of the Nilsson-shell model with two added
residual interactions:

(1) a short-range pairing force,

(2) a long-range quadrupole force,

The effect of the first force has been included by the BCS~supercon-
ductivity method. The quadrupole force has been treated with the
collective "ecranking method" introduced by Inglis.

The calculations lead to the asymmetric energy, determined by
shell and interaction parameters. The interaction parameters can be
expressed in terms of well observable quantities: the even-odd mass
difference, and the frequency of the quadrupcle radiation. Thus the
asymmetric energy turns out to be completely determined by the even-odd
mass difference and the guadrupole frequency. The result is checked by

two examples and found to be in very good agreement with experiment.



CHAPTER I
INTRODUCTION

The last five years have extended considerably our knowledge of
the forces governing the behaviour of nuclei,
A model, first extensively treated by Belyaevl, has quantitatively

explained many nuclear propertie32

s Such as:

{(a) odd-even mass differences,

(b) magnetic dipole moments,

(c¢) electric quadrupole moments,

(d) electromagnetic transition rates, and

(e) Beta-decay matrix elements.

This model considers the nucleus as a system of protons and
neutrons moving in a deformable harmonic oscillator wells, subjected to
certain additional interactions;

{1) The Mayer-Jensen spin-orbit coupling.

(2) A term with 1-1 coupling, giving the well an effectively
more quadratic form.

(3) A pairing force, acting between mutually time reversed
particles of equal isotopic spin,

{4) A charge independent quadrupole force.

The level structure of the deformed potential well including spin-orbit

3

and 1-1 coupling has been calculated by Nilsson“ and we shall refer to

this well as the Nilsson-well.



The Nilsson-well is at present the basis for all microscopic nu-
clear theories, and it seems that the addition of appropriate small
residual interactions will allow a description of all observable nuclear
properties,

The advantages of using this basis are that any added residual
interaction has rather specific effects and that limitations of the ap~
proach can immediately be recognized, For example, pairing and quadru-
pole force which are so successful in explaining the properties (a) -
(e), will certainly not answer questions concerning:

(1) Formation of clusters of other than two nucleons of equal
isotopic spin inside the nucleus. (Hence, they fail to explain quanti-
tatively B-decay.)

(2) Multipole vibrations of order higher than 2, which have
first been discovered in 1957, Now about 10 nuclei are known to undergo
E3, B nuclei to have E, transitions“,

The principal problem connected with (1) is to find the right

> have

neutron-proton residual interaction, The attempts made until now
been wvery unsatisfactory. The fact that also 3-nucleon clusters show
a high binding energy indicates the complexity of the additicnal
forces which must be taken into account®,

The problem we have attacked is to show how the Nilsson-well

with pair and quadrupole force gives the asymmetric energy®* for those

nuclei in which either the neutrons or the protons are in a major closed

o
¥ i.e., the term > (A-22)2 of the Weizsaecker mass formula
which determines, together with the Conlomb energy part, the shape of
the @ -decay valley.



shell, We shall call them, with Kisslinger and Sorensenz, single closed
shell nueclei (5.C.5.). These nuclei do not seem to possess any static
equilibrium deformation?, such that we can treat spherically symmetri-
cal problems, This will simplify our work considerably and allow us to
get all results without machine calculations.,

For these single closed shell nuclei we shall derive the ground
state energy and compare its quadratic dependence on the number of
nucieons with that of the asymmetric energy. We do not want to give a
theory for the Coulomb term in the mass formula and hence we can treat
neutrons and protons symmetrically, neglecting the slight difference of
their single particle levels in the Nilsson-well.

In Chapter II, we shall discuss the character of the residual
interactions and give reasons for the selection of pairing and gquadrupole
forces., In Chapter III(A; we shall briefly state the classical Bogol-
jubovl7 method for obtaining the ground state which results from the
pair interaction,and in part (B) we include the quadrupole force and
introduce collective cocrdinates. In Chapter IV we shall calculate
the ground state energy and in Chapter V we shall discuss the quadratic
terms in the nucleon number.

The reader is assumed to be familiar with the theory of super-
conductivity; otherwise an understanding of this work is impossible.
Chapter I11I1{A) does not attempt to give an introduction into this

theory but is a mere statement of the general results.



CHAPTER II
THE CHOICE OF THE RESIDUAL INTERACTIONS

The Nilsson single particle levels are derived for a smooth po-~
tential field which is some average of the true potential of one nucleon
relative to the others., These levels give a fairly good approximation
tc the actual ones, For example, the strong static nuclear deforma-
tions in the region N 2 30 can be derived by minimizing the sum of
the single-particle energies in the Nilsson-well with respect to the
deformation®.

One can expect that the residual interactions which have to be
superimposed on the average field will bring about only small changes
in the level structure,

Suppose now

\/=%Z vy

i*&
is the residual interaction, a sum of two body potentials.

Each \43 can be expanded in a series of Legendre functions.
Take V,, and denote by h the angle between the position vectors
T, , r, of the two particles. Then:

Vi T y fk ('"«1"1) pk (CDS S':) (1)

k
The range of the force determines the contributions of the different

Fi > Suppose the nucleus has a radius R and the range of W, is ro,

then the range in 2 is approximately %%* « Now the Legendre functions



PK show coherent effects only in the region of width 'e(" about =0 ,

Therefore, in the expansion of V,, , those f; dominate, for which
%<% . If r, is & Ry only terms with k > -Ef-; are important; if
the range is of nuclear dimensions, the first terms have to be consid-
ered,

It must be the goal of the theory, to select from the super-
abundance of acting forces those which are essential for explaining the
observed phenomena., The shell model fails to predict two strong effects:
the high energy required to separate an even nucleon and the emission of
quadrupole radiation by collective vibration by many nuclei.® The first
effect suggests the introduction of a short range force, which is able
to bind pairs of particles together. The second effect is,like all col-
lective phenomena, caused by long range forces and particularly the Py
term in the expansion of Vv,, will be able to yield the right multipole
order of the vibration.

If one now chooses only a force with the angular dependence of F%
and a short range force as characteristic parts of the residual inter-
action,; one has taken from the expansion in P, the P,-part and all those
with kQZ%%-n One has neglected multipole forces with k+2 o
Since this choice of forces has explained quite well low energy level
spacings in many nuclei, one can hope that they give also the main con-
tributions to the ground state energy. Calculations of the absolute
binding energy of Pb -isotopes by Kisslinger-Sorensen are in good agree-

ment with experiment and therefore support this hope.

% More than 100 collective states are known.



The problem is now how to build up a Hamiltonian accounting for
the selected two forces. We want the Hamiltonian to be simple encugh
that we can diagonalize it, but it must inherit the characteristic
features of the residual interactions such that we can see their effect
in the purest way,

This is the old problem of theory, with which already Galilei
was cenfronted when trying to find the law for the free fall. In
recognizing the necessity of neglecting nonessential perturbations®

he was probably the first theoretician,

* The "dissecare naturam” of Bacon of Verulam.



CHAPTER III

THE GROUND STATE ENERGY

We shall state briefly the Bogoljubov method for finding the
ground state if only the pairing force is present and take the quadru-

pole force into account by collective treatment of the nucleus.

A, The Pairing Force

The interaction Hamiltonian is in second quantized formulation

H = 455 Vuprs b‘:bf: b, b, (1)
Xps

-+
where bd and boc are the creators and annihilators of the nucleons

with the quantum numbers

‘ . (2)
o = (it jom)
in the Nilsson=well and \Q‘FGS is the matrix element of the two body
interaction V., between the states <O{P\ and \35~<S>o The voosa"(
which is used to represent the pairing force is
- -4 S, - (3)
Vdfszsﬁ > G ¢ 6‘55

where G the so-called pair interaction constant, O denotes the time

reversed 4 , i.e.

6T=Cm€.j,'h'\) 03



.“&Fﬁé carries the characteristic features of a short range interaction.
This can be seen by investigating the behaviour of the interaction matrix
calculated for a & -function potential; i.e., of
For this matrix, one finds that the largest elements lie just in those
piaces where \/D(F&S in {3) is different from zerc; the interaction
VVPGS gives just an extract of the dominating terms of the &§ ~force

matrix element.*®
Let &, be the single particle energies in the Nilsson well;

then the Hamiltonian inecluding the pair interaction is;
H o= Hy o+ H, ()

with
_+
¥4 N = 2 Ec( t%i ng (5)
ol

and

H =-5 ) &b bk,

P
L oL

(6)

The ground state for such a Hamiltonian has first been given in

a good approximation by BCSY in the theory of superconductivity,*#

*  TFor detailed discussions, see A, M., Lane, Nuclear Theory,
Frentiers in Physies, W, A. Benjamin, Inc., 196u4.

#% This, of course, is the original reason for the choice (3)
of the interaction matrix. In BCS ¢OL,ol denote the guantum numbers

dxCRb'msh) I & r(“?."“’\g)



Meanwhile, a number of elegant equivalent methods have been developedlou

Probably the most elegant one is due to Bogoljubov, who transforms the

b, canonically into "quasi-particle” creators and annihilators
by
oL = [ b+ 2 ™
o = WU, By — Vv g with My + V" =1 (7)

The Ao have again fermion character and the state given by BCS as the
ground state can be shown to be the vacuum state |©> for the "quasi-

particles’ with the transformation in (7):

!
Vv, = S, 15(1——5\_:,“—)\) (8)
= ! oA
Ay, = a2 C1 + =, (8a)
where

5, = _{1 for m>o
-1 “ <O

AL is determined by the number of particles N:

N = 7 \/3,2 (2

and

-

E, = ‘I(Ef?\f"‘*ﬁl (10)

A%

+ N -
is the energy of the one quasi-particle state \O<\;. > - c‘<: lo>

VAN %_GZUL\,VV: ‘Tl_‘*_G Zé (11)
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is the pair correlation energy.

In terms of the old particle operators ]O> is as given by BCS:

o> :—l—F Cu, * v, b:b;>| > (12)%

Vro

where l > is the vacuum for the b\, particles. V¥ >0 means W\ >0
in v o= (e j,m)

The energy cf \O> is
_ }: 2 A
E‘_N = E\? v\) C‘; (13)
v

) +
Since the expectation of the number operator b\, \D\, in the state

l0> is
<o b:—b\,|0> = v,* (14)

=z

A

- gives the probability for the state ¥ to be occupied by a par-

ticle.

Hence the single particle levels are filled up to the energy
which is therefore the Fermi level of the system. The distribution is
a step function in the absence of pairing interaction <f5=0>n For

=+ QO the distribution smears out around A\ with a width of VAN

*¥ We neglect throughout self-energy effects which add to ¥,
the term — Gv,* , which is < 5 per cent,
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Figure 1. The Occupation Probability of the Single Particle
Levels as a Function of the Energy. The Width of
the Smeared Out Zone Around the Fermi Level is N

The BCS state can be shown to behave like a system of pairs with Boson-
ChaPaCtePll“lsg so-called Cooper=pairsl2, which are bound states of
two mutually time reversed particles in the I=0 state due to the
interaction introduced above. Because of this occurrence of bound
states the BCS state cannot come out of a perturbation treatment of
the interaction F{Pa The state and its energy do not depend analyti-
cally on the interaction strength G in HFo From this pair character
it is alsoc clear that the BCS state can only yield a good approximation
for the ground state of an even number of particles N, In the case
of an odd number N + 1,one particle, say v , cannot find a partner and
sits therefore alone in cne orbit, the time reversal state being un-
occupied, The states ¥ and ¢ are unaccessible for the paired
particles; they are "blocked." The occupation probability leoks like

the illustration given in Figure 2,
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Figure 2, Occupation Probability of the Energy Levels for an
0dd Number of Particles. The Right Axis Gives the
Particles with v >0 the Left One Gives Their
Time Reversed with m<o.

When calculating A and & this facts \/\,.:4 . Vo= O , must
be taken into account. Its being neglected gives a mistake up to 30

per cent in strongly deformed nuclei as was pointed out by Nilsson

1h 15

Prior~*, and Soloviev*”?, As a rule /» calculated without blocking is
20 per cent larger than A\ with blocking, as can be seen from Reference
14, page 31, Without machine calculations, however, one cannot include
this effect and we shall neglect it, realizing that here is a source of
large errors,

In this approximation the N + 1 odd-particle ground state is

Ci\%+lci>9 the energy being

EN + 20t E\?1 (15)

f

=

N+ A4

is a single particle level which lies nearest to the Fermi energy
A

a

A form of excitation of the (even) N particle system is the
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bresking apart of one pair by going from o> to o' *¢[°+ \dj> a
' 2

the two quasi-particle state. This requires the energy:

E\m - Evz (16)

In the weak interaction limit this energy is 224 and appears as energy
gap in the excitation spectrum for example in superconductors,

In even-even nuclei, where strong pairing interaction is present,
collective excitations have mostly a lower energy than the pair excita-
tion such that the lowest excitation energy is not immediately connected
with the = . However, the pairing energy is observable in the nucle-
us in the purest way: The observed even-odd mass differences defined

as
Po=2 SN EN+2—EN = ZE\?‘ "(17)

for cne nucleon number fixed gives directly the quasi-particle energy.
The (odd) N + 1 particle system can simply be excited by shift-
ing the unpaired particle into another orbit, say from ¥ to V,. The

energy varies by an amount of

E\,a -E, » v =8, . E = ﬁi(_gv‘.f&'> (18)
‘ 1+ éé—T :
E—

which is even smaller than the energy difference of the Nilsson levels.

g, —E,.

Vo

*# The right part of the equation follows immediately from (15),
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This is the weli-known compression effect of the single particle levels
in odd-even and odd-odd nuclei,
These are all relations we shall need from the pairing force

theory in order to calculate the nuclear ground state energy.
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B, The Quadrupole Force

Such drastic simplifications of the interaction Hamiltonian as
in the case of the pairing force are impossible. However, for the
production of quadrupole vibrations, the angular dependence of the
quadrupole force 'FZC"?.,TH)‘F:.CW'S‘) (see (1)) is evidently more im-
portant than its radial dependence. We therefore have some freedom in
the choice of the radial function 'F Cr, s, ;) and take it in such a

way, that the interaction matrix is most easily evaluable:

a
2

f, Cr

N
.‘r"_) L a L
With this choice one alsc will get a nice physical interpretation of

the interaction,

The quadrupole force adds to the Hamiltonian a term:

Hol %@HFC., RIRG=Ogs> BE b b, (19)

where the interaction matrix is:

{tpl ;R 158> R @ £emRES) @ T (i

Af;l being the single particle states with the quantum number
CL . Now ‘F_2 Cﬁ,q) ~ - r_:.z and 2 (cs>) can be expressed

by spherical harmonics as:

F Cees S) ~ Z Varm (N Y2 M (R)

Therefore, rl and r, terms can be separated and the matrix becomes:

= - =T L ol(}(5 O[Fé‘ with some constant X_ . The

0t Yl = SR it o
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are the single particle quadrupole moments,

Hence, the Hamiltonian is:

Hq - s Z FGus ps b b bg by (20)
My pyd

If we introduce the quadrupole moment operator of the nucleus

™ Mo+
D = «w o b (21)
0% e 2

we can write H as

H = %CZ 0 D" xzq“fﬂﬁa b, @

M, e
The second term contains one summation less and is of the order of é:
compared to the first term, if $2 denotes the number of levels under con-
sideration., We neglect this term since it gives a mistake of the same
order as the neglection of the "blocking" effect in (15).

Then the Hamiltonian is:

Y M M
He‘ 2 L Do (23)
M

(24)

It describes a coupling of all single particle quadrupole moments to
the total quadrupole moment of the nucleus. :X; is called the gquadrupole

coupling constant. The total Hamiltonian of the nucleus is now:

H = H et
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The ground state of HN'*H;1 is the BCS state given in (12),
For the calculation of the effect of Hq on the ground state there exists
at present two different methods.

(a) The random phase approximation, which was first used in
studying collective effects in electron gases,

(b) The direct collective treatment which was introduced by
Inglis as the "cranking method" for finding rotational moments of
inertia of nuclei, The theoretical foundation for the second method
is rather vague. It has, however, been shown that the more exact
random phase approximation yields the same result as the cranking
method if the quadrupole frequency is small compared to the quasi-
particle energies E_@zo

The cranking method has two striking advantages: It gives a
physical picture of the collective effect and it allows the calculation
of the vibration frequency in a simple way., We therefore shall use
this method,

We consider a fixed space direction, say Z, and introduce as a
collective parameter: the quadrupole moment of the nucleus in this
direction, Q, which is determined by

Q =L o> (26)

the expectation value of the quadrupole operator

Da"‘ ; ﬂ;? b: b@ *

* The superscript O will be omitted in the subsequent con-
siderations,
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in the given nuclear state. Then the guadrupole vibrations are described

by the collective Hamiltonian:

C = .-
J‘"]cg,u - 76)‘ T = (27)

M

where C is the "direction force™ and B is the moment of inertia with
respect t6 the collective parameter Q.* If one finds C and B the fre-
quency of the collective vibration is given by

Ly = *_C_ (28)

=)

The zeroc point energy of this vibration is %f . This energy is the
contribution of the quadrupole interaction to the ground state energy.

One obtains constants C and B by adiabatic perturbation theory.
For this one assumes the orbital frequency of the single particles in
the nucleus to be high compared to the macroscopic vibration frequency.
Then the single particles do not realize the collective motion and at
each mement the intrinsic nuclear state is just determined by the static
ground state corresponding to a fixed Q.%®%

In order to find this state for any prescribed small Q one adds
the quadrupole momentum operator D together with a Lagrangian multiplier

to the Hamiltonian, forming

ﬁ = H*/‘*D (29)

*# See S, A, Mozkowski, Handbuch der Physik, 39, 411, (1957).

%% The adiabatic condition is not too well satisfied, Both
frequencies lie in the same order of magnitude: 1021 sec™l or 1 Mev,
Cnly the success of the theory seems to justify this approach.
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and loocks for the ground state of the new Hamiltonian H. The multiplier
is afterwards determined by the self consistency condition:

e =< o>
H is composed of Hbq+ﬁ4r+ Hﬂ . For }{N+'Hr we possess the BCS
state as approximate ground state, We suppose Hﬂ‘fﬁf) to be small

enough such that we can treat it as a perturbation,

Hy is still a two-particle operator,

Hc1 = -2 XD D

For ocur problem we approximate Hq by the one-particle operator:
(e o
Hﬂ = XU Q-2LQD (30)

The meaning of this approximation will be discussed in a moment., With

o~

Hq the perturbation is

Ho=p D = rca’ =D P:/M%Q

-
and the second term can be included in Hy = E&_E;& k%k forming
=3
H - = Ll (31)
N e *« O
| il
with
e

g T B S«@, "/r‘\C Que (32)

The ground state of
| ¢
HN N Hp +% Qz (33)

is readily found, if we succeed to transform the matrix to

&£

diagonal form, say
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Eop = & SR

Suppose
' >= ) . x> (3
ol

are new single-particle states, in which
- — [
Ed.)e’.‘-/uk O\_Ol'ﬁ\ = E.d.SOUP\ (35)

Then the transfecrmation coefficients have to satisfy the equation:

; = == (36)
(PO(‘QQ E&F Hoﬁﬁ\ "'/\(.\: Lpg{‘qi O\«(é (10(6/8‘ Eo{léa(lP‘. 36
*p

and, since 80{/&: Q_Sdp and

(e - . (%‘F" =*/pr A LPF,PI (37)

If some states are degenerate, we can combine them linearly such that

qu is diagonal,
Then the familiar perturbation solution of this eigenvalue

- 0)
probiem is, with the assumption: L‘wax = 5.;@\ + LPV“\

O [\—t‘_- “lwa -
‘P,x@\) = { SeraaL (38)
= - By =g,



The energies are in second order:

2
/E\;' - Cu “F Qo ”/\,jC e
where; 2

| ' l
TGl
Po :
=g
the prime excludes summation over fe with E,eagd .

The quadrupole moment in these new states lo<_'> is:

C1C<1=} C€Qb<5}xﬁ,{f;3“\ - C}O@( + Zl;ti Fax
and the single particle energies of l OU>2

.. < £ +ﬁqpx

e
In terms of Eot‘ . HN reads:

F4 N @22;‘ EQLt ED \

\
l:;t . . . \ {
where ' 1S now the creator of a particle in the state O<>

21

(39)

(40)

(4l)

(42)

(43)

and bx\ is its annihilator. The pairing interaction part H_ has

the same form in the new states:

l - 04
F* P . %%f ;iq__ k:bﬁ k)ﬁl EDﬁthét

Since the transformation |C><>"> 'OU> is unitary.

N

But the ground state of Hamiltonian H] + H“F> is just the BCS

state

(44)
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] Ol> ____—H_ L =\ bo-:‘ bo_;)] > (45)

oAl N
where now the indices refer to the states \O( ‘> . The equations

for. \/0(l clearly are: (cf. (12))

¥ S L]
Vr = S %Z(iq _'EE$L225=>

=

(u6)

For odd nuclei always O(::1 C>> has to be taken as ground state in-
stead of \ o! > c

The ground state energy is:

(47)

= ! ; = |
W <C>|H|O> <O’HN+HF'O>+ O‘,Hq|d>
- U -X*
= Q
where L is the BCS energy of the state \O\> given in IIa (13),

Hence:

2.
W = A\ ?'_A _ Xz (48)
oL

We now censider the approximation ﬂ- taken for an

The state l0\> is the vacuum for the quasi-particles (cf. 7).

+ -+
OL,l = w . o = Vi by (49)

If one introduces these operators into Hq, we can write

Ho = =4 XQ™2(aN@) —% NOND) &2
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where, as before Q = (D‘L@ Dl O'> « N(D) is the usual normal
product of the operator D in terms of the quasi-particle operators

0{\: oo With this, (50) becomes:

oY
Hq = Ho =5 NN )

Hence our appreximation k\q R f! has neglected the term '?é—N(mN(D)

9
which gives an interaction between the quasi-particles O(vl °
But this Is a basic approximation in ail the BCS theory, where quasi-
particles are always considered as independent. The BCS state itself
is ornly determined with this accuracy.*10

The moment of inertia with respect to the collective parameter

Q is obtained by the well-known cranking formula of Inglis:

= = 'Z'Z <“| > (52)

where \ 1s the nuclear ground state with Q=0 and ((;:> an

orthonormal set containing |O> with the energies E;.
The effect of a change of Q on the ground state IC5;> is two=
fold as we have seen in the preceding discussion:
{a) The wave functions |Q%;> are changed to |O'> by an amount,
says: b(' Gl_, where 58 is the generator of this change.
L
(b} The single particle energies shift from ¥y, —7 Eo(l

The second effect can be shown to be the dominating one,l Therefore:

% Clearly this term determines the life times of excited
collective states,
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5! o7 S [ Cervibeby ! >

¥ >0 (53)
— ’au-.; +
s a T aa s& oo by )” C“‘«*"ocb N >
\))o H.)O
The first factor is, because of the condition s g2 =
»
D, "a\/ L P S a
™ .,
DA o) by (‘-*' o b - v,) 5
- _L S, -+
% Ba O<" O(Q'(m\,—rvvabg)
such that:

1 Buw., T,
a@ o7 = Z v, e ok o) e

where 0( + are the qua51=part1c1e creators O(\, = \:{:{ -V bv as
introduced in IIa (7).

The operator %@ can only possess matrix elements from the
states <O\O(,o(-; to | C'>> which have the energy E‘\,'*Ev‘* E._-, o

Such that the moment of inertia:

B = Z (aw :E (56)

For an odd partlcle number with the Q=0 ground state O<\,-'{-|C37
summation in (56) runs over all VAN

We now have derived all necessary general relations we shall need
for this calculation of the ground state energy of the nucleus, The
further procedure requires more detailed assumptions concerning the

level structure.
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CHAPTER 1V
CALCULATION OF THE GROUND STATE ENERGY

As we said in the beginning we want to restrict ourselves to
spherical, single-closed shell nuclei., Their single-particle levels
form fairly well separated highly degenerate groups. These groups we
shall call for brevity shells. They do, in general, not cocincide with
the major closed shells between magic numbers. For example, the levels
with numbers between 40 and 50, 70 and 82, 100 and 1ll4% form such a
shell in our sense, but only the first one is a major shell.

Then we make the assumption about the pairing force, that only
particles inside one shell interact strongly with one another, One has
tried to justify this by consideration of the matrix elements
<o(5('|5(ﬁ'_?=)|ﬁe> of the S-function interaction, However, one finds
non-diagonal elements even across a major closed shell gquite large. (16)

At any rate, this assumption has led to a hitherto successful
theory such that we shall adopt it.

Our model wants to consider only pairing interactions between
particles of equal isotopic spin, i,e,, p-p or n-n interactions. The
neglect of n-p forces is still a great weakness in the present pairing
theory. For ocur single closed shell nuclei, however, their effect
might be supposed to be small because of the apparent stability of
closed-shell configurations against any kind of perturbation.

With these assumptions the nucleus without quadrupole interaction
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decomposes into a set of independent shells of nucleons, all but one
being completely filled, In order to find the ground state with only
the pairing force present, we can therefore restrict ourselves to the

consideration of just one shell,

A. The Ground State Without Quadrupole Interaction

Consider one shell of Nilsson levels. They are all degenerate,
In this case pairing force theory alone would be very easy. For the
determination of the collective oscillator potential C, however, we saw
in III(B) that we have to find the ground state for different fixed
quadrupole momentum Q, which changes the single particle energies
é;x_ to Eix\ . Therefore, the degeneracies, existing for Q=0,
are in general removed, only time reversed states maintaining the same
energy.

We shall therefore consider immediately the general case that
the levels of the shell are split and lie between the energies =
and Ei“ . We assume the level spacing to be small compared to the
correlation energy & , since A is in the order of the even-odd mass
difference, i.e,, ™~ 1 MeV uhereas the levels are arbitrarily close to-
gether as long as one keeps Q small encugh., Exception is only the case
of a completely filled shell, where all ‘¢v=4 'LL9=O and hence

£:>==§§ Wy vanishes exactly. For only partly filled shells we
can appro;imate all sums over V in the equations of III by integrals.,

Define %CE) as the density of pair states (i.e., © 9

are only counted once), Then £\ is determined by (11):
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b
1 = % G\S s 9E (57)

with
g —EA (e, (9))
= &"—2C
hence:
2 (58)
sk T L.lo - 20dodn Q""L]
where

fl

1
'\'L § G (59)

and §§ is an average level density of the shell defined as

-1
8=-——5 <3Ca)1?+ (f 1? - ) (60

According to whether wl‘§3>1 or £ 1 we shall call the interaction

weak or strong, Since in our case §§' is arbitrarily small for suffi-

ciently small Q we can later go in all results to the limit ”z‘<i 1
The equation for A\ still contains :>\ , which is determined

by IITI(A)(9) through

N = S (’l S A )3(2)0(& (63)

Now we must assume a particular Eg(;) in order to solve these equations.,
The only 53 which approximates the level density in all shells

equally well (or poorly) is
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S_—:cons_t = S,
which is connected with the total number of pairing states S of the

shell by

8 = Sl (64)

Then

L= [ (65)

and
‘>\ — &“.4.21_ j_ C&l“""'el)x C‘H’L (66)
2 =) NS
whare

:)(N==~ 1 - S_Né. (67)

is the parameter showing how empty the shell is

for empty shell

1
)C = - for half filled shell
N -1 for full shell (N=25%2 )

He see here a first effect of the pairing force: the stronger the
interaction, the stronger is the increase of the Fermi energy with N.

A . 4
AN would be determined by 23.

Without any pair interacticn

now it is f;itli&; o
2=,
For the case of the strong interaction limit, 41'<( d 1_}\,_is

dominated by g
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— &'+’ G
DN 2. N _S_Z.%N (68)

Now we put (68) into (58) and get for

A = s o (59)
2‘5th N

where

{70)

ST R ()

is the statistical factor., For the scattering from the occupied to the
empty states, & is 0 for full and empty shells and 1 for half
filled shells,

With (69) and (13) the ground state energy of the shell becomes:

z =
U =) g,v -8
5 G

(71)
" !
E = = -8
= E\, \/\, - 1—\--——__\5[;\_2 @N
S s
The ground state of a completely filled shell is trivially:
=) ‘£
v
Since A
D, = O
|
E denotes the summation over the levels of a closed shell:
The energy of a quasi-particle is
2. 2 =N a
=, =E,~) A =.E;(E.“-a‘) ©,, (ct> -1) (72)

E'g! 2
I Oy
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which for weak interaction and Va nearest to the Fermi surface is

E = A (73)

\9\
For strong interactions ka:1 , however,
— = 1
=, = EGQ (74)

Hence the excitation of an even nucleus, produced by breaking up

a pair, requires the energy

(cf. (16)) (75)

=48, =G

The even-odd mass difference given by , is also

F) = (<2 (cf. (18)) (76)

If we add now the energies of all shells together, we obtain as the

ground state energy of an even nucleus in the absence of the quadrupole

interaction
‘}' 2
L/L - E\.’ \/\, - ""C";— (77)
~
where % runs in ;{: overall states.
=2
_4(_}__ is given by (69) and reduces in the strong interaction
s

limit %4'1 to
NZ_Q - Ve
2= =5 ce.(-5) (78)

For an odd nucleus one has to add E\,"‘éega to the energy,
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B, Inclusion of the Quadrupcle Force

We have to find the collective Hamiltonian (27). The general
procedure has been demonstrated in III(B),

We first determine the dependence of the ground state energy on
Q and obtain C., Take a spherical Nilsson-well with the single-particle
energies 80(_ « Let be |O> the BSC state for the corresponding
Hamiltonian Hy + Hpo The interaction Hqi ‘“/L&D has the effect of shift-

ing the single-particle energies in Hy from E(xto

g
E.(x\

Ex ~/t: Cﬂd«'/f}]%a& (cf. (39))

where qdd_ are the single-particle quadrupole moments of the states
‘Di>in the spherical Nilsson well, By this process, degenerate levels

&y in one shell are split and spread out over an interval

AE = /C&ﬂ +/’k2[3 (79)
where ﬂ = ox O~ min G g

P = oo P"L - H"\‘\r\_‘:&

inside the shell, If we denote by

2
&' g _ max C\am——mx(\ Pd
~ /‘A (80)
W . P N2
E == E_erL/LAqKG(-an/J“ PO(
we come back to the initial condition for the calculation in (A), 89 .
4 and YL are now all determined by these &' , &',

The ground state energy for a fixed Q is according to III(B)(u48)
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=z V& C)C >
\fv/ - EEC(\ \éx\ '”'“Ei;‘ - = R
0(\
Using the relations
- ol (cf. (42))
ED(.\‘—- 80( '+/‘A' POC Ccr,

the first sum becomes:

Z St M = /v\ Z o Vi (81)

The left side is constant, since the closed shells contribute ZS
and the unfilled shell gives, because of its degeneracy,
>N s S 2
Z Eoe Vi =EZ ey = &N
(2
if & denotes the common energy of all levels and N denotes the number

of particles in the unfilled shell., Hence:

2z _ — ! N
ot Vet T Ep TE (82)
ol ol

We now consider the right side in (81),
!
We decompose also this sum in a part § over closed shells
Za\ .
and part over the unfilled shell,
2. . A | Pt N 2
) P =/ E Po Z By Ve
& - ]
The Lagrange multiplier in the first part can be eliminated by the quad-

rupole moment of the closed shells, call it Qg;:

Since

Qe = ;\G‘w (83)
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and

ISTRR 9% +:2/fl‘ Ou (cf. (1))

and furthermore

gﬁclw=o (84)

because of the spherical symmetry of the Nilsson well, we have:

Qe = QF; = (a5

|
The EZ:Fu is a constant, say P, but then

2.

(’\-QZ N L_;P (86)

Substituting all this into W we obtain:

W = Za Le Nt -e‘iz@_/’\fZ}v? (87)

In this equation we can still neglect the last term compared to‘:xfcgfz

To see this, we decompose

Q)= Q + Q. (88)

where Cl;x denotes the quadrupole moment of the unfilled shell, given

= 2
E5% =_;_ C\u, Vil (89)

oY

by:
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PN e
G =§ Vijz"“*g v, o
)\ WD(‘+ o(d' (90)
— -

The right side is a result of the perturbation )::Cau on the energy
™
levels €, =& in the shell. Hence, it is of the order /'\Eau .

Since (= (e , we can neglect this term as long as

@]
ﬁ %2( <& /I (91)

This condition, however, can always be supposed to hold, since we in-
vestigate the energy dependence of W only in the neighborhood of Q=0

where also Qc=0° Then

Q Z% = (92)
= %
N Howe Yo

The last term in (87) now is negligible against XQQ)\ by the same ar-

gument, since )QO\%/Q" o We therefore obtain as ground state energy:

< =
W= W, + 5 R -em - K g (s3)

with:

\
W, = ;8« + &-N (94)

P i;iir_ (95)
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If we substitute Q. =QR-&, , W takes the form:
z Koz o™
wo=w,+ 20 a*-kaa.-5al-& (96)
We only have to find CZEA in dependence of Q, then W(Q) is known.
Cguh is determined for small Q, according to equation (92), by

Q>~ = quo(ot Vi "2'

A

In the degenerate shell, where all levels have the same energy

O [y o2
& , we can use the relation & = & ‘/"L O'W"/‘ P, to write

j [
Qoima‘/}_ CEM-‘S) (o7
under condition (91), i,e., for small enough Q. Then:
- (AN 2 - as
O, - -A ) (Bu-3)ui B2 i
/> & /”

and approximately again the sum by an integral

oL .._:Lg‘b(,l__&'. > golg - =22 N (99)
> R Tmm TR

which yields for the strong interaction limit:

\

R S

QL == == O\ " (100)
A Ve ©

The first factor is a constant which depends only on the shell under con-

gideration: Because of (79) and (80) and the estimate (91) we can write

for small ¢

[

= SSF'L/\,» 'O\ (101)

g'-g'

/{}
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If we take sgnf into er(‘ » such that

- o~ g
e N

is directly proportional to er H

Q,\ = X el (103)

- S
o= Q‘—6_ ©n {104)

W therefore depends now only on the quadrupole moments G—,Q).. °
In order to get their connection we can set in linear approxima-

tion
Q= 4§, (105)

in the neighborhood of B=0 (since G =© —» &X.*S, Q,=C ), With

this W can be expressed as a function only in QU, . We choose now £

such that:
Q_\_,_A/ o (106)
Chi
in a whole neighborhood of Q>\=Oo This gives:
£ = A (107)
1-2
23

From this and (105) follows

Q:{O(/yl (108)
A\:z
G

This can be used to express s in terms of Q3



4l~ (equation (79))

Aﬂ- QEZ =y (1 @2) (109)
= 'R 36 x)°
Finaily the energy W(Q) is:

W= W, -2=2&0, +S Q>
L+ (110)

C Qf(%o@ G@N[1 e:;] (111)

i@_ = qu (112)

Ny 66(1—%)

C is the direction force. We see that W has its minimum at Q=0 as long

as

o < 6,

N o (113)
Only under this condition the spherical nucleus can undergo quadrupole
vibrations,

For CBbd7>‘:>Nb the nucleus evidently becomes instable.
The minimum energy lies then at some Q# 0 which corresponds to a
static deformation., We call =N the "critical filling."
Since single closed shell nuclei show all a stable spherical equilib-

rium shape, their critical filling CDbJo must be throughout

larger than one,
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C. Determination of the Moment of Inertia

According to (56) the moment of inertia is:
N (=408
s - 4.(3y
2;— Vot N DG
or, expressing Q by 41‘

B*—L,__E 4 @“>_4__ (57)
(Fet) . B E.,

This holds also for odd nuclei if one neglects exclusion of one summand
V,; which gives an error of E%Z o Now:
2
4 D, 1 B { (1 E;AX)) (114)
Ve ’an Q_u\,v\, ’aer :z_w,vv ’aer

Remembering 2w,v, == one obtains:

v
But
Sa = at Q = 0 (cf, (109)) (116)
oM
The expression
E;v —‘:\\ is with H;Au- from (68)

— ] !
(117)

Hence:

%VLCS.\,—}Q -—%CE\? -%SJ) (118)
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Now from (97):

~ _ g'a¢" o~ _ Wox O, +tmin cq‘>
Z o B /‘* (C\\?\? D’"l. o (118)
.
g'—e!l = F'Sjn/“' (m’(q\w —m?nq\,v)
Therefore:
g - B
SN =
(8™e' ) mnpx

a sig

is constant in the neighborhocod of Q=0, But then, using 11:=5577~EEE—,

{118) becomes

o gt . _ g'tg"
8 (2m2)- 3, G- 222

"

=0

and setting this into (115) one has:

- 1 u
j_ a\/‘—o d 2\2\_8+E

f— A i

Vo Bm_ 2ES C‘é“_-zm
We remember that for ~7;‘< 1

B

A

-Ye (121)

Qb

= %_ G2 (cf. (74))

and

= 2
2 S22 G g (cf. (78))

then

and taking the integral
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l+£
AE

B =2 (‘
& J"gzcs 2. NS -2 oo,

= 1 (122)
5 - far 66 O 2

Together with ([11) we obtain then as frequency of the gquadrupole

vibration:

= - (123)
8 = &2 @ND

It is interesting that this frequency is in the absence of quadrupole
interaction (ioenég;f=C) ) just identical to the energy required for
breaking apart a pair (of (74)). We see that in general the collective
excitation requires less energy than the creation of two quasi-particles,
The zero-point vibration carries an energy '%% and since the nucleus is

spherical this energy is the same for all five degrees of freedom of

quadrupole vibration. Hence, the ground state energy is lifted by

AE=%(QQ-—¢Q()C=O>> (124)
by the effect of the quadrupole interaction. For
Cn < 9O, (125)
this is approximated by

DB Q:M"S[?%:,QG (126)
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CHAPTER V
THE ASYMMETRIC ENERGY

We now collect the different parts of the total energy calcula-
ted in IV, We set in equation (110) Q=0 and obtain the static¢ ground

state energy:

U;.—_:E ED(_}EN-—L:GGN (127)
ot

where Zl&,g is the sum of the single particle energies in the closed
shells gid N the number of nucleons in the outside shell.
The zero point energy of the quadrupole vibration gives according
to (126} the contribution
—S S 126b
ANE = s =G S, (126b)
Finally, we have to remember that equation (127) for lL holds only for

even N, For an odd N nucleus we have to add the quasi-particle energy

which, frem equation (74), we know to be

E,= &G

Then the total energy of a single closed shell nucleus is in

dependence of the number of nucleons in the unfilled shells
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N 2
E(N) -:Z_lgd N -Co, R R R

+{: E" forodd N (128)

tor evernn N

Sy == (-3%)

being the parameter introduced in (70), (:>N° is the "ecritical fil-
ling " of the shell where the spherical shape gets unstable (112),

We separate E(N) into terms in N and N2 and we have:

o N
E(N) =cost + N 4 Y NZ*{?:V:T\N (129)

We are only interested in the coefficient of the quadratic term.

C S A (130)
=% ("*saéiov

or

6‘:%-\.5 X ql (131)

This is the gquantity we have looked for. It determines the
asymmetric energy:
In the Weizsaecker mass formula the quadratic term in N is, for

figed Zi

2

Qe
(132)
~ N

Therefore 5;‘ should give:
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6-'-_— Cha (133)

A,
and,; since Ol = 19 MeV
6" = 19 (133a)
A

Cg- depends on the constants of pairing and quadrupole interactiom

G a.nd.:f:_9 respectively, and on the shell parameters

&= = Number of pair states in the unfilled shell
1
= i (95)
27
-t
= rmox - e
et RS PV,
C! Cf q (79)

taken in the unfilled shell,

G  and )C are unknown, For & we cannot take the value G‘%
successfully applied by all former workers2s1%:7515,  The reason is
that our & is an interaction constant acting only in one of the
degenerate level groups, while all other people use one & for a total
major closed shell,

We possess, however, a good experimental source for & .
Aczcording to (76) the even-odd mass difference is given by:

P =G

hence,

o = §2]:D— (13u)
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P is listed for example by Kisslinger Sorensen29 p. BB3,

In a similar way we can use equation (123) to determine the criti-
cal filling parameter (Eahgby measurements of the quadrupole frequency <o .
Experimental (2-values are given in the same reference on p. 866. For

each unfilled shell we need just one > , if &, ¥0O, Then (123) gives:

1 -4 <' (f*a 2
= _1 p— (&2 (135)
Cn, ©n ‘352) _)

With these two relations ET— becomes:

s-fa {2 §0-6) s

Thus 23‘ is determined by only one shell parameter and two observable
quantities, the pairing force and the quadrupole frequency. We want to
check this equation by evaluating 23* and comparing it with ZS-' from
the empirical Weizsaecker formula (133), In view of the approximations
made in the course of the calculations, we can expect quantitatively
good results only if the unfilled shell shows a high degeneracy. The

best example with respect to this property is:

{a) sntZ¥
50 74
For this nucleus the tables of Ref, 2 give:
LW =1.2 P=2.8
The unfiiled shell contains six pair levels, These are the levels with
the numbers 28, 32, 35, 36, 37, 38 in the Nilsson scheme, given in Fig. 5

of Ref, 3.
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Hence E;Q_ =6, The shell contains N=4 neutrons. Then:

@N (4 6)>=08<1

which tells that the spherical shape of all Sn-isotopes with neutrons

in the shell under consideration are stable, Thus:

& = O.A% (137)

the empirical formula (133) gives:

e :1% — 05 (137a)

which is in very good agreement with (137), Another example is:

(b) pp200
82 118

for which the tables in (2) give: Lo =1,1, P=1,5

Here the five levels with the numbers 61, 62, 63, 70, 71 have to be con-
sidered as the outside shell, These levels are not quite degenerate;
however, they lie all close together on an energy interval A% of less
than %5 MeV , which is much smaller than the pairing energy P=1,5 .
This fact allows to consider them as degenerate®*, Then: <L =5, N=4,
which gives: %N =0.48 and thus:

-]

(138)

= o

* The zero-point vibration amplitude of '\’Liszﬁ‘—"(%l: |é—ed—§_>-
i.e,, of the order of one and this much larger than the equilibrium
value njnrégi ~3 ., Hence the wvibration can be considered as
well around MNe=O and our calculations apply.
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The empirical value is:
“.73\" - 19 - ogs (138a)
N 20D
Again we obtain a very good agreement. Similarly one can check other
single-closed-shell nuclei. It is interesting that the contributions
of both residual forces to the value of Iy lie in the same order of

magnitude, Let:

XF’ L—EL R L+—g_31 O (,\ C:)) (139)

be the individual parts of pairing and quadrupcle interactions, respec-

tively. Then their ratio is:

6&#_“ - Q @ (140)
5q S
In our examples this takes the values:
(a) e A 4 5
89

(b) e a0 7.1
g

We remark that in equation (131) one cannot conclude -=© for

(141)

the absence of residual interactions, since all formulas are derived
for the strong interaction limit, The asymmetric energy of the inde-
pendent particle shell model is determined by the increase of the

Fermi level N with N, which is

AR

1 = A (142)

N 2 = mean bavel<0b3ﬂ50ﬁj
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Forming this average over many levels gives
A o 25
A N A

for nuclei of mass number A,

The asymmetric energy following from this value is

&o _— i_d>\ NQ*

2 AN A
which is somewhat more than half of the total Ca 19 o
A A
% Since dE= > aN+3% %@N)a in a Fermi sea for small changes

dN of the particle number N.
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