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It is proved that the dipole operator in the hydrogen atom is the product of an element in the Lie algebra
and of a group element of the conformal group 0(4,2). A relativistic wave equation containing the total
momentum only is set up which describes the internal structure of the system purely group theoretically
and gives the correct mass spectrum. The diagonalization of this equation determines a new basis of states
in which the dipole operator is simply an element of the Lie algebra. The angle of transformation to the
new basis is evaluated to be =2 tanh™ (1 —¢/n), or, 8 =log (2n/¢), where # is the principal quantum number

and e is essentially the fine-structure constant.

I. CURRENT OPERATORS IN O (4,2)

N a recent paper! an irreducible unitary represen-

tation of the conformal group 0(4,2) was con-
structed on the Hilbert space of bound-state wave
functions of the H atom. First of all we now give a
realization of this representation in terms of boson
creation and annihilation operators which will be useful
in the following. In this representation the wave func-
tions in parabolic coordinates are identified as

|,m1,m9) =11 (not-m) ! (ny4m) 1 12
Xa,tratmgatmp imtmpoing|0) - for m>0 (1.1)
and the generators L,; of 0(4,2) as
Lij=%(alora+blowd); 1, j, k cyclic,
L.,'4E M,;= —_ % (dTatd— bTO'ib) ’
L= —%(aTchbT—aCaib) )
L= (1/20)(atCbt—aCb),
Liy= (1/2i)(ate Cbi+aCo d),
Lis=%(a'Cbi-+aCb),
L55= % (aTa—I—bTb—l— 2)EN .
<Jere o are the Pauli matrices, C=1c3, L;; is the angular
momentum, M; the Lenz vector, and N gives the prin-
cipal quantum number #.
In I it was shown that the dipole operator x when

applied to states |n,m1,m2) can be written in terms of
the O(4,2) generators as

o (NH+1)2
Xi= DN/(N—l)% (Lis— 'lLiG)T“'I‘LM

(1.2)

-y
+DN/(N+1)%(L1'5+1L1'6)“_]V—; (1.3)
where D, is defined as the dilatation operator
Duf(®)=f(ax). (14)
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For the calculation of Dy;v11) we used the position
representation of the wave functions and the question
remained whether and how such a typically spatial
operation could be cast into a group operation.

In this paper we show that the dilatation operator
can in fact be expressed as a finite group element in
0(4,2) so that the matrix elements of the dipole oper-
ators are given by

WU’ | ws|nim)= (i/wn n) (1/0'n)
X (n'U'm' | e 0n s g | mim)+(n'Um’ | Lis|nim), (1.5)

where war s is the Rydberg frequency for the transition
n—n,

1 1 1w?—n

Wprp=— —+ ==

2n? 20?2 2 nln'?

, (1.6)

and the angle #,, of the group transformation is given
by

n—n'

ntn'

The proof of (1.5) is given in the Appendix. Here we
shall discuss the meaning of this equation, its further
consequences, and how one can formulate the radiation
theory of the hydrogen atom group-theoretically from
the beginning.

First of all, if we insert Eq. (1.5) into the quantum

equation
po=ilHx:]=i[—(1/2N?), x.]

and observe that the Lenz vector L;; commutes with
H, we find for the momentum operator the simpler
expression

tanhid,.,=

(L.7)

n
, or 19n',.=log—’.
n

1
W'U'm' | p;|nim)= ——(W'l'm’ | e Pnnls L | nbmy.  (1.8)
n'n

All operations on the right-hand side of (1.5) or (1.8)
are contained in the group 0(4,2). As a consequence
the conformal group contains the whole algebra of
observables on the Hilbert space of bound-state wave
functions and can thus indeed be called the dynamical
group of the H atom. Because we need the generators
Lss, Lig, Ls of 0(4,2) this is in fact a minimal dynamical
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group. The states |nlm) themselves form an irreducible
representation of the subgroup O(4,1); these are the
states in the rest frame.

II. RELATIVISTIC WAVE EQUATION FOR THE
HYDROGEN ATOM CONSIDERED AS A
COMPOSITE PARTICLE

With Egs. (1.5) and (1.8) the dynamics is completely
formulated in the group-theoretical language as follows:
Take the group 0(4,2), assign the “particles” to a
single irreducible representation of the subgroup 0(4,1);
the electromagnetic interactions are then described by
the currents e??Z4L ;5. We shall see that the last sentence
can also be formulated: The electromagnetic inter-
actions are then described by the currents L; on the
mixed states e®4|nlm). In this way, the position
operators of the internal structure of the particle has
been eliminated. This is a necessary step if the same
formalism is to be applied to particle physics.

The problem that we have to solve now is how to
find the above dipole operator if one does not have a
Schrédinger equation and a correspondence principle.
Can one find a relativistic description of the compound
system in terms of its total momentum P, such that
the internal structure is described purely group-
theoretically? Isospin and SU(3) groups seem to be
manifestations of internal dynamics. Such a formu-
lation, in special cases, goes back to Majorana? and
has been the subject of the dynamical group theory in
recent years. The generalization of the Majorana
equations has been recently reconsidered by Nambu?
and the present authors. Nambu’s equation does not
solve the exact H-atom problem and has some un-
physical features. We now want to give a solution to
this problem.

We start from the states |7/m) which are mixtures
of the 0O(4,1) states. The form of the new states will be
determined. The boosted states | 7ilm ; p) form a reducible
representation of the Poincaré group. We then project
out definite mass and spin values by the Majorana type

equations?
(iT#P+BS—) [7ilm; p)=0. (2.1)

Here T, is the four-vector generator in 0(4,2) which
can be chosen as

T#=(Lis,Lss), (2.2)

S is the remaining scalar (under the Poincaré group)
generator
S= L4ﬁ y (2 ‘3)

and 8 and v are functions of the Poincaré invariants.
We determine the new states |7lm) by the requirement
that in the rest frame Eq. (2.1) is diagonal and the rest
states |nlm) have the mass m. If we apply a group

2 E. Majorana, Nuovo Cimento 9, 335 (1932).
3Y. Nambu, Progr. Theoret. Phys. (Kyoto) 37, 368 (1966).
¢ A. O. Barut and Hagen Kleinert, Phys. Rev. (to be published).
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transformation to (2.1) in order to diagonalize it we get

eiGnL:;s[iI‘OPO_l_BS_ ,y]e—iOnLals
=m[ coshf,— (8/m) sinhé, |N
+m[ (8/m) coshf,—sinhf,]—vy=0.

This expression is diagonal; if we choose
B/m
[1— (8/my’

then the function vy(m) is determined from the mass
spectrum to be

tanhf,=8/m, tanhig,=

(2.4)

v(m)=mN[1— (8/m)*]12. (2.5)
Thus the new states in Eq. (2.1) are given by
| film)= e~ Lss | plm) (2.6)

The constant 8 will be chosen in such a way that the
matrix elements of the current of Eq. (2.1), namely

AVm' | T 7ibm)

= (e/mn')(R'V'm’ | Lig| illm)

= (¢/nn)(n'U'm’ | e¥» L Lige—nLss | plm)y | (2.7)
coincides with our Eq. (1.8). This equation is more
symmetric than (1.8). But because L5 commutes with

Lis the exponential factor is ef¥»—tmLs, If we now
choose

B=m?=1—(&/n?) (2.8)
then
m m
tanhig= = ~1—¢/n.
I+(1—md)V2 1+¢/n
Hence

tanh3 (0 —0,)=(n—n")/ (n+n')= —tanhid,, (2.9)

and Eq. (2.7) is identical with (1.8).

Thus Eq. (2.1) describes the internal structure of the
system group-theoretically at least up to dipole approxi-
mation. It is important to note that the current oper-
ators are simple generators of the Lie algebra, Lj, not
with respect to physical states, but with respect to
“rotated” states |7ilm), whereas for |nim) we have to
use the “rotated” currents e*»L4|ynlm). Because the
group is noncompact, the transformation is hyperbolic.
The angle § measures the deviation of the actual mass
of the hydrogen atom compared to the mass of the free
proton and electron. Another way of putting these
results is the following: If we keep the form of the cur-
rents fixed then the electromagnetic interactions mix the
original states |nlm) into |7lm) up to dipole approxi-
mation; the system is now in a state which is a super-
position of all states |nim).

Equation (2.1) is relativistic, but in order that it
should describe the real relativistic hydrogen atom,
spin must be introduced as well as the correct form of
the boosting operations.
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APPENDIX: PROOF OF EQ. (1.5) AND IDENTI-
FICATION OF THE “TRANSITION
GROUP” 0(2,1)

If one inserts intermediate states into (1.3) and
observes that L;;¥iL; raises (lowers) # by one unit,
one obtains

n'U'm' | x5\ ndm)= {n'Vm’ | D ny1yin| n+1, Um’)
X{n+1,V, m'| Lis—iLis| nim)[ (n4+1)%/2n]
+ (n'l'm’ l D(n—l)/n | n— 1, l', m’)
X{n—1,V,m'| Lis+iLi) (n—1)%/2n]

(' V'm’| Lis| nim). (A1)

Hence we have only to find group theoretical expressions
for the matrix elements of D(ay1)/s. In I, Egs. (26) and
(27), we expressed this matrix elements in terms of the
integrals over hypergeometric functions:

(n'lm]D(nil)/,. ] nl,Im)(n1)2/n

=[n(nt1) 1 dusr,i;w ™", (A2)
nn'\32 NN i
Aot ™7 = (——I)
TT 7l
2 2
XgﬂJrl(l’o)(nr,_; nf’)_> ) (A3)
T T,
QLH (n4-1) 12
an= r :I ) (A4)
QD)L 1
o7 (nek; ' B) = / L e
0
XF(=1ty, pH1, RF(—n,, p--1—1, K'E).  (AS)

These integrals have been evaluated by Gordon® re-
cursively with the result

gzl+1(l,0) (nr,k ; nr',kl) =

gt
k’z——k2(kr k'r")

X ngl(0,0) ("")k ) n"’)k’) ]

(2141) 12, 1
(m—n")1(+n")! (RE)H!
XvHy='F(—n,, n+1+1,

1+n—n', u?),
EF—k (RR)112
u= =2 .
Btk

9214-1(0 0 (nr,k; nr,’k’) =

(A6)

K4k
For n<n' one has to exchange # and »’ in (A6) and

¢ W. Gordon, Ann. Phys. (N. Y.) 2, 1031 (1929).
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u— —u. If we use the identity

1 3z
F(a, c—b,c; —>
)2 z—1

1—z

F(abc;2)=
(a,b,c; 2) (

and
u 1

sinhj¢=———, coshjid=———,
(1_u2)1/2 (1_u2)1/2

to rewrite 99,19 in (A6) and define the functions
Vann ()= O nn (coshf)— (2" (sinhig) (»—n"

XF(—n,, —n'—1,14+n—n', —sinh?(36))
with

nn’

B 1 |" n(n+10)! :|1’2
 (n—n) L, (D)1

we obtain finally

r\"2/m’ wu 1
dn,l;nrl"f’=(——-—) (___.) - Unn'l+l(l9,-/,), (AS)
nn' v 7/sinhd,,

where the angle ¢/, is determined by

—7 7

19 _
INUH coshydy = NV
2(r7) 2(+7")

(AT)

sinhid,/ =

In particular then Eq. (A2) becomes
(n1)?
n

1

(n'lm | D(n;tl)/nl nt 1, lm)

=F

eOn;}:l,ﬂ’ H_l(ﬂ'n’n) .

A9)
sinhd s (

There is a good reason of introducing the functions
UVaw in (A7). Consider the noncompact group gen-
erators K1=L45, K2= —L45 and K3=L55=N of 0(4,2).
They form the algebra of 0(2,1) subgroup. The action

TRANSITION /

ALGEBRA
/
K’ £=n
4=2
=|
£=0 i n=5 F16. 1. Weight diagram
/ for the triangular represen-
tation of O(4,1). Every ver-
e a tical line is a representation

of the transition subgroup
K, an 0(2,1) subgroup of
the conformal group 0(4,2)
generated by Las, — Ly, Lss.




1183

of the raising and lowering operators K+=K,+K, is
Al=0,Am=0, and Ar==1, and is shown on the weight
diagram in Fig. 1. The states |nlm), for fixed ! and m,
form therefore a basis for an irreducible representation
D, ¢ of this O(2,1), the transition group,* characterized
by the lowest eigenvalue of K;=N which is clearly
n=Il+1. The matrix elements for D, of the finite

0(2,1) transformations are given by®
K w'lm) = | nlm )0 1) , (A10)

¢ V. Bargmann, Ann. Math. 48, 568 (1947).
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where Un.'*! is precisely the function introduced in
(A7). Equation (A10) has been proved in Ref. 4.
Therefore (A9) becomes

(nk=1)2
(n’lm l D(n:l:l)/nl nd- 1, lm)

n

=F (n'lm| e naE1|n1, Im).

(A11)
sinhd .

This equation inserted into (A1) gives finally Eq. (1.5).
Q.ED.



