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Summary. — We point out that the U, lattice gauge theory and the recently developed
theory of defect melting are closely related. They differ mainly by the positions of the
« daggers » in the plaquette energy, i.e. Uy(x) Uj(x + i) U:(x —]—j)U;.’(x) is replaced
by U,(x) U}(x + 1) U:(x - f)U;(x). As a consequence, both theories have esscntially
the same mean-field approximation with a first-order transition at that level. In the
gauge theory, this result is wrong and modified completely by fluctuations. Melting,
on the other hand, is a first-order transition such that the mean-field result is in qual-
itative agreement with experiment.

The Abelian U, lattice gauge theory has a partition function (1)
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is a product of four U, transformations U, x) = exp[i4;(x)] encircling each pla-

quette as j -

i
Recently it was shown that defeet melting can be studied by means of a par-
tition function (?)
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where y, A are the elastic constants (v = Af(2(u + 2)) = Poisson ratio) and § =
= ua*/((27)2T), with T being the temperature. The sum over symmetric integer
numbers n,; (¢ = j) and even numbers n;, produces precisely the dislocation lines ex-
isting in erystal lattices, including the proper elastic forces between  them (3). This
partition function, however, is simply the Villain approximation (%) to

raa,
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which, in turn, can be written as
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where V,; is the distortion analogue of U,;, namely

(6) V= Ufx)Ulix + i) Ul(x + j) Uy(=)
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in which the U, lines in the plaquettesm ay be pictured as 1 rj . Further
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The mean-field approximation for both partition functions (1) and (5) are obtained by
inserting the factor (5¢)

X,1 X,

(7) I d“ifd“i €xp [2 (Ui"'“:')“f] = [T |du; (U, —u;) =1,

after which one can replace U, by u, in Z and integrate out the single remaining U,
variable in front of «;. For smooth fields u;~ u and «; ~ « this gives

(8) Z ~ exp [Z (BE — 30w + 3 loglo(a))] ,

X

where in the gauge theory
(9) B = Ef = 3(ut—1)

and in the melting theory
A

(10) B = Emelt = J(ut— 1) + 6(u?—1) + —(ub—1).
n

The exponent is extremal at

(11) w = Iy(er)[Io(ax)
and

« = 4pu®, for the gauge theory
12 { a = 4f(u* + u® + (1/2u)w?) , for the melting theory.

There is a first-order transition at ¢~ 1.92, gmelt~ 0,47, 0.43 and 0.42 for A/2u =
= /(1 — 2») ~ 0.6, 0.75, and 1.05 in Be, Fe and Al, respectively. This amounts to a
Lindemann parameter (?), L ~ 22.8-2x+/fmeit~ 98, 94, 93. Experimentally, L varies
between 100 and 200 in most materials (8) and is 150, 121 and 138 in Be, Fe and Al
The discrepancy should be explained by fluctuation corrections which certainly tend
to increase ™!, as we know from gauge models (?).

At pmelt, W = (/o) log Z jumps from zero to 4, 5.2 and 5.7 after which it ap-
proaches smoothly (9 + A/u). The jump in entropy is AS ~ — BAW ~— 1.9, —2.2
and — 2.4, Fluctuation corrections, however, will lower this number considerably.
In fact, the high-T' expansion gives, to lowest oder in 8 (*), log Z ~ (15/4 + (1/2u)?) 82,
such that AS is brought down to ~ 1.1, — 1.5 and — 1.34 close to the experimental
values 1.1, 1.3 and 1.4 in Be, Fe and Al, respectively.

When comparing the model with real erystals it should be kept in mind that the
stress energy is actually anisotropic and reads

I = 30 muty ,
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where u,;; — (V,u; + V;u,)/2a is the strain tensor. For cubic systems this simplifies to
%‘01111(“31 + ug, -+ ul,) + Crr2(tyghag 1+ Ugpthgy -+ Uggthyy) -+ 201212(“'32 + %23 + u,) .

Defining

(011 i C11122)
= G s A= (Y B P=
I 1212 /1122 20118
and introducing defects via the substitutions (4dmu,;)? — 2(1 — cos 4mu,;) for @ =9,
(2mu;;)? — 2(1 — cos 2mu;;), (23 ) — 2(1 — cos 273 u,;), u; — (a/2m) A;, the energy

i
in (4) changes merely by a factor r in front of the second term. Experimentally,
7~ 0.2--0.7 in many materials. From eq. (10) we see that r multiplies the %? term
such that » << 1 increases the transition entropy.

Let us mention that the model can easily be modified to incorporate additional
point defects like interstitial atoms. All we have to do is allow the wvariables n; to
take, with some probability, half-integer values. In the energy (4) this amounts to
admitting cosine terms with twice the argument. Since those appear with twice the
power of 4 in (10), this hardens the transition. Monte Carlo calculations are necessary
for a detailed study of this interesting class of models.

From the present discussion it appears that the existing mean-field methods are
really the ideal tool for studying melting rather than gauge theories, for which they
were originally developed (°). The three-dimensional U; gauge theory has no phase tran-
sition at all (19) such that the first-order transition at the mean-field level is qualitatively
wrong and smoothed out completely by fluctuations (*). The value [i* merely indicates
the temperature region where the magnetic monopoles, the defects of that theory,
decrease strongly in number, albeit in a continuous fashion. To make things worse,
the approximation vielates the important fundamental gauge symmetry of the system.

Both diseases are absent in the present application. There is no gauge symmetry
to be destroyed and the transition to be explained is of first order, in qualitative agree-
ment with the mean-field result.

Notice that hoth gauge and melting theory can be considered as two orthogo-
nal generalizations of the XY model from one to three angular variables. The XY
model has a second-order transition at the mean-field level as well as after fluc-
tuation corrections and deseribes the A-transition of superfluid *He. The Abelian lattice
gaunge theory is the antisymmetric generalization and has no transition at all. The
present model of defect melting is the symmetric generalization and the transition is
of first order at the mean-field level. If this mean-field result survives more detailed
fluctuation studies it would explain an old puzzle as to how defect melting differsfrom
the A-transition when described as an cnsemble of vortex lines (the defects in the
XY model) (11). Tt was recently shown that the i-transition can be made first order
by artificially lowering the core energy of the vortex lines below the purely elastic
self-energy (*?). This was achieved by coupling an extra short-range vector field to the
XY model. It will be interesting to see, whether the simple partition function (4) has
the correet first-order transition as it stands or whether some modification will be
necessary in order to fit experimental data.

(1°) A. M., PoLYAKOV: Nucl. Phys. B, 120, 429 (19717).
(') H. KLEINERT: Phys. Lett. 4, 93, 88 (1982).
(**) H. KLEINERT: Lelt. Nuovo Cimenlo, 35, 405 {1982).
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Nole added in proofs.

The simple partition function does have a first-order transition with AS = 1.4 as
shown meanwhile by L. Jacoss and H. KririNerT: Santa Barbara preprint (to be
published). See also the very accurate low-§ expansion (up to f'2) as well as the
one-loop correction to the mean field theory by S. Amr, T. Hrsiss and R. HORSLEY,
Berlin preprint, July 1973. The crucial role of disclinations in producing a first-order
transition is discussed in H., KiriNerr: Phys. Lett. A, 95, 381, 493 (1983).



