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We use the newly developed gauge theory of line-like defects to calculate, in the mean field approximation, the entropy
for the combined proliferation of dislocations and disclinations. The result is AS ~ 2.4 per site, in good agreement with the
melting entropy in most materials.

Thirty years ago, Shockley [1] and somewhat later Feynman [2] suggested that melting and the superfluid
normal transition 4He could be understood as a proliferation of dislocation and vortex lines, respectively. If both
are right, it is hard to understand why one transition is of first, the other of second order, Until recently, theoreti-
cal formulations had two unsatisfactory choices: Either they left out the elastic long-range forces between the de-
fect lines [3]. Then the transition was second order. Or they included them in an approximate way by calculating
the “black body” energy of their fluctuations. This led to a cubic term in the disorder parameter and thus to a
first-order transition [4], in analogy with similar calculations for the superconductive phase transition [5}. Since
both systems, vortices as well as dislocations, have similar long-range forces it remained unclear why in “He the
long-range forces were apparently irrelevant to the order of the transition while in melting they were essential. A
possible solution to this puzzle came in sight when the author showed that defect lines with low core energies
proliferate in a first-order transition {6,7]. This is due to the existence of a tricritical point in the Ginzburg—
Landau theory of superconductivity when the ratio of penetration and coherence length K equals [8] ~0.8//2 ¥!.
In terms of the parameters of the Ginzburg--Landau theory, the electric charge e and the quartic coupling g of
the complex order field Y(x), K is given by —(g/2e2)1/2. But dislocation lines follow the same type of theory
[6], except with magnetic and order fields replaced by elastic and disorder fields, respectively. They are charac-
terized by a K value in which g measures the short-range steric repulsion between lines and et = pa” (T is given by
shear modulus u, temperature 7, and lattice constant ¢ [6,7}. Thus lines with a small steric repulsion, or equiva-
lently, with a low core energy, do undergo a first-order transition. This result was confirmed in two dimensions
by independent Monte Carlo calculations [10].

It is the purpose of this paper to point out that manipulations of the core energies are not necessary. There
exists a simple and powerful mechanism which drives the melting transition first order. It is the proliferation of
defect lines of the rotational type, called disclinations, which always accompanies the proliferation of dislocation
lines. Let us recall that, according to Volterra, dislocation lines are translational defects which can be constructed
by removing a semi-infinite slice of thickness b from the material and joining the open faces. Disclinations, on the
other hand, arise from a similar removal of a wedge-like section of opening angle £2. (b and €2 are called Burgers
and Frank vectors, respectively.)

1 In the superfluid *He, the K parameter is ~1.2//2 as shown recently by the author in ref. [9].
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It is obvious that disclinations carry an enormous stress energy. At first sight, this seems to preclude them
from thermal generation. We shall demonstrate, however, that this is an illusion. Quite on the contrary, disclina-
tions play a crucial role in driving the melting transition. The reason lies in the fact that dislocation lines can screen
the long-range elastic forces between disclinations such that both line systems can proliferate simultaneously. It
is the coupling between the two systems which is responsible for the first order of the melting transition.

The starting point is the lattice representation of the partition function of stresses and defects as given in ref.
[71%2:
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where » is the Poisson number, 7 the reduced temperature (expressed in terms of physical temperature 7 and elas-
tic Lame constant pas 7= Tn? /pa3 ,0;a reduced version of the sxmmetric divergenceless stress tensor written in
the double-curl form 04 = €k 1€ mn ViV Ry, (x — 1 —n) and My =0y — 5V (€mioy + (=) + € lozlm) is the de-
fect density with &;, 0 bemg the dislocation and disclination den51ty, respectlvely [7] *3 (9 = eukB ). All three de-
fect fields are integer valued The divergence conditions in the summations guarantee that dlschnatlons form closed
lines, dislocation lines can end only on disclination lines, and that the defect density n,](x) is symmetric and di-
vergenceless, V; nl](x) 0. Let us recall that in the absence of disclinations, the 4 ; 1ntegrals can simply be execut-
ed with the result
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where the superscripts (s, A) denote the lattice analogues of the spin s helicity A projections [6,7]. This is a
system of closed dislocation lines with 1/r forces.

In the presence of disclinations, progress can be made by enforcing the integer constraint on [ by means of a
set of angular integrations such that we can write the purely distocational part of Z as
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This is verified by applying Villain’s approximation {which for t = 0 is exact),

dwl(x)
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and introducing 0y as an auxiliary integration variable

+2 We work ona simple cubic crystal, for simplicity, and use the symbols Vl¢(x) =¢(x + ) — ¢(x), ﬁﬂ)(x) = p(x) - ¢(x — i) to
denote lattice derivatives. Stress is treated in the continuum approximation, i.e., we neglect the third elastic constant.
*3 For further discussion of this splitting see refs. [8,11].
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whereupon the sum over m; 1;; SQUELZES A to integers a =0, 21, ... while the integration over wy enforces the cor-
rect divergence condition Via;; 0 Let us now turn Z°‘ intoa d1slocat10n field theory using the method of refs,
[8,9,11,12]. This gives, with t}/ = wl +1l11
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being covariant versions of the lattice derivatives, and /; are the Bessel functions of integer order.
In the absence of disclinations, the transition would be second order. From the discussion in refs. [8,9] we
know that this remains true after fluctuation correction. Therefore, the energy (6) can be expanded d la Landau as
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For simplicity, let us use the long-wavelength approximation D;y; ~ (V — 2mie; ik lehI])x,’/ and cons1der the effec-
tive potential for constant y; = . Then we see [6, 7] that the phonon ﬁeld hy; acquires a “mass” M~ = (1r2 [67) Y2,
since (7) contains a term
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Here K2 =6 — 223 -1 cos k; denotes the Fourier transform of —V,V,. Including (8) in the stress energy, phonon
loops produce the followmg elastic self-energy for dislocation lmes [7]
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where 1(0) = Z4 1/K? =0.253 is the lattice Coulomb potential at the origin. At sufficiently small temperature, this
prohibits dislocations. For 7 > 77, however, the dislocation field destabilizes and undergoes a phase transition, as
discussed in ref. [7]. If interpreted as melting, this mean field transition would have a too high melting temperature
i.e. a too low Lindmann parameter L ~ 100. Close to 7, the effective potential has the Landau approximation

»
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Let us now include disclinations. Integrating out the phonon field produces an interaction
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The correlation functions can be split as M2 [(K~2 — (k2 + M?) 1)) and M 2K 2K+ [+ )1 — V)]Mz}_l}.
We can now easily discuss the changes produced by the disclinations in the effective potential of dislocations. For
simplicity, let us for a moment restrict the sum over ¢ i to symmetric tensors only. Then 31- =0 and the additional
potential to (9) is simply

AV(iwl) = —log Zdisclin
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For small M2, the disclination potentials diverge logarithmically such that no disclinations are possible. For larger
M2 , we can neglect the massive second parts of the correlation functions and remain with a system in which the
disclination loops have the same properties as the previous dislocation system with the replacement 7 —> T™? and
TZ - 'r(c). Thus they have an effective potential on their own of the form

Vdiscun(ld),-l) =z(Tc0/TM2 -1 Z}|¢i|2 +4 _E|¢l-14 ., (13)

where ¢; are now fields describing disclinations. The additional potential AV(|y|) is obtained by minimizing this
expression at fixed M2 = (772 jo7)) |2 There is a second-order phase transition at M2 > Tg and V(|y) behaves
close to this region as

AV(1Yl) ~0, W12 <2u(0),

~_ ;[21)(0)/1%2 “112, 142 >200). (14)

The total dislocation potential (V + AV)(||) is shown in fig. 1 ¥*. There is a first-order melting transition at

*4 This is the full potential involving all powers of ¢ in (7) and (13). It turns out that the transition lies in the Landau regime of
the dislocation energy (7) (i.e., the lowest terms (10) are appropriate), but somewhat outside of the disclination’s Landau re-
gime [i.e., approximation (14) requires corrections from higher powers in (13)]. It is amusing to find out that the full transi-
tion entropy AS happens to be the same as in a Landau approximation (13) and (14).
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Fig. 1. The effective potential for dislocations in the presence
DISLOCATIONS + DISCLINATIONS ! of disclinations. At 7 ~ 0.4 there is a first-order phase transi-
tion due to the depression caused by disclinations.
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Tmelt ~ 0.4, corresponding to a Lindemann parameter L ~ 140. The entropy jump is AS ~ 2.4 per site in units of
the Boltzmann constant. Both numbers agree with experiment for many materials [13] 5

The physical mechanism creating the entropy jump can be described as follows: A virtual increase in the dis-
order parameter {{/| has the effect of changing, the in partition function of disclination lines, the contribution of
pairs of parallel line elements from exp(r—1R) to exp [—(6/7'r2|1b|2)R_1 ]. In this way they come to behave the
same way as previously the dislocation lines with an effective temperature %71’2 | \1112. If the physical temperature 7
is held fixed, an increase in | |2 is perceived just like a heating process such that there exists a critical Yl ~0.7
beyond which the disclinations proliferate. This produces a depression of the effective potential, i.e. it becomes
easier to produce more dislocations because of the disclinations. By looking at this process for lower and lower
physical temperature, there will be a value 7., ~ 0.456 where the point of depression has the same energy as
[yl = 0. At this temperature, the disorder parameter || can jump from zero to the new value || ~ 1.4 without
cost in energy and the crystal melts in a first-order phase transition. For r ~ 0.5 the minimim is (V' + AV) .,
~ —0.23. From this we calculate AS ~ —73(V + AV)_;,, /07 ~ 2.4 per site.

This value is twice as large as what is found in most materials. The discrepancy has a simple explanation: In
the present calculation we have treated dislocations and disclinations as completely independent defects. In an ac-
tual crystal, this is not true. Dislocations can be viewed as bound states of two neighboring disclinations with op-
posite Frank vector. Conversely, disclinations can arise from sheets of dislocations. Thus only one type of defect
fields should be enough to explain the melting process, provided we can handle the bound state problem. Since
this problem is very difficult we have taken the approximation of treating the fundamental and the bound state
defects both at the same level. This approximation is familiar from low-energy nucleon scattering where the deu-
teron may be treated as an elementary particle. Such an approximation breaks down in processes where the con-
stituents become separated, But this is precisely what happens here. From the point of view of a more proper
pure disclination model, the present calculation shows that in the melting process the bound states, the disloca-
tions, proliferate, and that this screens the forces hoiding the constituent disclinations together. From this point
of view, melting is really a disclination deconfining transition. It is this combination of proliferation and splitting
which makes the transition first order. Obviously, such a more proper treatment would wind up with only half as
much disorder in the molten state than the present calculation and this explains our excessive transition entropy.

Let us now see that inclusion of the antisymmetric parts of 8, cannot change this picture essentially. For
this we note that log Iy (i9;1) differs from log Io(1y;]) mostly by a term I'é'il log |y;| — log(2"n!LThe remainder de-
pends very little on 6; if this runs through low integers. But this means that the contribution of 6; to the partition
function can be taken into account approximately by another exponential

exp(Zy, {(T;llogly;| +log cos[(Blarcte(¥ /T )1

in (12). This is just a core energy to the antisymmetric part of 0y which, moreover, is not coupled elastically. For
small llLlI2 , '51- cannot be excited at all and the sum (12) becomes a pure sum over the symmetric tensors aij- For
large 1\/;12, the antisymmetric parts can also proliferate, thus producing a further depression of (¥ + AV)({y|) above
some critical value |y . 12, which will at most increase the transition heat.

A word is necessary concerning the quality of the mean field approximation used in our calculations. Since the
transition is found to be strongly first order, we expect extremely small fluctuation corrections. Thus it is quite
improbable that the first order obtained at the mean field level could be wiped out by fluctuation corrections, as
it happened in the extremely weak first-order case of ref. [5].

It should be pointed out that all our discussion was limited to pure linear elasticity which is not entirely consis-
tent since core energies of the defects appear only in those components which are coupled. In actual systems, the
nonlinear effects are expected to produce core energies also in the uncoupled components B(S’A)(k). These are, in
fact, necessary to make the sums (2) and (12) convergent. We have omitted such extra core energies only to keep
the formulas simple and make it easier to concentrate on the essential mechanism which leads to the first-order

*5 See also ref. [14] for a discussion of present beliefs about transition heats,
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transition. In some pyhsical systems, it seems possible that nonlinear effects are very powerful leading to a quali-
tatively different relation between the core energies of disclinations and dislocation. In that case it might happen
that disclinations are so strongly suppressed that the proliferation of the two types of defects occurs successively.
This scenario seems to take place in the transition sequence smectic A=»nematic—>isotropic, in liquid crystals [15].
The reason for this may lie in the rod shape of the molecules.

Let us finally note that in two dimensions, the backfeeding effect of disclinations is of similar importance and
deserves a separate discussion [16].

The author thanks Drs. A. Ami and S. Alexander for discussions. This research was supported in part by the
National Science Foundation, grant no. PHY77-27084.
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