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Résumé. — De I'énergie de courbure des cristaux liquides smectiques A : g(é,(p)2 + %(6 2$)?, nous déduisons une

théorie de champ de jauge du type Ginzburg-Landau. Celle-ci comprend un champ complexe qui décrit les fluc-
tuations des lignes de dislocations dans un ensemble grand-canonique et un champ de jauge rendant compte des
interactions élastiques entre les lignes.

Abstract. — Starting from the bending energy l—; 0,0)* + % (@1)? of smectic A liquid crystals, we derive a gauge

field theory of dislocation lines which is of the Ginzburg-Landau type with a complex field describing the grand
canonical ensemble of dislocation lines and the gauge field accounting for the long-range « elastic » interactions
among these.

Recently, the phase transition smectic A to nematic liquid crystal has been studied as a three dimensional
example for the destruction of order by line-like defects [1-3]. We would like to point out that in analogy with
other physical systems [4] containing line-like defects there is a simple way to derive a Ginzburg-Landau type
of gauge field theory which is the perfect tool for studying this transition. In it, there appear two fields, one
complex disorder field which describes the vortex lines, and a gauge field which generates the long-range « elastic »
forces between these.

The starting point is a Landau expression for some real order parameter p(x) of the smectic liquid crystal

F = Jd3x {1@* + q3) px)}* + V(p(x)) } (1)
which is minimized by some layered solution along, say, the z direction

p(X) = po + A cos (go z + ¥(x)). ()

The phase y(x) has long-range fluctuations whose bending energies can be extracted from (1) as [5]

F = j 58 @y + 2@, )

Typically (in octyloxy-cyanobiphenyl)
qo ~ 0.197A1, g, ~ 1.55¢70-13 @

(from light scattering [6]), where r = 1 — -TZ.The quantities

<

n=kT/8nBi, K = B(iq)>
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have the values (0.17, 8.4 x 1077 dyn), (0.23, 7.1 x 1077 dyn), (0.38, 7.7 x 1077 dyn) at t =9 x 1074,
59 x 1074, 4 x 1075, respectively.

A line-like defect in the phase field y(x) is characterized by the circuit integral ¢ dy(x) = 2 an around

the line. It may be considered as the boundary line of a surface S across which the phase y(x) has a discontinuity

by 2 nn.
The partition function which describes small dy(x) fluctuations as well as these defect lines can most easily

be written down on a simple cubic lattice in the following form (%) :

+ 2
Z = ]:[ J_n d;z(:) (”%» exp{ — ;%; [(V3y(x) — 2 any(x))? + (g) (V. (V7 — 27n))* +

p) 2
+ <‘5> (Vi(Voy —2 n”z))z:l } . &)

Here the sum over all integers n,(x) accounts for all possible discontinuities by 2 nn,(x) across surface elements
in the direction of i. The symbols V, denote lattice derivatives, V,y(x) = p(x + i) — y(x) along the oriented
basis vectors, ie. i = a(%, §, Z) for i = 1,2, 3. Let also V¥y(x) = y(x) — y(x — i) be the lattice derivative
arising in « partial integrations » on a lattice, i.e. ), y'(x) Vy(x) = — Y, V¥¥'(x) p(x).

Introducing an auxiliary field 5,(x), (5) can be rewritten as

dy() db(x) ] {__T_ [bz_@)ﬂ, (VLY —zb]
z= H[Jn H,f 2 nBa)T {m(X)) P ZBag' P\ (V¥R [+

+ iZ b(Viy — 2mny) } ©®

Performing the sum over n,(x) forces the integrals over the fields b(x) to become a sum over integers b,(x) due

to Poisson’s relation ) exp(2 mibn) = Z d(b — k). After partial integration, the y-integrals lead to a

vanishing lattice divergence of the b/s : V*b = 0. Thus the smectic liquid crystal has the following simple
representation (N = number of lattice pomts)

2
Z-QuBaD™ 3 bmsmeee] ~ 35 28 - (5] Zh@orvteonw|l 0

{bi(x)}

a representation which appears in similar form in many other lattice theories [9, 10].
The divergencelessness of b,(x) can be used to decompose

b(x) =(V x a); = Eijk V;?ak(x - k) ®
which is invariant under gauge transformations
a(x) = a(x) + V,A(X). ®
In this way we arrive in the gauge V,a, = Oat
+ A
z-11( d4,x)
w~/2 Bal
2 42 * a® ViV, A, 1
X exp{ — m Ex: (a/A)* 42 — A (VE.V, + = VI'VL Y. Ovr0€Xp 2le (10)

= VLA X

{Li(x)}

Here the sums over integer fields a,(x) has been replaced by integrals over continuous 4,(x) fields with an extra
sum over integer /(x)’s ensuring that nothing has been changed, due to Poisson’s formula. The condition
V}l; = 0is required by gauge invariance. The sum over /(x) with V*/, = 0 may be interpreted as a sum over all
closed defect lines. The coupling to the gauge fields 4,(x) gives rise to thelr long-range interactions.

(!) This form is inspired by Villain’s [8] treatment of the planar spin model.
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As a matter of fact, if we integrate out the 4; fields we obtain

2
Z= ) O, 0exp[— 1@ n) Ba ZIf(x)] X exp{ 1@ n) Ba Y 1,(x), v,5(x — X)) ll(x’)p} (11)
{1i(x)} X, X/
with
n o_ ik.(x —x") IKJ- |2 S K*K./|K 2
vazﬂ(x - X) - ;e a2 ( af — a ﬂ/l | ) (12)
| K, |* + FIK:; ?
being the long-range potential between the lines.
Here K; = ll(e"“"“ - 1),K* = %(1 — e %) and a, B run from 1 to 2. Using the condition V¥/; = 0 the second
exponent becomes
Y L) v3(x — x) LX) + 1,(x) v, (x — x)1,(x) (13)
with
. K, |
R
k
| K, [* + IK 2
1 I (14
| Ky I2

v,(X) = Zeik.x = )
k
K+ 51K P

It is useful to separate out the large contributions v,(0), v,(0) and define v'(x) = v(x) — 6, o v(0). Then (11)
becomes '

2
Z= 3 o exp{ _1ex Ba[(l +BO) DLW + 0O F lf(x)]} y

{1i(x)}
(2 m)?

cep{ -3 S B T 100 six - ) 46) + G D1} 09

The second factor can be transformed back to the form (10), and (12) becomes

d
Z= HJ 2A1(:a)/ exp{ Tha Z [A5(%) v5 1(x, X) 45(x) + (3 - l)]} A
where
Zips = Z Ovt 1,0 cxp{ - % (2; 2 Bal:(l + v5(0)) Y. 12 + v,(0) ), lf:| } exp<2 miy Ai) (16)
Li(x)} = ~ -

is the partition function of closed defect loops coupled to the field 4, We can now follow Peskin [10] and observe
that this sum can be rewritten in the form

+n
do(x) T 1 .
Zloops l_[ J\ eXp{ - 2(2 7'C)2 Ba ; [1 T 03(0) (V30 -2 TEA3 -2 1m3) +

27 (o

l(())(VL —27A, — 27ml)2:|}. a7n

This follows in the same way as (6) did from (5). It may be considered as the Villain approximation to the partition
function of an asymmetric X Y model (up to a trivial factor)

do(x) y

+n
zt 11| 72

X exp {(_Zn)TTBa g [(1 + 03(0))" ! cos (V30 — 2 mA3) + v] 1(0) F;z cos (V0 — 2 nAa):l } (18)
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For A4, = 0, this can be rewritten as a classical planar Heisenberg model involving the « spins »

S(x) = (cos 0, sin ) (x) :

do(x) .

Ziy = 1—[ J 27
T -1 -1
X exp { (—2 7 Ba ; [(1 + v5(0)" ' S,(V; + 1) S, + v '(0) a=21,2 S, (V, + D) Sa] } (19)

Moreover, using parity invariance we can replace V; + 1 by {V*V, + 2).
Now we are ready to introduce the field theory of defects as a two component auxiliary field ¢, such that

+ 7 +ood d 2
Z4 —l—lj do()J‘J (f}/n(gz(]x)ew{ (27:) B"Z 2 +le/ S, } (20)

Y, =1+ 0,0 GVEV; + )+ 07 (0) GVIV, + D] g,

where

Here the integrations over df(x) produce Bessel functions and we arrive at

e d§01 do,(x) oot
ZXY = I—[ jjl [T/TEB(I] S[ ! (21)
with a defect entropy
Slg, 0] = — & "’ Lot + Tl L), @)

Close to the critical temperature we can use a Landau expansion (see the last of refs. [4])

: @miBa_1( 1 2
S[¢,<p1~—§{[ AT —z<1+03(o>+vl<o>>:|"’3

1 1 1 1 1 2
" §(1—+m(vs<pa)2 ¥ m(vlw.,V) + L (1 o vl(0)> (%)2} @)

which shows that the disordered phase sets in at

_ 1 2
T =T, =Qn)? Ba<1 o vl(0)> 24)

above which ¢?2 acquires a non-zero expectation value. This is an X Y model transition with the reversed tempe-
rature axis, due to the disorder nature of the field ¢, The coupling to 4 can now be introduced simply by the
gauge invariant replacement V;, — D, which in the complex notation ¢ = ¢, + i@, reads

Vip(x) = Dip(x) = o(x + i) 6”24 — o(x)

V¥o(x) = DFo(x) = ¢(x) — o(x — i) e2 40, 25)

In this way we arrive at the following reformulation of the smectic liquid crystal partition function (5) as a gauge
field theory of defect lines

dA4,(x) j-d(p de* :I ( 1 N )
Z = — —Flo, 0™, A 26
H [ 2 nBa/T J T/nBa T o ¢ ] )

where the energy F has the Landau expansion in ¢ :

2
LY %{%[(2;) Ba — (1 + v(0) " — 2 v:l«»]up P+
i (4 00) 7+ 207°0) @ + 5[4 + 05007 Dy [ + 07’ @) | Dy F]}
T
2 Ba

~i—l Z [45(x) vy U(x, x") 43(x) + A (x) v)7 (%, X)) A, (X)] X))

withD ~ @ — i 2 nA.
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This energy should be useful for a quantitative study of the critical phenomena near the smectic A-nematic
phase transition. Motice that contrary to other approaches [3], there are no free parameters m our energy, all
being completely determined in ferms of the two smectic parameiers,

The potentials £,{0), v, (0) required for the calculation of T, can be calcolated approximately from the
formulag (4" = ila)

pyl0) ~ (A7 + AN + 20 + 2=
o, (00 ~ & A1 + L{log &' + w2 ap(l + %)
which provide a smooth interpolation between the &' — [, oo limiting behaviours
J;._r
03(0) = A%, 3=
A ,
w (0] = 3 (log A4 =

with the maximal mistake around 1 ~ 0.4 The curve T_{2 n)* Ba has roughly the shape i + B wflogid n® AL
|
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