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We show that defect melting involving dislocations and disclinations is dually equivalent to an extension of an XY mod-
el with an energy of the type Zij {[cos(v,-uj +Vju +ecosy iwj]}, where w; = %e,']’ijuk is the local rotation field. The
model clarifies the proper choice of defect core energies arising from nonlinear elasticity. These permit the pile-up of dislo-
cations to disclinations which is essential for the first order of the melting transition.

Recently, it has become clear that simple proliferation of dislocation lines alone is not sufficient for under-
standing the melting transition but that disclination lines are responsible for making the transition first order
[1]. The conclusions were based on mean field studies of a newly developed disorder field theory of line-like de-
fects ¥1. It would be desirable to verify this conclusion with Monte Carlo computer simulations. The ensemble
of defect lines itself with their long-range interactions is not well suited for this purpose. A local model, which is
dual to such an ensemble, is preferable. In the present note we present such a model. It is an extension of a pre-
vious model [3] which was closely related to a U(1) lattice gauge theory, in which the role played by disclina-
tions was not clear.

At first, we shall consider two-dimensional systems. Let #1; be the atomic displacements normalized such that
#; = 2m amounts to a period in a simple cubic lattice. Then the elastic energy is
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where V; u]-(x) = u]-(x +i) — u]-(x) are the lattice derivatives (neglecting anisotropies). Defects and their proper
long-range interactions can then be studied by a nonlinear generalization of this energy in a partition function
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where 8 = aP u/(2m)2T in D dimensions. By a Villain approximation this is about equal to
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*1 Eor the developments leading up to this field theory see ref. [2].
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where the sum over integer nl-j(n # j) and even n; accounts for periodic jumps of atoms. Stresses are introduced
via a quadratic completion

- dg; (x) i
L 62— 252 L + 2mn;; 3
Z= n%(i)!ll f o l>]f T exp[ 4szl>]( i 7 +Vo,,)j|exp(2x’z?] G (Vithy + Vi — nnl])), 3)
where v = N/[(D — 1)\ + 2u] is the Poisson number in D dimensions. The sum over n;; ;j makes 6;; integer, say G;;,
and the integrals over 4; enforce V;5;; = 0. The normahzatwn factor between G;; and the proper stresses is ol]/o
=aP[2nT. The defects in ref. [3] arose by rewriting G;; = €;; VkA with V; A = 0 and enforcing the integerness of
A] via an integer transverse vector field b (x) with V; bT(x) 0, w1th a partltlon function

- Hf Ailx )5(v,.A,.) exp E(—ZI‘EI [ViA;(x)]2 +2mid;(x) biT(x))’ @

where 8= a2u'/(2m)2T with u' = (1 + v)u. This is not, however, the model which leads to the first-order phase
transition. Disclination sources are missing. In order to enter them into the partition function (1) we have to keep
in mind that disclinations are very singular objects, quite similar to pinholes. It is well known that close to such
objects, the linear approximation to elasticity is quite bad. Thus the elastic energy requires inclusion of a term f
= [a2u/(2m)?] e(a,-(:))2 where @ = -(aluz — 9, 11;) is the local rotation field. There exists a simple nonlinear gen-
eralization of this energy which produces disclinations. Let us recall that the dislocation density is define differ-
entially by the lack of derivatives to commute in front of the displacement field & = (1/2m) €59, 3;4;. The dis-
clination density has a similar definition with respect to the rotation field ¢>: © = (1 [2m) €4,70;0; . Actually,
these definitions hold only in the continuum limit. Otherwise disclinations are more complicated objects. We shall
neglect these complications and treat disclinations in the differential approximation, multiplying the partition
function (1), (2) by a factor, under the integral,

exp (—ﬁ E [1-— cos(Vid))]) ~ 25 exp(~%ﬁ2 Vo — 21rm,-)2).
x,1 m;i(x) x,i

The new energy can be brought to a canonical form of type (3) by introducing the rotational stresses #; and
writing
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where & s,ij is the symmetric part of the stress tensor, The sums over n; and m; make UU’ 7t; integer, say 0> Tp, and
the mtegrals over & and & enforce

VJGU = 0, Vﬂ_’/ = el-jc?l-j , (6)

which are the two-dimensional versions of the well-known conservation laws for stress and rotation stress (follow-
ing from the fact that 0y and 7; are momentum and angular momentum densities of the displacement field u;).

The stress energy involves only the symmetric part of the stress tensor such that the integration over the antisym-
metric part of Gy enforces the identity w = ~(V1u2 — V,uq). We now introduce fields 4; and & which guarantee

(6):
6if=€fkvai’ ﬁizeikvkhﬁAi’ (7)
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and keep 0;;, T; integer via a defect sum

ij?

2 E exp [2111 (E bi(x)A;(x) + m(x) h(x))} (8)

bi(x) m(x)

Since the energy depends only on the symmetric part of stress, the longitudinal part of 4; is really decoupled and
we arrive at a partition function

m(x)Z;ﬂf l()B(VA)HfM 2[ ((VA])2 P22 e Vih — A))

+2mi[bf (x) A,(x) + m(x) h(x)]] X )

This is the type of partition function for which a first-order melting transition was established in ref. [1].

The nonlinearities of the interactions are included in the second term. For e - 0, the field 4; is squeezed
against €;; V;. h and the disclinations decouple, forming a trivial, albeit infinite, overa]l factor. Then the transition
is continuous, For € # 0, however, the disclinations enhance the proliferation of b (x) configurations at a certain
temperature and it is this process which makes the transition first order.

Notice that the disclinations can be combined with the transverse dislocations to write Z in the form

z- I/ \/_(g?a(v A exp ;i)(~315, (V;4,)2 + 2miby(x) A;(x) — 4wzﬁem(—vz)‘1rn), (10)

m(x) b A(x) x,i
where
X1

b=t +83 20 mixfxy)

is now an unconstrained field of integer Burgers’ vectors. Actually, this decomposition is not unique. We can
choose a unit vector e along the x or y direction and define b; = bT (1/e*V) €, e; m. This way of writing our
mode] exhibits quite clearly the difference w1th respect to other constructlons [5] which undergo a continuous
transition. There is no ad hoc core energy « b, , which would forbid the pile-up of strings of dislocations to form
a disclination. The additional energy m(—v?2)~!m which here is derived from the nonlinearities of the forces,
does allow for this pile-up which drives the transition first order.

Qur considerations can easily be extended to three dimensions where we add f = a%u (2m)~2 e[ (0;w; + 0wy 2
and the exponent (5) becomes

‘?(“%5{53,17 — /(1 +)] S”} + 101/(V1 Ui~ € Wx — 2MN;) — Bl4e) T 'ns i +11rl](V w; —2mm ,)) (11)

leading to integer stresses and rotational stresses with the conservation laws

V8 =0,  Vifiy = €051 (12)
These can be enforced by introducing gauge fields
Gy = &t Ve Anis Ty = €ag Vichy + 8545 — Ay, (13)

with the gauge invariance

*2 For a discussion of these conservation laws see ref. [6]. The symmetry between the conservation laws of defects in (15) and
those of stresses (6) is further developed in ref. [7].
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A=A+ Vi = by — e Ny =y V5, (14
which are made integer by the following integer defect sums
5,72@,, % cik1 81 05,1,0 °XP (27r1 20 (@ Aj; + O, h],)) (15)

The §-functions ensure the well-known conservation laws of defect densities and we see that the gauge degrees of
freedom are properly decoupled.

Since the elastic energy does not involve the antisymmetric parts of 0y, My it depends only on those parts of
A,], h;; which have V; A -V iA;=0,V; hﬂ V; h” ]klAkl In order to av01d an infinite overall factor we
must restrlct the defect sum to a constramt subset say af, G) of a; 0; configurations which satisfy, in addition

> l]’
to the conservation laws in (15), Y
v—iafj _Vjafiz O, v@c—*_v-@lclz _ejklalk‘ (16)
In terms of helicity amplitudes o) | this forces af; to contain only (2, 2), (2, —2), (1, 0) components, while ®°]
has, in addition, acomponentot(l/\/S) [(2,0)— \/J 2(0, 0)] which, however, is proportional to the (1, 0) compo-

nent of al?']- [3].
It is useful to introduce the symmetric tensor gauge field Xq1 Via A= €pg Vp Xq1- Then

T4 = €ipq &k Vp Vi Xgr Ty = € Vichyys  Viljp— Viki; =0, amn

where hj; = hy; — X;; and the coupling (15) to defects becomes simply
exp (27ri Z; @yxji + B h],)) , (18)
X,

where
- A 15 ~ _ =
i = ngj —%Vm [emjlafi t(@~>j)+ 6ijlo‘lcm]

is the symmetric defect density. The path integrals over x and 4’ are now independent, the latter producing an
extra €/R interaction energy between the (2, 2), (2, ~2), (1, 0) components of disclinations. As compared with
the R energy caused by the x field, this is “short-range”. When dislocations proliferate, the 1/R interaction is
screened to a §-function, thus producing merely an extra core energy of disclinations.

The present model differs from the one treated in ref. [1] by the restrictions (16) imposed upon the defect
lines. Nevertheless, a study of the disorder field theory associated with these restricted lines suggests again a first-
order phase transition, albeit with a smaller entropy jump. This is, in fact, desirable, since that in ref. [1] was too
large (AS/R ~ 2.4) as compared with experiment (AS/R ~ 1.4).

Just as in the two-dimensional case, the disclination density @ can be absorbed into the dislocation density
forming

04] = Ol - (l/e V) Elklek®]l’

where the unit vector e can point in x, y, or z direction. This tensor comprises all 6 components satisfying ﬁjaij
= 0. It can be used to express the interaction in the form

exp(2n1 E (a4 + O R ,j)),

with the hi' integral producing again an ¢/R interaction energy for the disclination content in 0. This properly
allows for the pile-up of sheets of dislocations to disclinations which is essential for the first order of the melting
transition.
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