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Elasticity and plasticity can both be formulated in a geometric language. In linear approximation, there are two gauge
theories. We exhibit the dual relationship between the two and present a coupled unified double gauge theory of both
stresses and defects.

The continuum theory of defects and stresses harbors two important applications of geometry (for a review
see ref. [1]). One goes back to Kondo’s work [2] and is based on a rather direct relation between dislocation and
disclination densities ot g, ©,; with torsion S, 57 = 3 (yg? — I'go) and Einstein tensor G5 =R, — %gaﬁRﬂ/W,
respectively, where
T,z = avﬁ} + Ko = {7+ 807 — S5 t870p
is the connection *1 and R, =R,g,% with R aﬁf being the covariant curl of curvature tensor (= covariant curl
of the connection) aarﬁf L P ;2 — (o + B). This geometry is introduced by considering an ideal reference
crystal with atoms positioned at cartesian places x#, Under a deformation, the atoms move to x* = [x? + u?(x*)] §2¢
and the new coordinates are characterized by tangential vectors e = 3, u?(x®). These define a connection Lop? =
€13} with a metric g, = ¢ e§. The length ds = (g,,5 dx%dx?)!/2 is invariant under elastic deformations. It mea-
sures the distance two points would have in the ideal reference crystal, i.e. ds counts the crystalline atoms when
following the distorted lattice directions. Parallel displacement of a vector v in the reference crystal amounts to
Dauﬁ =0 in the distorted crystal. Plastic deformations introduce defects and, as a consequence, derivatives in
front of u? no longer commute. In linear approximation,

Opp = €gy50,05U,  Ouyp T €5y50,050,

are defined as dislocation and disclination densities, respectively, where cw,, is the local rotation field %ea gy Oty
A related quantity is the incompatibility of the strain tensor

(1)

naﬁ = eory& e{ioravao Usr
called the defect density. It combines a5 and O, in the form

naﬁ=®aﬁ—eﬁ7587k’m , 2

where K, = —a5, t 3 8 5405, 18 called the contortion tensor.
Now, in linear approximation I, 5% ~ aaaﬁ UY, 8o~ Bop t Aigg and we can verify that o, ~ %Eﬁaﬂ Zapys

#1 Covariant derivatives: Daug = 8qvg — Fag?vy, Davf = 8508 + Loy
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where gy = 2(Saﬁ,y —Sgyat Svaﬁ) is the standard spin density of a gravitational field [3] while *2 B, Gy
where G o =R 5 — %gaﬁR77 is the Einstein tensor. Relation (2) is the linearized version of Belinfante’s formula
[3] for the symmetric energy—momentum tensor Nag when expressed in terms of the canonical tensor, here Gop

and the spin densities Eaﬁﬁz
Mo = Gap =1 (D +25,57) (T - TV 4 £70) (3)

Hence we see that plasti‘c deformations introduce spin and curvature into this geometry.

Elastic deformations, on the other hand, correspond to the usual Einstein coordinate transformations u3(x) -
u*(x) + £(x) with smooth £2(x) under which all tensor equations are form invariant. In linear approximation, the
strain tensor changes as follows

g 3) > tgg(6) + E [8,8,00) + 055,61 @)

This is a typical gauge transformation. Under it, the defect tensor (1) remains obviously invariant, as it should on
physical grounds, a fact which will be referred to as defect gauge invariance.

The other type of gauge theory has a more formal appearance: Since the stress tensor o, is symmetric and
divergenceless it can be considered as the linearized Einstein tensor of an auxiliary riemannian space with a metric
Xag> known as the Beltrami—Schifer stress potential [2,4]. The linearized relation

ch,B = ea'ys eﬁo‘rawaa Xsr (5)

is gauge invariant under x_, > x5 + 0 Ag t 05 A . The stress energy
af af T Catdg T Uy

- 1 (2 v_ 2
Eiress = fd3x 4y (Oa,B T1+v acm)

{with p = shear module, v = Poisson ratio) can be viewed geometrically [5,6] as the linearized version of a Weyl

gravitational theory [7]. This stress gauge invariance has recently been exploited for the construction of a gauge
theory of defect melting [8,9]. The significance of the gauge field lies in its having a Jocal coupling with the de-

fects. Since random chains of defect lines can be represented by a complex scalar disorder field (Higgs field), the
resulting theory is completely local and has the form of the Ginzburg—Landau theory of superconductivity. The
phase transition of melting is signalized by the complex disorder field taking a nonzero ground-state expectation
value.

The question arises as to the relationship between the two gauge invariances. In addition, it is desirable to un-
derstand the role of the first defect gauge invariance within the existing siress gauge theory in which defects ap-
pear as disorder fields. It is the purpose of this note to clarify these questions, thereby arriving at a double gauge
theory of defects and stresses. If desired, this can be generalized to a doubly geometric theory as proposed in ref.
[6]. Our discussion will shed light on recent, more formal attempts [10] *2 at constructing field theories of defects
and stresses, in which the defects appear as gauge fields while stress is described by complex matter fields.

Starting point is the partition function as given in ref. [9].

~ A = -~ _ 22 [ ] o s - A
Zcxx,l;[ﬁ _ja; dxaﬁ(x) S(Vaxaa) exp[ T? (oaﬁ T3 Uaa)} T_Egﬁinaﬁ'O exp(?m ?naﬁ xaﬁ) (6)

where 7= 72T/ua3 (with « = lattice spacing, T = temperature), Oup = (@3/2nT) 04 is @ dimensionless version of
Oy )Zaﬁ is the corresponding stress potential, and the symbols V. V_ denote the usual lattice derivatives ¥4 The
quantity o“3.(x) is the dimensionless version of the defect density. It forms an integer-valued symmetric tensor

+2 To derive this, notice that Rupy® =€ (508 — 9p3g) €3y
+3 The present author disagrees with those theoretical constructions, which have no relation with the physics to be described.
Vo) = e +eg) — o(x), Ve (x) = 0(x) — p(x — €g), e, = lattice basis vector,
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field. The condition vaﬁaﬁ =0 can be interpreted geometrically. With each Tipg WE may associate three sets of
field lines (7, ), One for every §. These describe defect lines running through the crystal. The condition V 7,,=0
means that the lines are closed. The symmetry of 7,4 imposes certain constraints. The sum Eﬁa ﬁaﬁaﬁa 20 in{6)
collects all such closed field lines.

Notice that the partition function (6) contains only pure stress energies of defects. In general, non-linearities
of the crystalline forces will produce additional core energies which we may parameterize as
7 Beore = 2,00 G~ gy 1) - %)
Due to the constraint Va'ﬁaﬁ =0, the partition function (6), with (7) added in the exponent, permits the introduc-
tion of a defect gauge field i . with the double curl representation

ﬁaﬁ = €uys Cgar v'yva ”761' - (8)
This relation is invariant under arbitrary gauge transformations
Eﬁ‘r - 1’757' + vﬁ E'r + v1' 56 . ©)

Notice that since ﬁaﬁ is integer valued, & can also be chosen to be so. For example, in the axial gauge i3 = ii35 =0
(not, however, in the gauge V, i, = 0). The gauge transformations (9) can bring this to any non-integer gauge
equivalent configuration. By comparing (8) with (3), the gauge fields i;, have a very simple geometric interpreta-
tion. Let us introduce an integer-valued displacement field iz, = a~! u,, where u, are lattice vectors. This field %,
represents possible jumps of atoms between the periodic equilibrium configurations of the crystal. We may iden-
tify the gauge field & _ with the strain field associated with i, i.e.

i, =(V, i, +V u,)2 . (10)

Then we see that the defect field 7, ; measures the incompatibility of these jumps, i.e. it measures how bad the
displaced atoms fail to form a perfect crystal. The gauge transformation (9) is an elastic distortion which does not
change the defect pattern. The strain configuration (10) may be viewed as a singular local gauge transformation
associatéd with the discrete translational symmetry of the crystal.

Using this integer gauge field representation of defects we can now write the partition function (6), including
the defect core energies (7), as

- i . 2 v 2
Z - x’lc}’ﬁ deaﬁ(x) S(VQ xaﬁ) gog(x) 6536’0 BXP [—T xE (Uaﬁ e 1 P UO{C!)

1 _ PR ' . _
-3 %n(x)aﬁ G(x — X)y g Mgl ) + 2ri ?naﬁxaﬁ] an
X

Note that there are two gauge fixing factors, one for the continuous stress gauge field and one for the integer
valued defect gauge field. The first gauge is rather arbitrary, and the second must be of the axial type, or related
to it by an integer-valued gauge transformation, in order to be compatible with the integer valuedness of u,, 5.

This is the proper double gauge theory of stresses and defects on the lattice.

By taking this theory to the continuum limit, the sum over discrete 77, ; becomes an integral and we arrive at a
field theory involving two confinuous gauge fields x, g and iz, 5 which are linearly coupled with each other. This
coupling corresponds to the linear approximation of the geometric theory proposed earlier in ref. [6].

Notice the way this double gauge theory is related to the previcusly studied stress gauge theory in which the
defects were represented by a complex disorder field. That can be obtained by turning the sum over 7, ; with
Vaﬁaﬁ =0 into a functional integral over complex scalar fields y. In this way the grand-canonical ensemble of
closed (), field lines, the defect lines, corresponds directly to the Feynman loop diagrams of the complex field.
This is the statistical analogue to the equivalence of N-particle orbits and quantized field theory [11].

53



Volume 97A, number 1,2 PHYSICS LETTERS 8 August 1983

It is worth pointing out that due to the symmetry of (10) in ¢ and # it is possible to convert also the sum over
0, fields with “V"aaaﬁ =0 into a complex field | stress using the same techniques. In this case, the result would
be a gauge theory of defects in which the closed field lines of stress (Ua)a = 04 With V,0,,=0 would correspond
to the closed loop Feynman diagrams of the complex field. In this way one would obtain a correct version of a
gauge theory attempted in ref. [10].

The specific form of the defect core energy requires more investigation. Experimentally, it certainly contains
local quadratic terms in a,, g7, just as the torsion terms expected in Einstein’s theory in the presence of spinning
matter.

The author thanks S. Ami and E. Kroner for discussions. This research was supported in part by the National
Science Foundation, grant no. PHY77-27084.
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