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Summary. — We demonstrate that within our gauge theory of defects and stresses
in three dimensions, disclinations play a eruecial role in making the melting transi-
tion of first order.

It is well known that any model of defect melting must account for the proliferation
of disclinations. Otherwise, it is impossible to transform a crystal into a proper liquid
without directional memory. In two dimensions (}), the standard treatment proceeds
in two steps: first, one considers a pure dislocation model and applies the methods of
Kosterlitz-Thouless to find the dislocation pair unbinding temperature; then one argues
that in this phase, which has somewhat exotic properties, the disclinations should form
a Coulomb-like gas which can once more undergo a pair transition ().

Unfortunately, such a proeedure ignores the feedback of disclinations upon the pro-
cess of dislocation melting. It is the purpose of this note to show that this feedback is
essential in making the transition first order. For physical reasons, we shall study
only three-dimensional systems (*).

Our result resolves the outstanding puzzle as to the difference between the melting
transition and the superfluid-normal transition in *He. That system contains only
vortex lines which are analogous to dislocations, and there are no disclinations. The
proliferation of vortex or dislocation lines alone « normally » leads to a second-order
phase transition ().

Let us specify what we mean by «normally ». Crystals as well as superfluid 4He
are nonlinear systems. Their long-wave-length execitations are free phonons with very

(") B. I. HAaLPERIN and D. R. NELSON: Phys. Rev. Letl., 41, 121 (1978); Phys. Rev. B, 19, 2457
(1979).

(*) The two dimensional case is treated in H. KLEINERT: Phys. Lett, 4, 95, 381 (1983},

() H. KLEINERT: Phys. Leit. 4, 93, 86 (1982).
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simple-bending energies
# 2 ! 2.u.)2 ¥ 0.2
(H forystar = P (0;u;)% + 5(1 + u)(0;u,)%, f4He= 5( P

where u; are atomic displacements, ¢ is an angle between zero and 2 and g, 4 and x
are elastic constants. The nonlinearities at short distances give rigse to defects. These
can be included in an idealized way by writing the energies (1) in terms of lattice gra-
dients V,u;(x) = u;{x 4+ i) — u;(x) and allowing for jumps by multiples of the lattice
spacing (*). Similarly, the gradient V,¢ can jump by multiples of 2z (?). If such jumps
take place over some surface, its boundary becomes an idealized dislocation or a vortex
line (4). The surface itself is physically irrelevant (5).

Such an idealized line has a self-energy which is entirely due to linear elasticity.
It is given by the lattice Coulomb potential at the origin ¢(0) = — (1/V,V,)(0) ~ 0.253.
This acts as a « core energy » suppressing the thermal ereation of lines. It can be shown
that lines with this core energy undergo a second-order phase transition (8). This is
what we mean by «normally ».

Field-theoretically, the situation is as follows: The system of random lines and their
elastic interactions can be described by a disorder gauge theory which hag the game form
as the Ginzburg-Landau theory of superconduectivity, if the order parameter y and mag-
netic potential A are interpreted as disorder and stress, respectively (2-4). This theory
is characterized by a specific value of K which is the ratio of the two length scales of
this system (magnetic penetration/coherence length). The condition K 2 1/v/2 sep-
arates type-11 from type-I superconductivity. The core energy reflects itself in the
strength of the shert-range steric repulsion between line elements. In the Ginzburg-
Landau description, this is parametrized by the coupling constant g of the quartic |y|4
term. The normal case described above amounts to K = K, .. = 3v3/2x= 1.17/v2 (2).
Thus it lies in the type-II regime where the transition is of second order (8).

How can it then be that dislocations undergo a first-order phase transition? A pos-
gible answer is suggested by an old argument by Harperin, LUBENSKY and Ma (%),
according to which the superconductive transition at low K should be first order. The
value of K where this really takes place was estimated to be (¢) K ~ 0.8/v/2. This led us
to conclude (%) that if the dislocation lines have a strongly suppressed steric repulsion,
which amounts to a negative core energy in addition to the purely elastic one, the tran-
sition could become first order. Our conclusion was confirmed in two dimensions by an
independent Monte Carlo calculation (|). What remained unclear, however, was the
origin of this reduction in core energy.

While such an explanation was certainly a theoretical possibility, we now believe that
it misses an important physical aspect of the problem, namely the fact that crystals,
unlike ¢He, support another type of linelike topological defects. These are the defects
of rotational symmetry, the disclinations. We shall now demonstrate that these do,
indeed, make melting a first-order transition without subtle manipulation of core
energies.
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The starting point is the lattice model of dislocation melting as developed in ref. (3).
Using reduced dimensionless variables for stress and defining v = 2% T/ua?®, where
T = temperature, 1z = shear module, we can write the partition function of a crystal as

- v e .
(2) Z =17 |dhslx) 2 F¢.5,m,0 €XP [— T (63j—— 11 5’?,-) + 270 Y Wiihn] ,

x,4,5 7:5x) 24,5 x,7,j

where » = $ A/(A + p) is the Poisson number and the symmetric tensor %;(x) is the
gauge field of stress in terms of which

(3) G;i(x) = Siklgjmnvkvmzm(x —1l—n).

The sum over symmetric integer tensors 7;; with V;#;; = 0 accounts for the defects.
These can split into dislocations and disclinations with densities &, ,;, respectively, as

(4) 5= 05— ¥ Vlemn®y + G 7) + e16m) -

The densities satisfy the conservation laws V,0,; = 0 and V;&,; = €;,0;;. Thus discli-
nations form closed random lines. Dislocations, on the other hand, form closed lines
only ag long as there are no disclinations. These can aet as sources or sinks. Let us
neglect this latter possibility, since it can be shown to have no important effect upon
the melting process (?). Then the sum over &;; with V,&;= 0 is a sum over three
independent sets of closed nonbacktracking random loops. Its partition function can
be summed by a disorder field theory (%1?) to which the gauge field is coupled, in the
long-wave-length limit, via the covariant derivative (11)

(5) Dy~ (8; — tegy; aj}_"m‘) Y-

If there were no disclinations, this disorder field theory would have a second-order
phase transition (3): Above a certain temperature t,, each [¢,| takes a nonzero expect
ation value and the transverse phonons lose their long-range propagation (Meissner
effect).

In the long—wave-length limit, the correlation function of %;; takes the form

- = 1 1
(6) Ch(x) R(0)> |~ 2 exp [thx]
oo % G ik
where we have left out inessential indices (%), for simplicity. For large distances, this
is proportional to a lattice Coulomb potential v(x),

1
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Let us now add disclinations. By neglecting inessential projection matrices (%4}, their
partition function reads

dn?
(8) exp [_' lelz] Z, 0:5(x}v(x — x) 6,5(x")

(*°) H. KLEINERT;: Erice Leclures 1982, edited by A. ZicHicHI (to be published).
() H. ELEINERT: Leil. Nuovo Cimento, 34, 471 (1982).
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Thus we see that in the presence of dislocations, i.e. when |¢| # 0, disclinations form
a system of random loops which have precisely the same long-range interactions as the
dislocation loops had in the perfect crystal, with a force which becomes weaker as the
dislocation density increases. Sinee [p|* accompanies 7, one may describe the increase of
ly| also as an increase of the effective temperature of the disclination system. In other
words, if at a fixed physical temperature the system is filled with more and more dis-
locations, this is conceived by the disclinations just as a heating process. Thus at fixed
7, there exists a value |p[,above which the disclinations underg othe same type of phase
transition as a funetion of || as previously the dislocations as a function of 7. It is this
property of the combined defect system which makes the phase transition of first order.
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Fig. 1. — The depression in the effective potential of dislocations caused by disclination melting.
This makes the transition first order. The explicit form of the potential is (*)

(F+ AW (lyl) =2 {—1- 0.83 —1) lyl® + 6—14 lglf — @(lvlz— 2v(0)) (%(0) - 1)2} .

i g4\ T lpl®

In order to see this, consider in a Landau approximation the effective potential as
a function of the dislocation field |y| alone. Neglecting disclinations, this has a stable
minimum at the origin for 7 < 7, and would destabilize for 7 > 7, (see fig. 1). Consider
now the modification brought about by disclinations. As long as [y] is smaller than |y [=
= 2¢(0), the core energy of disclinations is so large that they cannot appear in the
crystal. Thus the potential remains unchanged. Above |y, however, the force be-
tween disclinations becomes so weak that these proliferate, thereby lowering the ef-

(*) The pure dislocation part of ¥ is taken from (*), the disclination part is the minimum of an
analogous disorder field potential form (?).
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fective potential. The deviation begins quadratically in (|w[— |v.|) and becomes con-
stant for large |v| (see fig. 1). This leads to a depression in the defective potential.
If the temperature is raised towards z,, there will be a value 7., < 7,, where the min-
imum at the depression becomes equal in energy with the origin. There both, disloca-
tions and disclinations, proliferate in a single first order phase transition. The transi-
tion entropy can be estimated as AS~ 2.4 per cell (in units of the Boltzmann con-
stant).
A more detailed quantitative discussion will be presented elsewhere ('2).
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