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MODEL OF GLASS
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A model of glass is presented, based on the introduction of quenched random disorder in a model of defect melting,

While spin glasses have found a satisfactory model formulation [1-8], ordinary glasses are still in a pre-
Edwards—Anderson state [9]. The reason used to be the absence of a satisfactory model of defect melting, com-
parable to the spin model of ferromagnetism, which would permit the introduction of quenched random disorder.
With the finding of such a model [10,11], this obstacle has been remeved. It is now possible to study ensembles
of dislocations and disclinations with their proper long-range elastic forces. Above a certain temperature, they
proliferate in a first order transition [12], which can be identified with crystal melting, in agreement with ex-
periment [12,13].

The new model is a simple extension of a spin model and is closely related [11] to lattice gauge theories [14].
Its partition function reads:

dd;(x)
m
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where 8 = ua3/T(27)? is a reduced inverse temperature (u = shear module, a = lattice spacing) and U;(x) is a phase
exp[id;(x)] with A; denoting the atomic displacement field u;(x), renormalized by 2m/a. The exponent involves
the “compactified strain™
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with the periodicity of the cosine functions giving rise to the proper crystalline defects [10] [just as cos(V;#) in
the XY model gives rise to the vortex lines of superfluid 4 He].

Because of the similarity of (1) with the classical spin model it is just as easy to introduce quenched random
disorder as in ref. [1]. If, for example, g is allowed to carry phases, § - § exp [iwl-]-(x)], the cosines become

_E _ cos(ViA]- +V;4; - wij) +2 Ecos(V,-A,- - W),
x,i>] X,

and the ground state of displacement vectors is no longer given by 4;(x) = 0 but by a random set of 4;(x). It is
obvious that in such a ground state also the elastic forces will depend on x, ij. The simplest ansatz which allows
for this situation is the free energy.
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Using the replica trick, the § integral can be done with the result
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where Ql‘-"ﬁ(x) = U (x) UlpT (x). Separating out the trivial & =  terms Q;**(x) = 1, we can introduce auxiliary inte-
grations and arrive at the free energy:
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The properties of the model (2) or (4) can be studied by using for small § a high temperature series ** and for
large 8 the mean field approximation plus loop corrections *2.

In this note we shall estimate the properties of F at the same level as Edwards and Anderson, namely by look- .
ing for an optimal replica symmetric mean field §f = £, )\19‘3 = A. In this case, the potential ¥ can be integrated as
follows

exp(V/3N) = f Fexp] LS Ut ce +NE, UF T, USRS n)]
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= exp(—n) [ S exp(—lx PNI(1E +x1)

= exp(—3MAL [ @ rexp[—(2 + E2Y2N I (rEILG) | )
0

*1 In spin glasses, see ref. [15].
#2 For a review see ref. [16].
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where N is the number of sites. If we introduce the function

v(E, ) =a1 f drr exp[—(r — 2)2/2)\]}302/7\) log 1), (8)
0

with};(z) = e~ 21,(z2), the free energy density f = F/3N becomes

— B =Bt +2u?) —3A%g* +492 - S) - fu + INg — D +o(EN). ©)

This is minimal at

A3 +u)=g, 4a2q3+29)=n, u=x"lo; — (M, (10a,b.c)

g=1+2MN)v+N"2[-£20 —vy + 280, (10d)

where

v = AL f dr r2 exp[—(r — 5)2/2)\]710/5/7\) log Iy(r) ,
0

vy =01 f dr r3 exp[—(r - 2)2/27\]}505/7\) log Zy(r) .
0
Introducing y = A/f as a measure for the glassiness, the solution of (10) gives a behavior of the order parameters

and the phase diagram as shown in figs. 1 and 2.
For T—> 0, oo, £ and X tend to infinity with £/5/X =k fixed, such that

0(E,0) > VIR [ + 3D (3k2) + 5620 (3x2)] (1)
u~>gligk) +i; ()], g1 -A12ip() > 1, (12a,b)
—F =By > —3ut — 2u? + 23/6my (3To(5r2) — 1] + 362 [Io(3x2) + T, (§x D1 3 (12¢)
where we have set i, (k) = 2k 2/4)V/ 2:’;( 1%2). In the same limit, (10a) becomes

CNIN@ +uy=x, 129282 =1. (13)

Together with (12a) this can be solved for y(k) as shown in table 1. If the glassiness exceeds a certain value, Yo

= 0.8337, there is a first order transition to the minimal solution uy =0.845. For v > v, the ground state is in
the glass phase and its energy is given by

— 6= —3627%q* +4q% - 5) +30(g — 1) +v(0, ), (14)
with

v(0,0) =11 f drr exp(—2/2)) logIy(r) = f dr exp(~r2/2>\)11(r)/10(r) =In-— %)\2 + %2?\3 - %:1;7\4 +....
0 0
Then B(N) is determined from

482y2q3 +29)=N, q=1-2v, =122 f dr r? exp(—r2 /201, ()T, (r) (15)
0
and the solution is shown in table 2.
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Fig. 1. The order parameters \/q and u as a function of 7. Fory = 0,u = /g and the ground state is a pure crystal. For v 1 <1,u
vanishes identically and \/q_ follows a curve which is universal in T/ starting out at \/Zz_ =1 and going to zero at T=~v"1. For y
€,y 1y, there is a first order phase transition of recrystallization, at which # becomes non-zero and \/é jumps upwards after
which they both decrease slowly towards the melting point. The example is for y1=1.1.Fory™t > Yo ,the ground state is

crystalline and there is only a melting transition. The example is 7—1 =1.2.

3_
liquid
u=0,9=0
A
2““60??66665" - first order
T/'U
solid
u+0,gq+0
glass
1t u=0,9+0
Fig. 2. The phase diagram of the glass model at the mean
field level. The parameter -y is the glassiness. In the glass phase,
# = 0 and \/g decreases from 1 to zero as T/y runs from zero
) to 2. On the base line, as y~1 exceeds 751 , the variable u
0 1 a«0-1 2 7 jumps to 0.845 and approaches unity as 7_1 - oo (see table 1).

227



Volume 101 A, number 4 PHYSICS LETTERS 26 March 1984

Table 2
Order parameter and energy for the glass phase, £ =0,u =0,
A#0,g#0.
Table 1
The order parameter u and the free energy for 7= 0 as a func- A N3 T/y - Bf - %6272
tion of glassiness v. At v = 0.8337 there is a jump fromu = 0
to ug = 0.845. 0 0 2 0
0.2 0.290 1.838 —0.0013
" v u ~ f /6y 0.4 0.383 1.723 —0.0023
0.6 0.443 1.634 —0.0040
0 0.7236 = /6 0 0 0.8 0.488 1.562 -0.0077
2 0.8350 0.8443 —0.0027 1.0 0.522 1.502 —0.0127
2.2 0.8075 0.8730 0.0641 2 0.625 1.297 —0.0472
2.4 0.7763 0.8955 0.1457 4 0.716 1.078 —0.1649
3 0.6779 0.9374 04326 6 0.762 0.952 —0.324
4 0.5401 0.9669 0.8846 8 0.791 0.865 -0.509
6 0.3741 0.9858 1.4830 10 0.812 0.801 -0.713
8 0.2841 0.9921 1.8277 20 0.864 0.618 -1.915
10 0.2286 0.9950 2.0469 30 0.888 0.525 —3.284
15 0.1533 0.9978 2.3522 50 0.913 0.424 —6.280
20 0.1152 0.9987 2.5099 100 0938 0.313 —14.480

Another special case which can be discussed analytically is that of small glassiness, ¥ > 0, for all 8. Then \ is
small and v can be expanded as

v(E, ) =log Iy(£) + 30 {1 — [[;EV (]2} + ... (16)

This gives

q=u?,

with u satisfying

Bl +wy=¢, u=LEME - NLEMTONL -1y /Iy — T /1),

and the case A = 0 reducing to the pure melting model with a transition at 7, ~ 2.12 (see table 3). For large 3, u
=+4/g ~1 — 1/88. Egs. (15) and (16) show that the order parameter ¢ depends much less on y than u. The phase
diagram is similar to that of spin glasses [1] only in that the transitions liquid—solid and glass—solid are of first
order with the order parameters u, ¢ jumping to finite values. It will be interesting to extend the mean field study
to Parisi’s proper order parameter [S—8] and to include fluctuation corrections. The model can also serve to in-
clude quantum effects by adding a kinetic term [pa/2(27)?] f dt 2y A? and functionally integrating over time
dependent A;(x, ¢) fields. In this case it becomes possible to calculate the experimentally observable structure func-
tions

S(g, w)= fd3x dt expli(g * x — wt)] (exp[ig-u(x, 1)] exp[—ig-u (0, 0)] ).
More details will be published elsewhere.

The author is grateful to S. Ami, D. Quitmann and P. Schlottmann for useful discussions and to R. Cabos for
checking the numerical calculations.
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