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GAUGE THEORY OF DEFECT MELTING-STATUS 1984
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We show that the grand-canonical ensemble of line-like defects in crystals can be described by a gauge theory of the
Ginzburg-Landau type which normally governs the magnetic phenomena in superconductors. We use this theory to study
the melting transition. It leads to a close structural correspondence between superconductive and crystalline properties:
The vector potential of magnetism and the order parameter correspond to the potential of stress and the disorder
parameter, respectively. The Meissner effect which prevents magnetism from invading the ordered state of a superconduc-
tor corresponds to the screening of stress in the disordered molten state.

There is, however, an important difference which causes melting to be a first order transition: It is the presence of two
types of disorder fields, one for dislocations and one for disclinations with different long-range interactions. The melting
process is the result of a combined proliferation of both types of defects. We exhibit the important backfeeding mechanism
which is responsible for the first order of the transition.

The theoretical ideas are exemplified by a simple statistical model, similar to the XY model of magnetism, which is
dually equivalent to an ensemble of crystalline defects including their long-range stress interactions. Since it is a local
model with next-neighbour coupling it can be simulated on a computer and shows a proper first order melting transition.

1. Introduction

I would like to report on progress made during
the last couple of years* in describing the solid—
liquid phase transition as a proliferation of line-
like crystalline defects. The usefulness of such an
approach was emphasized by Shockley [1] as
early as 1952, but it was not until recently
[2,3,4] that this idea was translated into a
proper theory. With such a theory being availa-
ble we can now calculate thermodynamic proper-
ties and correlation functions of a defect system.

For some time, theoretical efforts were limited
to two dimensions where a prototype study of
the vortex driven phase transition of superfluid
“He has been successful [5]. It helped pointing
out the importance of defects in driving a
number of other phase transitions.

In trying to understand crystal melting, how-
ever, a simple copy of the vortex description
with the replacement vortices — dislocations is
not sufficient and leads to unphysical results [6].
It overlooks the larger variety of topological
defects in a crystal [7]. While a superfluid has

* This work was supported in part by Deutsche Forschungs-
gemeinschaft under Grant No. K1 256.

only the periodicity u(x) — u(x)+2m of a phase
variable, a crystal has translational periodicity

u;(x) — u; (x) + b; M

by lattice vectors b, as well as rotational in-
variance

u; (x) = w (x) + D g1%;. (2

In the topological classification of defects, these
two symmetry groups are associated with dislo-
cations and disclinations, respectively, with b,
being the Burgers vector and (2, the Frank vec-
tor [8].

In statistical considerations, disclinations have
always been thought to play only a minor role
[8], because of their large formation energy. Due
to the coupling of stress to dislocations, however,
disclinations represent a considerable reservoir
of entropy which, in fact, is responsible for driv-
ing the melting transition to first order.

In addition, the joint proliferation of both
types of defects is necessary to destroy both
translational and rotational order and produce a
proper isotropic liquid.

I have focused attention from the beginning on
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three-dimensional systems [2-4]. I did this not
only since they are closer to physical reality.
There are several reasons:

1) In three dimensions, ensembles of defects
under stress posses two types of beautiful gauge
structures [9] which are fun investigating. In two
dimensions, one half of these is lost (the stress
half) and the beauty is greatly reduced.

2) The defects form oriented closed lines. En-
sembles of such lines can be described efficiently
by a complex scalar field theory [10]. It is well
known that field theories can be evaluated per-
turbatively by expanding the partition function in
terms of Feynman graphs. Usually, these graphs
are considered to be an auxiliary device for
counting the different algebraical contributions.
A close look, however, teaches us that the dia-
grams, which have the form of closed loops, are
the direct pictures of the closed particle orbits.
By replacing ‘particle orbits’ by defect lines we
realize immediately the usefulness of field theory
for summing defect lines.

3) The stress forces between defect lines can
be obtained from a minimal coupling to the
stress gauge field [2]. Such minimal couplings are
familiar from other branches of field theory. The
most prominent and best understood example is
the Ginzburg-Landau theory of superconductiv-
ity which the field theorists call scalar QED or
Abelian-Higgs model. Let us briefly recall the
features which are relevant for our discussion.

2. Reminder of Ginzburg-Landau theory
The partition function is
Z= J @A‘D[A]j DD~
1
X exp {—2—62 I Ex(ex A)?
2
) m
- [ @ 6 -ia0eP - loP+E ol

+} (1)

where ¢(x) is called the order field and describes
the Cooper pairs of the system with a charge e.
The m? term becomes negative when lowering

the temperature below a critical value T,. The
gauge field A; describes magnetism, B=90X A
being the closed magnetic field lines. The func-
tional P[A] fixes the gauge (for example ¢ =
S[8A]).

For T<T,, the lowest energy lies at |¢|=
v—m?/g. This implies that the magnetic field ac-
quires a mass term p, = e || which amounts to a
finite inverse penetration depth A = p~*, This is
the Meissner effect. The ordered state does not
support a magnetic field. The ratio K=\/¢=
M-m2=Vgle>=1/V2 differentiates type II or
type I superconductors, depending on whether
they like or dislike to be penetrated by magnetic
flux lines. In the type II regime, the Ginzburg-
Landau theory has a second order phase transi-
tion [11].

The coupling to the gauge field appears only in
the co-variant derivatives (= minimal coupling)

Dl = 8, - lAl (2)

This ensures the covariance of (1) under local
gauge transformations

A(x) —’l:‘:if)x) + oA (x), (3)

e(x) =" Fo(x).

The minimal coupling is the field theoretic ver-
sion of the local coupling to particle orbits

eie i deAl(x). (4)

The duality between many particle systems and
fluctuating fields teaches us that the field theory
(1) is equivalent to the partition function

Z= _[QDACD[A] exp {—Zi j d3x(8xA)2}

e2

X Z exp {ieédx,A, (x)}, Q)

{L}

where Y, denotes the sum over all closed parti-
cle orbits of the system [12]. The integration
over the A field produces a partition function

7= Z exp {“62 §dx §dx1/4'n-R}, (6)

{L} L
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with a 1/R type Biot-Savart interaction energy.

It was observed by Feynman [13] in 1955 that
the partition function of vortices in superfluid
“He has exactly the same form and he suggested
that a study of Z should show the superfluid
phase transition. It would take place at a temper-
ature where the entropy s per line element be-
comes larger than the energy ¢ per line element
divided by temperature, i.e. when T > g/s. Insti-
gated by his idea we have taken the partition
function (6) and developed it backwards using
simple functional techniques, until we arrived at
a field theory with a Ginzburg-Landau form (1)
[11]. In it, the field ¢ describes the vortex lines,
the magnetic field, the current density of
superflow.

In the Ginzburg-Landau form, the superfluid
transition was obvious. The mass [2] turns out to
be proportional to ¢/T—s where € x e and s~
log 6 (6=coordination number). This agrees
with Feynman’s qualitative considerations. The
mass term becomes negative for T larger than a
critical temperature /s and |¢| takes a non-zero
expectation value in the hot, disordered, phase.
This is the signal of the proliferation of vortex
lines. The field ¢ is called a disorder field [2, 3].
For |@|#0, there is a disorder version of the
Meissner effect. Just as magnetic fields avoids the
ordered state, super-flow avoids the disordered
state.

3. Gauge theory of defect lines

For dislocation lines in a crystal the partition
function corresponding to (6) is

z=Y exp—ﬂ§§{[b-dx b - dx’
R

2
{L.b) :

—2(bxb’):(dxxdx"]/4nR — 1—_2_—1; (b xdx),
X (b’ x dx");0; ajR/sw}, @)

where b and b’ are the Burgers vectors of the
dislocation lines L, L'. The energy in the expo-
nent was first derived by Blin. Also for this Z we
found an equivalent field theory of the type (1).

First of all, there is no problem in going back-
wards from (7) to the form (5). The answer is
simply [2]

Z= J- DA, DPIA,]
1 v
R P ( 2 ¥ 2)}
xexp{ 4“3‘[ x|oj; 1+v0-u

X Y exp {ibé dx,Au(x)}, (8

{L, b}

where A; is the gauge field of the stress tensor
o;; defined by

T3 = Eja 0 Ay 9

and ®[A;] is a gauge fixing factor, for example
® = §[9,A;]. In order that o;; be symmetric, Ay
has to satisfy the constraint

Ay = 0,A;. (10)

The constants w and v = A/2(uw +A) are the shear
modulus and the Poisson number, respectively. It
can easily be shown that, integrating out the field
A, in (8), gives (7). Having eq. (8) it is simple to
transform the sum over the lines L into a disor-
der field theory and obtain the Ginzburg—
Landau-like expression [2]

Z= I DA, ‘D[Au ]J‘ @q’b@(fi

1 v
S Pl B e o))
- _[ d3X{Z [% (8, —ib,Au) s |
b

2
Sup’
T K S PPV N CEY
b,b’

As in superfluids, m? behaves like &,/T—s,
where g, « u and s, ~log6. For T>T, = g, /s,
there is a disorder phase transition and the gauge
field of stress is screened by a disorder version of
the Meissner effect which reflects the fact that
stress does not invade into the molten state.
When comparing this transition with melting
there are, however, two serious discrepancies:
1) The transition in (11) is of second order.
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2) The crystal, in which only the defects of
translational order have proliferated, is not a
liquid.

Now, from naive symmetry arguments, it is
clear what is necessary to produce a liquid: Also,
the rotational order has to be destroyed and this
requires disclinations. When the field theory (11)
is extended such as to include these it turned out
that this also repairs the discrepancy [1].

The interaction energy between disclination
lines and between dislocation and disclination
lines is of the type —R/8w and 1/47R, respec-
tively. There exists a representation of the form
(7) which includes both types of lines. In order to
proceed with our program, Z has to be brought
to the form (8). For this purpose, A; turns out to
be no longer adequate. Instead, one has to write
o; as a double curl

i = Eimn ikt Om Xt (12)

(i.e. the old A; is once more curl g, 9mXm)-
Then the coupling to dislocation lines L and
disclination lines L' with Burgers vector b and
Frank vector £ is simply

{L,bHL'", 0}

Z €xp {i (bi§ X OmXou + €2 J. dxxa ) }
L L

(13)

Using this coupling, and expressing o; in terms
of x,, via (12), the partition function has the
same form as in (8). It is therefore straightfor-
ward to introduce disorder fields ¢, also for the
disclinations. The field energy has the same form
(11) as for disclination field ¢, except that the
minimal coupling contains the x;,, field, rather
than A,;, such that the total partition function
reads

Z= I @xnzfp[xnz]J. @cp@dj DooDe o

5 )l o)
xexp| ——— [ @x(o2+—2— o2
eXp[ (pMB X\ O j; 1 Ty gy

X exp[ - j d3x {Z [% l(al - ibieimn aanl)(pb ‘2
b

mp b
+_22 l‘Pblz] +Z % |(Pb|2 l‘Pb"2+ Tt
bb’

. m 2
- j d3x{z [% (3 _I\QiXu)CPaP*’Tn |‘Pa|2]
D)

+ ¥ P p ], (14
0.0 4

where m3 «eo/T—sq and eq « . This is the
disorder field theory of all line-like defects in
crystals which has led to an understanding of the
melting transition from the defect point of view
[12].

4. The melting transition

Consider, for a moment, the temperature re-
gime above T, where mass of the dislocation
field is negative such that ¢, has a non-zero
expectation. Due to the minimal coupling |(8; —
ib;€iyn OmXn ) @5 |* the x field acquires a mass term
of the form 3b?|@,|°k?|x|*. This changes the
energy of the stress gauge field from
(1/uB)k*|xI* to (k*/uB +3b%|¢,[’k?)|x|* as a dis-
location version of the Meissner effect. At long
distances, we can neglect the first purely elastic
term and keep only the second. With this
screened stress energy the disclinations have an
effective partition function of the type

zZy= J QZx@[x]J DoaDen

2| 2
X EXp [——b |<2Pb| Id3x |9x|?

- J d3x{2 [% |(al - iQiXil)(Pﬂ |2
Q
me? ,
0 ool |+ % B2 goPlenP]  (15)
2 ﬂ,a' 4
When taking this to the orbit form (6), it reads
0? 1
eff — ex {—l—§dx§ dx’—}.
“ {ng} P12 le,P 47R
I L’
(16)

This looks just like (5), i.e. the disclinations in a
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bath of dislocations behave like vortex lines in
“He except with the role of temperature being
taken by the expectation value |¢,|*>. An increase
in |, |* is felt by the disclinations like an increase
in temperature. We have seen before that there
existsa T, i.e. here a |, |2, above which the vortex
lines proliferate, here the disclinations. This
leads to a reduction in energy as a function of
s .

The important point is now that this reduction
becomes active even before T, is reached. This
can be seen most easily by considering some
fixed T<T, and increasing virtually the disloca-
tion field |¢,|. The ¢, energy alone is positive
definite and monotonously increasing. From a
point |¢,|. on, however, the potential bends
downwards due to the proliferation of disclina-
tions. It is obvious that the combined curve can
in principle touch the ¢, axis before T reaches
T, and this would mean that there is a first order
transition in which both dislocations and discli-
nations proliferate [4, 7].

5. Defect gaugé theory

That this really happens was shown by a
Monte Carlo simulation of crystal defects with
their proper long-range forces. For such a simu-
lation, neither the disorder field theory (14) nor
the line representation (7), plus disclinations, is
useful. A better form of the partition function is
based on the second type of gauge fields, namely
those of defects. For vortex lines the correspond-
ing partition function is given by

o

z =I Qbu(k)I@ni(x)¢[m]

—o0

xexp {—g j d3x(a,~u(x)—27rni(x))2}, a7

where B =e?*/4n* Here n(x) are the gauge
fields of vortices and P[n] is a gauge fixing
factor. The exponential is invariant under the
local gauge transformations

1 (x) — n;(x)+9;N(x),
u(x) = u(x)+2mwN(x).

(18)

These have a simple physical interpretation: The
numbers n;(x) denote jumps by 27 of u(x)
across surfaces S whose boundaries L are given by

a(x) =9 n(x). (19)

These are the vortex lines. If n;(x) = §;(S), then
o;(x)=8;(L). This is the Volterra construction
of vortex lines. The position of S is irrelevant,
only the boundary L is physical. The defect
gauge transformation changes S without chang-
ing L.

‘When integrating out the u field one finds

Z= j @n,®P[b;]exp {—g 472 j d3xn2i}. (20)

In the gauge 9n,=0, this is equal to
§ Pxa(x)(1/— 8 a(x) which for lines o; = §;(L) is
equal to (6).

6. Computer simulation

The model (17) can be simulated on the com-
puter in the lattice approximation

o

_ du(x)
Z—l::[-[ 27 {m-z(a:c)}@[m]

—o0

X exp { —g z: Vu(x)—2mn; (x))z}

NI;[ J. d;q(:C) exp {B g cos Viu(x)}. 21)

T

This is known as the classical planar Heisenberg
model. It shows beautifully the A-transition of
the superfluid.

For crystal defects, we can construct a similar
model

Z= J Du;(x) J. ani,-(x)df’[nij]exp—-g jd3x
X [ (0w + 814 — 47y )* + 2A (du; — 27y 1.
(22)
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This model is equivalent to (14), i.e., it contains
dislocations and disclinations and their proper
long-range interactions.

It can be simulated [15,16] and calculated
analytically [17, 18] in the approximate lattice
form

z-T1 [ %2 5 o]

x,i 27 {n (=)}
B 2
X exp — ) Z [V +Vu, —4arny)

~H J’ du(x) |

—ar

+22 cos(V,u,)+— ZCOS(ZV u>}] 23)

exp [B{x’éj cos(Viu; +Vu;)

which the lines are described by complex fields
and the stress forces by a stress gauge field. This
representation clarifies the nature of the phase
transition, in particular the backfeeding mechan-
ism between the two types of defect lines.

The other is the defect gauge field representa-
tion, which has the advantage of being easy to
simulate on a computer.

The methods presented here are very general
and can easily be extended to a variety of other
defect mediated phase transitions, in particular
in liquid crystals [19].

Let us finally mention that the models of the
type (23) (involving the defect gauge field)
permit a straight-forward introduction of random

quenched disorder by which they become models
of glass [20] (just as spin models with random
quenched disorder become models of spin glass).
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