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Résumé. — Nous étudions la transition de fusion d’un ensemble de défauts en.dimension deux. Notre
point de départ est un modele sur réseau, développé récemment, qui représente ces défauts d’une
maniere duale. Nous calculons d’abord I'approximation du champ moyen, puis les corrections & une
boucle et nous donnons le développement de haute température jusqu’a 'ordre B'1. Les résultats
sont bien en accord avec des simulations numériques récentes utilisant la méthode de Monte Carlo.

Abstract. — We investigate the melting transition of an ensemble of two-dimensional crystal defects
in a recently developed local lattice model, which describes these defects via a duality transformation.
We calculate the mean field approximation, the one-loop correction to it, and give the high tempera-
ture series up to f''. The result is in excellent agreement with recent Monte Carlo simulations.

1. Introduction.

The success in understanding the superfluid phase transitions in two dimensions as an unbinding
of vortex pairs [1] or, in three dimensions, as a proliferation of vortex lines [2] has stimulated
the investigation of the more complicated process of crystal melting in terms of defects. Topolo-
gically, the crystalline analogue of vortices are dislocations [3] with Biot-Savart type long-range
forces and a great deal of effort has been spent trying to understand their statistical properties [4-6).

In doing so, however, a simple imitation of the theoretical methods developed for the superfluid
turned out to be unable to describe actual physical situation. The basic reason lies in the fact
that these methods were devised for a continuous transition, and thus do not apply to melting.
In particular, the dilute gas assumption for the defects breaks down during the melting process
and, in the molten state, the dislocations reveal a composite nature. In the crystalline state they

(*) Supported by Deutsche Forschungsgemeinschaft under grant K1 256/10-1.
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are tightly bound pairs of disclinations and anti-disclinations. During the melting process, the
crystalline forces are screened and this can trigger the dissociations of the bound states making
melting a first order transition [7, §].

There now exists a simple model [9] which describes a gas of disclinations which in the crystal-
line state are tightly bound to dislocations and, in addition, are practically frozen out up to
the extreme vicinity of the melting temperature. It is a straightforward generalization of the XY
spin model of the superfluid. Let us recall that the XY model is given by a partition function

7 - HJ dv(X) e PLRURU (s +i) ()

where x are the sites of a simple cubic lattice, i the D oriented links to the next neighbours, and
U(x) = €"™ are pure phases. For low T = 1/8 the model describes spin waves ~ | dPx g (8y)>.

The phases are observable only modulo 2 7 and this leads to the existence of topological
excitations, the vortices.
In a crystal, there exists a similar situation : for low T = 1/f there are phonons with an energy

de’x u[% T @+ du) + X @uP + ;; (Z a,.uiﬂ .

The displacement vectors u,(x) of atoms are observable only modulo multiples of the lattice
vectors since after a long time the atoms are completely permuted, due to fluctuations. Hence the

rescaled displacements y(x) = Z_an u{(x) are periodic variables of the same type as y(x) in the

XY model. If we neglect, for simplicity, the Lamé constant A (1), this leads directly to the melting
model

i dv,(X)

z=11

xexp{ﬂRe(Z UXx)Ux + 1)U, (x+,)U(x)+2¢ZU (x)U(x+l)>} 2)

where U,(x) = e'7*™, x are the sites and i the oriented links of the lattice, which we shall take
to be a sc. (%)

This model is the symmetric analogue to lattice gauge model, in which the four U,(x) appear
with one dagger at a different position U,(x) U;(x + i) U;" (x + j) U;' (x). Diagrammatically,
the terms in the melting model can be pictured by a distortion diagram l:} those in the gauge
model by a rotation diagram {1 ().

(*) The duality transformation shows that the A term simply renormalizes the strength of the long- range
forces between defects (see, for example Refs. [4] or [7]). Thus its omission should be irrelevant to the; quali-
tative behaviour of the model. This was confirmed by a few exploratory Monte Carlo runs in connection
with the work in Ref. [12].

(?) For a real crystal, one should really use triangular lattices. However, the long-range forces between
defects are independent of the lattice structure such that a defect model of melting might as well be studied
on a simple cubic lattice, for simplicity. The most important reason, however, is the existence of Monte Carlo
data for this lattice {12] which helps us to check the accuracy of our methods.

(*) Notice that the U(x)’s live on the links i emerging from x. They are represented by an arrow along i,
with the operation « dagger » reversing the direction.
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The model (2) has been shown to describe, after a duality transformation, a gas of fundamental
crystalline disclinations [10] which can build up dislocations by pairing a Monte Carlo simulation
in three « as well as two dimensions » has confirmed the theoretically predicted first order
nature of the transition.

Thus, apart from its simplicity, the model reproduces correctly some essential properties of
crystalline melting and well deserves further study.

A mean field analysis was given in the original paper (Ref. [7]) where the model was first propos-
ed. Stimulated by the correct size of the transition entropy found in the three dimensional Monte
Carlo [11] (MC) simulation, the model was analysed further for D = 3 [13]. In the cold phase, a
one-loop correction brought the internal energy in agreement with the MC data. In the hot
phase, a high temperature expansion up to f'' gave reasonable agreement except in the close
vicinity of the transition.

A similar analysis does not yet exist for two dimensional melting. It is the purpose of this
paper to provide such an analysis.

2. Mean field and one-loop correction.

For this we insert the identity

2
i 1 pie 2 2 ot — U 2
,f ‘% da j du! du? & = T] Jdu" S — U%) =1 3)
=i - a=1

ioo m
for each component U, (x) into (2). This permits replacing the unimodular variable U F=(RelU,
Im U ;) in the exponent by the two real variables u/, 47. The remaining integrals over y,(x) can
now easily be performed giving Bessel functions of imaginary arguments I,(/(a})? + (a2)?).
This leads to the representation of the partition function

{0 doc,l(x) iao da,z(x) ) .
Z_E L 2w ) 2mi jd“i(x)dui(x)x

X exp{ﬂRe( 2 ) uf(x + ) uf(x + §ux) + 2£Zui+(x)ui(x + i)) -~

X,i<j

x,i

- 3T WU + o) + 5 ln Lo o) I)} @

where we have the complex notation «; = a} + iaf, u; = u} + iu?. The exponent is minimal
for the constant real mean fields u; = v, ¢, = «

— I(a)
To(a)

4B[D;1u3+6u]=a

which give the free energy density

u

)

— BfMF = D(In I () — ow) + DB(

Dz- 1u4+2£u2>.

The corresponding values of «, u, fMF are plotted in figures 1a, 1b for different values of &.
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anisotropy ¢ = 6“2: C12
44
transition (defined by — ff becoming negative).

B

Fig. la. — The mean field solutions to the equations (5) of the melting model for different parameters of
. The dotted line follows the values of the order parameter right at the melting

Fig. 1b. — The free energy in mean field approximation (

fos o=
504 _—
MFoHo\op &Lo2
—————————
ot tias MF
4 6 8
B
------ ), with one loop corrected (——) and the

strong coupling approximation up to g'! (——). The circles mark the transition points.
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1~ €12

Experimentally, ¢ = it varies between 0.3 (Cu) and 1 (W). In this approximation

2¢Ch4
the melting transition takes place at

1

par ~

For B < BMF, the lowest energy is given by u = « = 0, — BfMF = 0.
Let us now calculate the one-loop correction in the crystalline (high ) phase. For this we expand
the energy up to quadratic terms and find the exponent

— BNfMF 4 3{52 Re( Y ow(x) ufx + ) uf x4+ i) ux) + 28 Y uf (%) ulx + i))} -

X,i<j X, i

- Z (8u}(x) baf (x) + Suf(x) Saf(x)) +

+Z{ W (a) (Sac! (x))? + 1 = W@ 5a2(x))2}

where 62 denotes the quadratic fluctuations of the pure u terms and

W) =Inly(@), Wi(a)=-n 1(“) —u,
Ioy(a)
” _ Il(a) ' _ 1 I (a) I_l@ 2
Wi = (lo(a)) G, <Io(a))
=1- % —u?. (8)

We can now integrate out a!, o fluctuations which gives

{ det (2 nW"(a)) det (2 T W;fa)> }‘ v X

Xexp{ Z u; (x))*

du? (x))® } ©)

X, i
Inserting u,(x) = u + du,(x) into the pure u parts, we calculate its quadratic fluctuation

X, i< j

%62 { Y ) uf (x + Dy’ (x + Jux) + cc) + 2 éZ(ui* (X)) u;(x + i) + c.c.)} =

= Tz x%j(éui(x)éu;’ (x + 1) + ouy(x) ou;" (x + j) + Ouy(x) duy(x) + duj (x + i) du; (x + ) +

+ Ouj (x + i) duyx) + du; (x + j) duylx) + cc) + £ (0uf (x)dui(x + i) + cc) . (10)
Using the lattice gradient

Viui(x) = ui(x + i) — uy(x)

Viux) = uy(x) — uj(x — i), (n
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we can rewrite this as follows

2
=3 (cSui(x) (1 + V) 0ur®) + dux) (1 + V) 6u (x) +
i + Su(x) du(x) + (1 + V) 6uf (x) (1 + V,) du; (x)

+ Sux) (1 + V,) duf (x) + u/x) (1 + V,) du; (x) + c.c.>

+ & Z (0u (x) (1 + V,) du;(x) + c.c) (12)
and finally, as
l 5 1 ML ’ 5 1o’ 1 - 2 13
3 X (0w 00 Mioe x) suex) + (| 7] (13)
L

where the matrices M are given by

L —_—
MIx, x') = uz{Z(l +V)x12(1-V)Q+V) +

+ Z[Z 1+V)-201+V)F 1] 51-1-}6“, + 481 +V))d;;0,, - (14)
]

These matrices are diagonal in momentum space

L
Mk) = uz{ + €%+ 1) ™+ 1) + 28 (Z‘ cosk, — 2cosk; F 1)} + 4 ¢0;;cos k; . (15)

For long wavelengths, the full fluctuation matrices, given by

1 o
Dj; =m5u“ﬁM{}, D;=m5u‘ﬁM1§

behave as follows

‘ 1
L~ —— 2— i — 2 ‘2‘— : :
D;~p (ﬁW"()+2u 45)511 du” + 2 (— k; + k) +

+u2{(k2 + 2(%- 1>k,.2>5,,+ K2+ k2 — k,.k,}] (16)
DI ~ Buz{(kz + 2(;52-— 1)k§>5i,. + kikj}.

The transverse modes are massless. They are the sound waves in a crystal with temperature sof-
tened elastic constants

C4a(T) = C44 ut

(¢ — 1) (T) = (¢y, — ¢y5)0°. (17)
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The quadratic fluctuations give a loop contribution to the free energy density

*1 loo; 1 i dzk L L L
— Bf P=__j 3 )Z{ZInN +In(l —¢ C)+(L—>T)}

where

3
L_p2f1_ Y4 _ 2 T _ gl
s—ﬁu(l ~ u>, € ﬂa

L L
NiT=1—23T{Zcosk,+2<-%—1)cosk,-¢1} (18)
- Z2(1 + cosk)
j NT

For large §, the 1 loop contributes just the black body radiation of the sound waves and gives

_ ﬂfllcop ~ |n (2(26 + 1)/ /2 é) —_
_l " ﬂln ZZ(]—cosk,)2+2(f—1)H2(1—COSk~)
p) . (27[)2 - i i i .

The integral can be evaluated numerically.
For & =1 it is 2.34.
If we take also the mean field solution to the same order in 1/8 we find

— MR & _In(2mB /28 + (1 + 48 —
_ l " (;2’;2 {(Z 2(1 — cos k,.))2 +2( - DJ]2(0 ~ cos ki)}. (19)
For ¢ = 1 thisis

~ —InQ2/278) + 58 — 1.17.

The full one loop corrected — ff deviates very little from this high B limiting form.
For B < BYF, the mean field energy is zero. In order to calculate fluctuation corrections to
this, we perform the high temperature expansion,

" dyi(x) ﬂ{ Y cos(Vyy, + Vj3) + 2¢ Y cos (viv.)}
Z = I—[ 2 - x§<j ! x,i

- Z H I"u(x)(ﬂ) n a..(x)(2 éﬁ) X € lxiz<j oulVirs + Vpi) + 'Z o Viy

{alj(x)) X,i<j
Integrating out the y; variables gives the stress conservation law

The lowest contribution to the free energy is

= Bf =InIy(B) + 2In 12 ¢P). (21)
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The next correction comes from the lowest integer o;; configuration satisfying (20). Writing
0,i(X) = g; &, V, V,x(x) with integer x and sgtting y(x) = 9, o we see that this lowest contribu-
I (1,2 271,02 4
1([3)) (2( éﬁ)) (1( éﬂ)) (*). This has
1o(B)) \Io(2EB)) \Io(2EB)

a threshold behaviour of f'? and turns out to be numerically negligible up to the melting tem-
perature.

tion leads to a first correction to (21) of the form 2(

In figures 1b, 2 we display our free energy, and in figure 2 the internal energy E = a—?B Bf)+5

as a function of f and compare the latter with the Monte Carlo data of reference [12]. The agree-
ment is seen to be excellent. In table I we show the inverse melting temperature (°) as a function
of ¢ which has the same ¢ dependence as (6) but is renormalized by an overall factor
B ~ 1.2E7083,

It is interesting to find out that the fluctuations play an important role in generating the tran-
sition entropy. At the mean field level, the point ¢ = 1 is tricritical. Near it, — ff has the Landau
expansion

1 1
MF 2 4 6
- = —=jof + =1 -=&a” — o 22
o = (b= 3) e + 5 - 0t - 5% @)
4Ab
{n MF-1loop
§ s MF
2 7
'd
//
HT /
,/
///
) L
5
oMC
E
25t
MF +1loop
0 i 2 3
B
. ) N . 7 .
Fig. 2. — The calculated free energy and its derivative, the internal energy E = % (Bf) + 5 in comparison

with the Monte Carlo data of Ref. [10]. The value of ¢ is fixed to unity.

(*) With x(x) = 6, we have ¢,,00) =1, 0,,2) = —2, 6,,(22) =1 6,,00) = 1, 6,,(1) = — 2,

62,21) = — 1, 06,,00)=0,00=—1, 6,,() =0, (D) =1 06,,2) =0,2) =1 0,,(1 +2)=
= 0,4(1 + 2) = — 1, and all others zero.
472 kg

(°) Measured in units of >

ua
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Table 1. — The inverse melting temperatures in units of 4 n* ky/(ua®) for different parameters of

anisotropy & = (¢y; — ¢1,)/(2 ¢44) in various approximate schemes compared with Monte Carlo
results in Ref. [10].

B

4 MF HT, LT HT, MF + 1 loop Monte Carlo [10]
0.2 1.77 4.84 4.46

0.4 1.12 2.70 2.38 2.35 + 0.05
0.6 0.81 1.98 1.71

0.8 0.62 1.61 1.38 1.36 + 0.02
1.0 0.50 1.39 1.18 1.15 + 0.01
1.2 042 1.23 1.04

MF, HT, LT, MF + 1 loop stand for mean field approximation in equations (5), strong coupling approxi-
mation up to B'! in equation (21), low temperature expansion up to 1/8 in equation (19), and one loop
corrected mean field approximation in equations (5), (18), respectively.

and we see that the quartic term turns negative for £ > 1 implying a second order transition. This
property does not, however, survive the fluctuation corrections, after which the entropy jump
remains positive for all physically acceptable values of &.

If is useful to compare this model with the closely related lattice gauge theory (LGT). The mean
field theories and the one-loop corrections are very similar. At this level of approximation, both
have a strong first order transition. In the LGT, fluctuations make precisely the opposite way and
the transition is removed completely. In a plot like ours this would show up by the high tempera-

ture expansion for — ff lying always above the mean field plus one loop curve, with no inter-
section taking place.
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